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Introduction

Co

The msolver

www.verit-solver.org
@ Satisfiability Modulo Theories SMT
@ Combination of theories: uninterpreted symbols, arithmetic

@ Satisfiability checking for formulas like
a<bAb<a+xAx=0A[f(a) #f()V (p(a) N =p(b+x))]

@ Proof obligations for verification of distributed algorithm: B, TLA+
specifications

@ Extend the language with operators for sets, relations,. ..


www.verit-solver.org

Introduction

SMT + Syntactic sugar:

operator Definition
€ Axp. p(x)
N Apg. Ax. p(x) A q(x)
\ Apg. Ax. p(x) A —q(x)
C

Apq. Vx. p(x) = q(x)
transitive  Ar. Vayz. [r(x,y) Ar(y,2)] = r(x,2)

permutation  Ar. Vxyz. r(x,y,z) = r(y, z,x) = r(z,x,y)

@ introduces quantifiers
@ sat. checking in combination of initial theories + FOL theory
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For example :
a=bA({f(a)} UE) CAANf(b)gCNAUB=CND
becomes
a=bAvx[(x=f(a)VE(x)) = Ax)] A =C(f(b))
AVx. [A(x) V B(x)] = [C(x) A D(x)]

@ quantifiers come from second-order equalities, operators that
contain quantifiers

@ but the obtained FOL theory is BSR: 3*V*¢ (¢ function- and
quantifier-free), and (for sets) monadic
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Motiv.

@ Motivation: extend the language of SMT solvers with operators on
sets, relations,. ..

@ Problem: combine a Bernays-Schdnfinkel-Ramsey theory with a
decidable fragment (the initial language of the SMT solver)

It is indeed possible to combine a decidable theory from the BSR,
monadic, or two variable classes, with (nearly) any decidable theory J




FOL decidable classes and combinations
FOL dec

SMT solvers:

@ satisfiability checking of (quantifier-free) formulas in a static
combination of theories

@ theories: disjoint, FOL, equational, decidable, stably infinite
@ e.g. empty theory, linear arithmetic, arrays, lists, bitvectors
Some major decidable equational FOL theories:

@ Bernays-Schénfinkel-Ramsey: 3*V*p (¢ function- and
quantifier-free)

@ two-variables relational fragment
@ monadic first-order logic

Those theories are not stably infinite: VxvVyx =y
Nelson-Oppen not applicable J
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Comb

A combination of disjoint languages:
L={x<y,y<x+f(x), P(h(x) = h(y)), ~P(0), f(x) = 0}
uninterpreted symbols (P, f, k), and arithmetic (4, —, <, 0).

Combination of disjoint decision procedures

Combination of the empty theory and theory for linear arithmetic (both
stably-infinite)
Separation using new variables:

L = {x<y,y<x+v,vi=0,v2=v3—v4,v5s =0}
L, = {P(V2), _'P(VS)a Vi :f(X), V3 = h()C), V4 = h(y)}
L and L; U L, both satisfiable or both unsatisfiable.



Cooperation by exchanging equalities:
L =
IQ =

<y, y<x+vi,vi =0, =v3—v4, vs =0}

{P(VZ)a _'P(VS)v Vi :f(x)a V3 = h(x)7 V4 = h(y)}



Cooperation by exchanging equalities:

L =

L, =

From L;, x = y:

L =
L

<y, y<x+vi,vi =0, =v3—v4, vs =0}
{P(v2), =P(vs), vi = f(x), v3 = h(x), va = h(y)}
{x<y,y<x+vi,vi=0,vs =vs — vy, vs =0}

{P(VZ)a —|P(V5), Vi :f(x)a V3 = h(x)a V4 = h(y)) X :y}



Cooperation by exchanging equalities:
L =
L,

From L;, x = y:
L

<y, y<x+vi,vi =0, =v3—v4, vs =0}
{P(v2), ~P(vs), vi =f(x), v3 = h(x), va = h(y)}
{x<y,y<x+vi,vi=0,vs =vs — vy, vs =0}
From L}, v3 = v4:

L/2 {P(VZ)a —|P(V5), Vi :f(x)a V3 = h(x)a V4 = h(y)) X :y}
L

L, =

X<y, y<x+4+vi,vi=0,v2=v3 —vg, vs =0,v3 = vy}

{P(VZ)v —|P(V5), V1 :f(x)v V3 = h(x)7 V4 = h(y)7 X = y}
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Cooperation by exchanging equalities:
Ly = {x<y,y<x+v,v=0,v=v3—yvs =0}

