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Introduction

Building and Combining Decision Procedures
Use Rewriting techniques

I use a superposition calculus for FOL with Equality and prove its
termination for useful cases in verification

ü Application to data structures [ARR03, ABRS09, BE07, dMB08]
Use Combination techniques

I use procedures available for individual theories and try to build a
procedure for the union of theories

ü Application to disjoint unions of data structures and fragments
of arithmetic [KRRT05]

Our approach
Use both Rewriting an Combination techniques to consider
non-disjoint unions of data structures and fragments of arithmetic
ü Application of the combination method proposed by
Ghilardi-Nicolini-Zucchelli [GNZ08]: a combination method à la
Nelson-Oppen [NO79] for non-disjoint unions of theories
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Data Structures

Data structures using arithmetic operators

Lists :nil : LISTS, cons : ELEM × LISTS → LISTS, ` : LISTS → NUM

`(nil) = 0
`(cons(x , y)) = s(`(y))

Trees :bin : ELEM × TREES × TREES → TREES,null : TREES, sizeL : TREES →
NUM, sizeR : TREES → NUM

sizeL(null) = 0 sizeR(null) = 0
sizeL(bin(e, t1, t2)) = s(sizeL(t1)) sizeR(bin(e, t1, t2)) = s(sizeR(t2))

Records : seli : RECS → NUM, inc : RECS → RECS

seli(inc(r)) = s(seli(r))

for any index i of sort NUM.
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Data Structures

The Shared Theory of Increment

(Inj) ∀x , y s(x) = s(y)→ x = y
(Acy) ∀x x 6= sn(x) for all n ∈ N+

(S0) ∀x s(x) 6= 0

1 Theory of Integer Offsets [NRR09b]: TI = {Inj ,Acy ,S0}
2 Theory of Increment (this paper): TS = {Inj ,Acy}
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Data Structures

Superposition Calculus

Superposition
l[u′] = r u = t

(l[t ] = r)σ
(i), (ii), (iii), (iv)

Paramodulation
l[u′] 6= r u = t

(l[t ] 6= r)σ
(i), (ii), (iii), (iv)

Reflection
u′ 6= u
⊥ (i)

where (i) σ is the most general unifier of u and u′, (ii) u′ is
not a variable , (iii) uσ 6� tσ, (iv) l[u′]σ 6� rσ.

Figure: Expansion Inference Rules.
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Data Structures

Superposition Calculus (for a successor function)

Ad hoc rules to be applied to ground terms:

R1 (for Inj)
S ∪ {s(u) = s(v)}

S ∪ {u = v}

R2 (for Inj)
S ∪ {s(u) = t , s(v) = t}
S ∪ {s(v) = t ,u = v} if s(u) � t , s(v) � t and u � v

C1 (for Acy)
S ∪ {sn(t) = t}

S ∪ {sn(t) = t} ∪ ⊥ if n ∈ N

where S is a set of literals and ⊥ is the symbol for the inconsistency.

Figure: Ground reduction Inference Rules.
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Data Structures

Superposition Calculus as Decision Procedure

Result
An appropriate Superposition Calculus leads to a decision procedure
for a class of theories DST modelling data-structures with the unary
successor function.

DST includes: Lists with length, Trees with size, Records with
increment.

Proof: For any theory T ∈ DST and any set of ground flat literals G,
any saturation of Ax(T ) ∪G is as follows:

It must be finite.
Some forms of non-ground equalities must be excluded.
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Arithmetic

Linear Arithmetic
ΣQ := {0,1,+,−, {q_}q∈Q, s, <}, where 0,1 are constants, and
−, q_, s are unary function symbols.
Let TQ be the set of all the ΣQ-sentences that are true in Q.

Fact
A TQ-satisfiability procedure can be obtained by using

1 Fourier-Motzkin Elimination (for inequalities)
ü to detect unsatisfiability or to compute implicit equalities

2 Gauss Elimination (for equalities)
ü a function solve to compute the solved form of a set of
equalities

3 Disequality Handler
ü a function canon over arithmetic expressions to check whether
an disequality can be canonized into an unsatisfiable disequality
u 6= u.
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Arithmetic

Non-Linear Arithmetic: The Theory of Q-Algebras
TQ-alg is AC(+) ∪ AC(×) ∪ U(+,0) ∪ U(×,1) plus

∀x x + (−x) = 0 (1)

0 6= 1 (2)

∀x s(x) = x + 1 (3)

∀x , y , z (x + y)z = xz + yz (4)

∀x , y q(x + y) = qx + qy (5)

∀x (q1 ⊕ q2)x = q1x + q2x (6)

∀x (q1 · q2)x = q1(q2x) (7)

∀x 1Qx = x (8)

∀x , y q(xy) = x(qy) (9)

Fact
A TQ-alg-satisfiability procedure can be obtained by using the
Buchberger algorithm for the computation of Groebner bases.
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Background on Combination

A combination problem

Γ1 =


y = `(a)
b = cons(e,a)
x = `(b)


