
inrialoria-logo

Data Structures with Arithmetic Constraints:
a Non-Disjoint Combination

E. Nicolini, C. Ringeissen, and M. Rusinowitch

LORIA & INRIA Nancy Grand Est

FroCoS’09

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 1 / 24



inrialoria-logo

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 2 / 24



inrialoria-logo

Introduction

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 3 / 24



inrialoria-logo

Introduction

Building and Combining Decision Procedures
Use Rewriting techniques

I use a superposition calculus for FOL with Equality and prove its
termination for useful cases in verification

ü Application to data structures [ARR03, ABRS09, BE07, dMB08]
Use Combination techniques

I use procedures available for individual theories and try to build a
procedure for the union of theories

ü Application to disjoint unions of data structures and fragments
of arithmetic [KRRT05]

Our approach
Use both Rewriting an Combination techniques to consider
non-disjoint unions of data structures and fragments of arithmetic
ü Application of the combination method proposed by
Ghilardi-Nicolini-Zucchelli [GNZ08]: a combination method à la
Nelson-Oppen [NO79] for non-disjoint unions of theories

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 4 / 24



inrialoria-logo

Data Structures

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 5 / 24



inrialoria-logo

Data Structures

Data structures using arithmetic operators

Lists :nil : LISTS, cons : ELEM × LISTS → LISTS, ` : LISTS → NUM

`(nil) = 0
`(cons(x , y)) = s(`(y))

Trees :bin : ELEM × TREES × TREES → TREES,null : TREES, sizeL : TREES →
NUM, sizeR : TREES → NUM

sizeL(null) = 0 sizeR(null) = 0
sizeL(bin(e, t1, t2)) = s(sizeL(t1)) sizeR(bin(e, t1, t2)) = s(sizeR(t2))

Records : seli : RECS → NUM, inc : RECS → RECS

seli(inc(r)) = s(seli(r))

for any index i of sort NUM.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 6 / 24



inrialoria-logo

Data Structures

The Shared Theory of Increment

(Inj) ∀x , y s(x) = s(y)→ x = y
(Acy) ∀x x 6= sn(x) for all n ∈ N+

(S0) ∀x s(x) 6= 0

1 Theory of Integer Offsets [NRR09b]: TI = {Inj ,Acy ,S0}
2 Theory of Increment (this paper): TS = {Inj ,Acy}

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 7 / 24



inrialoria-logo

Data Structures

Superposition Calculus

Superposition
l[u′] = r u = t

(l[t ] = r)σ
(i), (ii), (iii), (iv)

Paramodulation
l[u′] 6= r u = t

(l[t ] 6= r)σ
(i), (ii), (iii), (iv)

Reflection
u′ 6= u
⊥ (i)

where (i) σ is the most general unifier of u and u′, (ii) u′ is
not a variable , (iii) uσ 6� tσ, (iv) l[u′]σ 6� rσ.

Figure: Expansion Inference Rules.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 8 / 24



inrialoria-logo

Data Structures

Superposition Calculus (for a successor function)

Ad hoc rules to be applied to ground terms:

R1 (for Inj)
S ∪ {s(u) = s(v)}

S ∪ {u = v}

R2 (for Inj)
S ∪ {s(u) = t , s(v) = t}
S ∪ {s(v) = t ,u = v} if s(u) � t , s(v) � t and u � v

C1 (for Acy)
S ∪ {sn(t) = t}

S ∪ {sn(t) = t} ∪ ⊥ if n ∈ N

where S is a set of literals and ⊥ is the symbol for the inconsistency.

Figure: Ground reduction Inference Rules.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 9 / 24



inrialoria-logo

Data Structures

Superposition Calculus as Decision Procedure

Result
An appropriate Superposition Calculus leads to a decision procedure
for a class of theories DST modelling data-structures with the unary
successor function.

DST includes: Lists with length, Trees with size, Records with
increment.