L, = {P(v2)a _'P(VS)’ Vi :f(x)7 V3 = h(x)7 V4 = h(y)}
From L;, x = y:

L = {x<y,y<x+4v,vi=0,v; =v3—vy, vs =0}
Ly = {P(v), =P(vs), vi = f(x), v3 = h(x), vs = h(y), x = y}
From L}, v3 = v4:
Ly = {x<y,y<x+vi,vi=0,v=v3—vyvs=0,v3 =w}
Ly = {P(v), ~P(vs), vi =f(x), v3 = h(x), va = h(y), x = y}
From L}, v = vs:
L = {x<y,y<x+vi,vi=0,v2=v3— v, vs=0,v3 =w}
Ly = {P(v), P(vs), vi =f(x), v3 = h(x), va = h(y), x = y,v2 = vs}

L7 is unsatisfiable.



Dec. Proc. 1 Dec. Proc. 2

deduced (disj. of) equality

| |
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| |

| |

| deduced (disj. of) equality | Sound : every deduced fact is
| |

| |
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| |

|

a consequence of the original

deduced (disj. of) equality set of formulas

\
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deduced (disj. of) equality

I I
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| ' Really SAT? (Complete?)
I deduced (disj. of) equalit L. .
:4_/3’1” @ all disjunctions of
I
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deduced (disj. of) equality | equalities propagate
|
I
‘Il

.

No more deducible (disj. of) eq
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deduced (disj. of) equality

I I

|\|

I I

| | Really SAT? (Complete?)
I deduced (disj. of) equality 1 L. .
:A—/L‘L: @ all disjunctions of
| |
I I
| |
I

deduced (disj. of) equality equalltles propagated

e @ models agree on

INo more deducible (disj. of) eq.: cardinalities

T

Model 1 + 2
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Different frameworks (and capabilities)

@ Nelson-Oppen:
requirement on theories: stably infinite (not suitable for BSR)
if satisfiable, there is an infinite model (FOL theories = ¥)

@ Combining with the empty theory (and some others):
the empty theory does not constraint much the cardinalities
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Cardinal

Decidable classes
@ Bernays-Schénfinkel-Ramsey: 3*V*p (¢ function- and
quantifier-free)

@ two-variables relational fragment
@ monadic first-order logic
all have following property (pumping theorem)

for every theory 7, there is a computable k(7)) s. t. if there is a model
of cardinality > k(7), there is a model of every cardinality > k(7). J

The set of cardinalities is the finite or cofinite set:
St U {k | kis a cardinality A k > k(T)}

with S+ C N computable and finite, and k(7") computable (7 is gentle).
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Cardinalitie

Pumping theorem:

for every theory 7, there is a computable k(7)) s. t. if there is a model
of cardinality > k(7), there is a model of every cardinality > k(7). J

For instance, 7 is a Lowenheim theory (other classes are “similar”)
@ assume there is no constant in 7 (can be relaxed)
@ n is the number of predicates
@ ¢ is the number of imbricated quantifiers

@ there is 2" different configurations (tables, types) for elements of
the domain with respect to the n predicates

@ if there exists a model with cardinality > ¢ 2" then there should be
> g elements with the same configuration

@ any such element can be duplicated, to infinity
@ proved by induction on the structure of formulas in 7
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Combi

While combining a BSR, Monadic, or 2-variables theory 7; with
another theory 7,
@ first propagate all (disjunctions of) equalities
@ if still satisfiable, compute the set of cardinalities for 7; U L;
@ if the set is finite, check every cardinality against 7, U L,

@ if the set is infinite,

e check every cardinality < k against 7, U L,

e check if 7, U L, accepts a cardinality > k by checking the
satisfiability of 7, U L, U {a; # a; | 0 < i,j < k} where a;s are new
constants

@ if one cardinality is acceptable for 7, U L,, then the original
problem is satisfiable. Otherwise it is not.
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@ veriT includes FOL ATP (currently E, also Spass in the future)

@ Saturation provers are (or can be turned into) decision procedures
for decidable FOL fragments

@ Long term goal: raise the degree of completeness of the
combination SMT+FOL
Future works:

@ is there any other interesting suitable decidable fragment? The
guarded fragment?

@ how can we really turn this into something usable? Negotiation of
cardinality
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