Γ2 =

{
u ≥ 0
x + u = y

}
Satisfiability of Γ1 ∪ Γ2?
Γ1 ∪ Γ2 is unsatisfiable since

Γ1 → x = s(y)

Γ2 ∪ {x = s(y)} is T2-unsatisfiable:

Γ2 ∪ {x = s(y)} ↔ {u ≥ 0,u = −1}
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Background on Combination

Non-disjoint combination method (à la Nelson-Oppen)
Combination method developed by Ghilardi-Nicolini-Zucchelli [GNZ08]:
Let T0 = T1 ∩ T2 and Σ0 = Σ1 ∩ Σ2

Purification Given a set of T1 ∪ T2-constraints Γ, produce an
equisatisfiable set of pure constraints Γ1 ∪ Γ2 ;

Propagation the T1-constraint solving procedure and the T2-constraint
solving procedure fairly exchange shared positive
Σ0-clauses that are entailed by T1 ∪ Γ1 and by T2 ∪ Γ2

Until an inconsistency is detected or a saturation state is
reached.

Pseudo-code
1. If T0-basisTi (Γi) = ∆i and ⊥ /∈ ∆i for each i ∈ {1,2}, then

1.1. For each D ∈ ∆i such that Tj ∪ Γj 6|= D, (i 6= j), add D to Γj
1.2. If Γ1 or Γ2 has been changed in 1.1, then rerun 1.

Else return Unsatisfiable
2. Return Satisfiable.
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Background on Combination

Combination method: critical points
1 How to obtain the T0-bases, which are logical consequences of a

constraint Γ w.r.t. a theory T0 over a given sub-signature
ü Computability of T0-bases

2 How to guarantee the termination of the exchange loop
ü Noetherianity of T0

3 How to ensure its completeness
ü T0-compatibility (extends the assumption on stably infinite
theories used in the disjoint case)

Our work
How to face these issues when dealing with a combination of

1 a data structure in DST
2 a theory of arithmetic in {TQ,TQ-alg}

where the shared theory T0 is the theory of Increment TS.
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Background on Combination

Computation of TS-bases for data structures
Result
Our Superposition Calculus computes TS-bases for any T ∈ DST.

How to compute TS-bases: collect all the shared equalities in a
saturation of Γ not containing ⊥.

Example (theory of Lists with length)
The saturation of

Γ1 = {y = `(a),b = cons(e,a), x = `(b)}

contains
x = s(y)

Remark
Similar result in [NRR09b] for the shared theory of Integer Offsets.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 18 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases for fragments of arithmetic

Result
TS-bases are computable for TQ and TQ-alg .

Proof Idea:

1 (Linear case) Assume Γ is a set of linear equalities. We have

T ∪ Γ |= a1 = sn(a2)⇐⇒ canon(a1γ − a2γ) = n

where γ = solve(Γ).
2 (Non-linear case) It is possible to compute the set of all entailed

linear equalities by using a slight adaptation of the Buchberger
algorithm, as shown in Nicolini’s thesis. Then proceed as in (1).
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Background on Combination

Computation of TS-bases: example for the arithmetic

Example (theory of arithmetic TQ)

Γ2 =


x = c
1 + 2c + y = 2 + 3d
2c = d + x

Γ2 is equivalent to the solved form:

solve(Γ2) =


x = c
y = c + 1
d = c

Therefore:
Γ2 → y = s(x)
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Background on Combination

Data structures with arithmetic constraints

Example (Previous Examples Continued)
In the theory of Lists with length:
given Γ1 = {y = `(a),b = cons(e,a), x = `(b)}, we have:

Γ1 → x = s(y)

In the theory of arithmetic TQ:
given Γ2 = {x = c,1 + 2c + y = 2 + 3d ,2c = d + x}, we have:

Γ2 → y = s(x)

In the union of theories:

Γ1 ∪ Γ2 is unsatisfiable

since {x = s(y), y = s(x)} is TS-unsatisfiable
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Background on Combination

Main result

We have identified a class of theories DST modelling data structures
modulo TS such that for any T ∈ DST ∪ {TQ,TQ-alg}:
the Ghilardi-Nicolini-Zucchelli combination method is

1 effective: TS-basisT is computable
2 terminating: TS is Noetherian
3 complete: T is TS-compatible

Theorem
For any Σ1-theory T1 ∈ DST and any Σ2-theory
T2 ∈ {TQ,TQ-alg ,TQ ∪ TQ-alg} ∪ DST such that Σ1 ∩ Σ2 = ΣS,
T1 ∪ TS ∪ T2 has a decidable constraint satisfiability problem.
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Conclusion

Conclusion and future work

sharing the theory of Increment (this paper): two possible theories
of arithmetic over the the rationals, TQ and TQ-alg

sharing the theory of Integer Offsets [NRR09b]: which theory of
arithmetic over the integers?
ü Computation of bases seems more difficult for the integers!
sharing the theory of Abelian Groups [NRR09a]: which theory of
arithmetic sharing the + operator?
ü Computation of bases?
How to deal with a non-convex data structure such as arrays?
ü adaptation of the superposition calculus, to handle clauses
instead of unit clauses
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Conclusion
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