Proof: For any theory T ∈ DST and any set of ground flat literals G,
any saturation of Ax(T ) ∪G is as follows:

It must be finite.
Some forms of non-ground equalities must be excluded.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 10 / 24



inrialoria-logo

Arithmetic

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 11 / 24



inrialoria-logo

Arithmetic

Linear Arithmetic
ΣQ := {0,1,+,−, {q_}q∈Q, s, <}, where 0,1 are constants, and
−, q_, s are unary function symbols.
Let TQ be the set of all the ΣQ-sentences that are true in Q.

Fact
A TQ-satisfiability procedure can be obtained by using

1 Fourier-Motzkin Elimination (for inequalities)
ü to detect unsatisfiability or to compute implicit equalities

2 Gauss Elimination (for equalities)
ü a function solve to compute the solved form of a set of
equalities

3 Disequality Handler
ü a function canon over arithmetic expressions to check whether
an disequality can be canonized into an unsatisfiable disequality
u 6= u.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 12 / 24



inrialoria-logo

Arithmetic

Non-Linear Arithmetic: The Theory of Q-Algebras
TQ-alg is AC(+) ∪ AC(×) ∪ U(+,0) ∪ U(×,1) plus

∀x x + (−x) = 0 (1)

0 6= 1 (2)

∀x s(x) = x + 1 (3)

∀x , y , z (x + y)z = xz + yz (4)

∀x , y q(x + y) = qx + qy (5)

∀x (q1 ⊕ q2)x = q1x + q2x (6)

∀x (q1 · q2)x = q1(q2x) (7)

∀x 1Qx = x (8)

∀x , y q(xy) = x(qy) (9)

Fact
A TQ-alg-satisfiability procedure can be obtained by using the
Buchberger algorithm for the computation of Groebner bases.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 13 / 24



inrialoria-logo

Background on Combination

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 14 / 24



inrialoria-logo

Background on Combination

A combination problem

Γ1 =


y = `(a)
b = cons(e,a)
x = `(b)


Γ2 =

{
u ≥ 0
x + u = y

}
Satisfiability of Γ1 ∪ Γ2?
Γ1 ∪ Γ2 is unsatisfiable since

Γ1 → x = s(y)

Γ2 ∪ {x = s(y)} is T2-unsatisfiable:

Γ2 ∪ {x = s(y)} ↔ {u ≥ 0,u = −1}

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 15 / 24



inrialoria-logo

Background on Combination

A combination problem

Γ1 =


y = `(a)
b = cons(e,a)
x = `(b)


Γ2 =

{
u ≥ 0
x + u = y

}
Satisfiability of Γ1 ∪ Γ2?
Γ1 ∪ Γ2 is unsatisfiable since

Γ1 → x = s(y)

Γ2 ∪ {x = s(y)} is T2-unsatisfiable:

Γ2 ∪ {x = s(y)} ↔ {u ≥ 0,u = −1}

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 15 / 24



inrialoria-logo

Background on Combination

Non-disjoint combination method (à la Nelson-Oppen)
Combination method developed by Ghilardi-Nicolini-Zucchelli [GNZ08]:
Let T0 = T1 ∩ T2 and Σ0 = Σ1 ∩ Σ2

Purification Given a set of T1 ∪ T2-constraints Γ, produce an
equisatisfiable set of pure constraints Γ1 ∪ Γ2 ;

Propagation the T1-constraint solving procedure and the T2-constraint
solving procedure fairly exchange shared positive
Σ0-clauses that are entailed by T1 ∪ Γ1 and by T2 ∪ Γ2

Until an inconsistency is detected or a saturation state is
reached.

Pseudo-code
1. If T0-basisTi (Γi) = ∆i and ⊥ /∈ ∆i for each i ∈ {1,2}, then

1.1. For each D ∈ ∆i such that Tj ∪ Γj 6|= D, (i 6= j), add D to Γj
1.2. If Γ1 or Γ2 has been changed in 1.1, then rerun 1.

Else return Unsatisfiable
2. Return Satisfiable.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 16 / 24



inrialoria-logo

Background on Combination

Non-disjoint combination method (à la Nelson-Oppen)
Combination method developed by Ghilardi-Nicolini-Zucchelli [GNZ08]:
Let T0 = T1 ∩ T2 and Σ0 = Σ1 ∩ Σ2

Purification Given a set of T1 ∪ T2-constraints Γ, produce an
equisatisfiable set of pure constraints Γ1 ∪ Γ2 ;

Propagation the T1-constraint solving procedure and the T2-constraint
solving procedure fairly exchange shared positive
Σ0-clauses that are entailed by T1 ∪ Γ1 and by T2 ∪ Γ2

Until an inconsistency is detected or a saturation state is
reached.

Pseudo-code
1. If T0-basisTi (Γi) = ∆i and ⊥ /∈ ∆i for each i ∈ {1,2}, then

1.1. For each D ∈ ∆i such that Tj ∪ Γj 6|= D, (i 6= j), add D to Γj
1.2. If Γ1 or Γ2 has been changed in 1.1, then rerun 1.

Else return Unsatisfiable
2. Return Satisfiable.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 16 / 24



inrialoria-logo

Background on Combination

Combination method: critical points
1 How to obtain the T0-bases, which are logical consequences of a

constraint Γ w.r.t. a theory T0 over a given sub-signature
ü Computability of T0-bases

2 How to guarantee the termination of the exchange loop
ü Noetherianity of T0

3 How to ensure its completeness
ü T0-compatibility (extends the assumption on stably infinite
theories used in the disjoint case)

Our work
How to face these issues when dealing with a combination of

1 a data structure in DST
2 a theory of arithmetic in {TQ,TQ-alg}

where the shared theory T0 is the theory of Increment TS.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 17 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases for data structures
Result
Our Superposition Calculus computes TS-bases for any T ∈ DST.

How to compute TS-bases: collect all the shared equalities in a
saturation of Γ not containing ⊥.

Example (theory of Lists with length)
The saturation of

Γ1 = {y = `(a),b = cons(e,a), x = `(b)}

contains
x = s(y)

Remark
Similar result in [NRR09b] for the shared theory of Integer Offsets.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 18 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases for fragments of arithmetic

Result
TS-bases are computable for TQ and TQ-alg .

Proof Idea:

1 (Linear case) Assume Γ is a set of linear equalities. We have

T ∪ Γ |= a1 = sn(a2)⇐⇒ canon(a1γ − a2γ) = n

where γ = solve(Γ).
2 (Non-linear case) It is possible to compute the set of all entailed

linear equalities by using a slight adaptation of the Buchberger
algorithm, as shown in Nicolini’s thesis. Then proceed as in (1).

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 19 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases: example for the arithmetic

Example (theory of arithmetic TQ)

Γ2 =


x = c
1 + 2c + y = 2 + 3d
2c = d + x

Γ2 is equivalent to the solved form:

solve(Γ2) =


x = c
y = c + 1
d = c

Therefore:
Γ2 → y = s(x)

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 20 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases: example for the arithmetic

Example (theory of arithmetic TQ)

Γ2 =


x = c
1 + 2c + y = 2 + 3d
2c = d + x

Γ2 is equivalent to the solved form:

solve(Γ2) =


x = c
y = c + 1
d = c

Therefore:
Γ2 → y = s(x)

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 20 / 24



inrialoria-logo

Background on Combination

Computation of TS-bases: example for the arithmetic

Example (theory of arithmetic TQ)

Γ2 =


x = c
1 + 2c + y = 2 + 3d
2c = d + x

Γ2 is equivalent to the solved form:

solve(Γ2) =


x = c
y = c + 1
d = c

Therefore:
Γ2 → y = s(x)

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 20 / 24



inrialoria-logo

Background on Combination

Data structures with arithmetic constraints

Example (Previous Examples Continued)
In the theory of Lists with length:
given Γ1 = {y = `(a),b = cons(e,a), x = `(b)}, we have:

Γ1 → x = s(y)

In the theory of arithmetic TQ:
given Γ2 = {x = c,1 + 2c + y = 2 + 3d ,2c = d + x}, we have:

Γ2 → y = s(x)

In the union of theories:

Γ1 ∪ Γ2 is unsatisfiable

since {x = s(y), y = s(x)} is TS-unsatisfiable

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 21 / 24



inrialoria-logo

Background on Combination

Main result

We have identified a class of theories DST modelling data structures
modulo TS such that for any T ∈ DST ∪ {TQ,TQ-alg}:
the Ghilardi-Nicolini-Zucchelli combination method is

1 effective: TS-basisT is computable
2 terminating: TS is Noetherian
3 complete: T is TS-compatible

Theorem
For any Σ1-theory T1 ∈ DST and any Σ2-theory
T2 ∈ {TQ,TQ-alg ,TQ ∪ TQ-alg} ∪ DST such that Σ1 ∩ Σ2 = ΣS,
T1 ∪ TS ∪ T2 has a decidable constraint satisfiability problem.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 22 / 24



inrialoria-logo

Conclusion

Outline

1 Introduction

2 Data Structures

3 Arithmetic

4 Background on Combination

5 Conclusion

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 23 / 24



inrialoria-logo

Conclusion

Conclusion and future work

sharing the theory of Increment (this paper): two possible theories
of arithmetic over the the rationals, TQ and TQ-alg

sharing the theory of Integer Offsets [NRR09b]: which theory of
arithmetic over the integers?
ü Computation of bases seems more difficult for the integers!
sharing the theory of Abelian Groups [NRR09a]: which theory of
arithmetic sharing the + operator?
ü Computation of bases?
How to deal with a non-convex data structure such as arrays?
ü adaptation of the superposition calculus, to handle clauses
instead of unit clauses

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 24 / 24



inrialoria-logo

Conclusion

References

Alessandro Armando, Maria P. Bonacina, Silvio Ranise, and Stephan Schulz.
New results on rewrite-based satisfiability procedures.
ACM Transactions on Computational Logic, 10(1), 2009.

Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch.
A rewriting approach to satisfiability procedures.
Information and Computation, 183(2):140–164, 2003.

Maria Paola Bonacina and Mnacho Echenim.
T-decision by decomposition.
In Proc. of CADE’07, volume 4603 of LNCS, pages 199–214. Springer, July 2007.

Leonardo Mendonça de Moura and Nikolaj Bjørner.
Engineering DPLL(T) + Saturation.
In Proc. of IJCAR’08, volume 5195 of LNCS, pages 475–490. Springer, 2008.

Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli.
A comprehensive combination framework.
ACM Transactions on Computational Logic, 9(2):1–54, 2008.

Hélène Kirchner, Silvio Ranise, Christophe Ringeissen, and Duc-Khanh Tran.
On superposition-based satisfiability procedures and their combination.
In D. Van Hung and M. Wirsing, editors, Proc. of ICTAC 2005, volume 3722 of LNCS, pages
594–608, Hanoi (Vietnam), 2005. Springer-Verlag.

Greg Nelson and Derek C. Oppen.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 24 / 24



inrialoria-logo

Conclusion

Simplification by cooperating decision procedures.
ACM Transaction on Programming Languages and Systems, 1(2):245–257, 1979.

Enrica Nicolini, Christophe Ringeissen, and Michaël Rusinowitch.
Combinable extensions of abelian groups.
In Proc. of CADE’09, volume 5663 of LNAI, pages 51–66. Springer, 2009.

Enrica Nicolini, Christophe Ringeissen, and Michaël Rusinowitch.
Satisfiability procedures for combination of theories sharing integer offsets.
In Proc. of TACAS’09, volume 5505 of LNCS, pages 428–442. Springer, 2009.

E. Nicolini et al. (LORIA & INRIA) Data structures with arithmetic constraints FroCoS’09 24 / 24


	Introduction
	Data Structures
	Arithmetic
	Background on Combination
	Conclusion

