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ABSTRACT
Publish-subscribe middleware enables the components of a
distributed application to subscribe for event notifications,
and provides the infrastructure enabling their dynamic rout-
ing from sources to subscribers. This model decouples pub-
lishers from subscribers, and in principle makes it amenable
to highly dynamic environments. Nevertheless, publish-sub-
scribe systems exploiting a distributed event dispatcher are
typically not able to rearrange dynamically their operations
to adapt to changes impacting the topology of the dispatch-
ing infrastructure.

In this paper, we present a novel algorithm to deal with
this kind of reconfiguration, which exploits a notion of re-
configuration path for minimizing the portion of the system
affected by the reconfiguration. Simulations show that this
approach significantly reduces the overhead involved with
reconfiguration (up to 76%) with respect to a strawman so-
lution available in the literature.

1. INTRODUCTION
In the last few years, publish-subscribe middleware has

become popular, mostly because the asynchronous, implicit,
multi-point, and peer-to-peer communication style it fos-
ters is well-suited for modern distributed computing appli-
cations. While the majority of deployed systems is still cen-
tralized, commercial and academic efforts are currently fo-
cused on achieving better scalability by developing publi-
sh-subscribe middleware that exploits a distributed event
dispatching infrastructure.

Beyond scalability, the next challenge for distributed pu-
blish-subscribe middleware is to introduce the ability to re-
configure the dispatching infrastructure to cope with changes
in the topology of the physical network, and to do this with-
out interrupting the normal system operation. The scenar-
ios that involve a topological change are many. Some are
determined by explicit changes in a controlled environment.
For instance, this is the case in an enterprise environment
whose system administrator decides to add new machines

(and event dispatchers) to cope with an increased number
of users. In other scenarios, however, the source of recon-
figuration is not under control. This is the case in mobile
computing scenarios, where wireless links enable changes in
the topology of the physical network that may occur at any
time as a result of mobility. In both cases, however, the pu-
blish-subscribe middleware deployed on top of the network
being reconfigured must be able to automatically react to
the topological changes.

The vast majority of currently available publish-subscri-
be middleware has ignored this reconfiguration problem, the
only exceptions being a few systems that adopt an ineffi-
cient, strawman solution. We have previously tackled this
problem in [14], with the goal of identifying a solution that
could offer better performance with respect to the strawman
approach and which could be applied to reconfiguration sce-
narios ranging from manually controlled to environmentally
imposed. In this paper, we approach the same problem with
a different goal: to push the optimization as far as possible,
even if at the price of partially limiting applicability, e.g., by
restricting it only to controllable reconfiguration scenarios.

The contributions of the paper can be summarized as fol-
lows. First, we define a notion of reconfiguration path, which
identifies the minimal portion of the system involved in re-
configuration. Second, we present an algorithm that exploits
this notion to reconfigure the system efficiently. Third, we
present simulation results that compare the performance of
the new algorithm against the strawman solution and our
earlier solution [14]. The results show a significant overhead
reduction, up to 76% if compared to the strawman solution.

The structure of the paper is as follows. Section 2 pro-
vides the reader with the basics of publish-subscribe middle-
ware. Section 3 defines precisely the reconfiguration prob-
lem we tackle in this paper. Section 4 briefly describes the
strawman solution mentioned above, introduces the notion
of reconfiguration path, and describes the new algorithm.
Section 5 presents the simulation results validating our al-
gorithm, while Section 6 discusses its implications on the re-
configuration scenarios. Finally, Section 7 discusses related
efforts in the field and Section 8 draws some conclusions and
discusses future avenues of research.

2. PUBLISH-SUBSCRIBE SYSTEMS
Applications exploiting publish-subscribe middleware are

organized as a collection of autonomous components, the
clients, which interact by publishing events and by subscrib-
ing to the classes of events they are interested in. A compo-
nent of the architecture, the event dispatcher, is responsible



for collecting subscriptions and forwarding events to sub-
scribers.

Recently, many publish-subscribe middleware have be-
come available, which differ along several dimensions1. Two
are usually considered fundamental: the expressiveness of
the subscription language and the architecture of the event
dispatcher.

The expressiveness of the subscription language draws
a line between subject-based systems, where subscriptions
identify only classes of events belonging to a given channel
or subject, and content-based systems, where subscriptions
contain expressions (called event patterns) that allow sophis-
ticated matching on the event content. Our approach tackles
a content-based subscription language, as this represents the
most general and challenging case. Since content-based sys-
tems can be regarded as a generalization of subject-based
ones, our approach is arguably applicable also to the latter.

The architecture of the event dispatcher can be either cen-
tralized or distributed; in this paper, we focus on the latter
case. In such middleware, a set of dispatchers is intercon-
nected in an overlay network and cooperatively route sub-
scription and event messages, as in Figure 1. The systems
exploiting a distributed dispatcher can be further classified
according to the interconnection topology of dispatchers and
the strategy exploited for message routing. In this work we
consider a subscription forwarding scheme on an unrooted
tree topology, as this choice covers the majority of existing
systems.

In a subscription forwarding scheme [4], subscriptions are
delivered to every dispatcher along a single unrooted tree
spanning all dispatchers, and are used to establish the routes
that are followed by published events. When a client issues a
subscription, a message containing the corresponding event
pattern is sent to the dispatcher the client is attached to.
There, the event pattern is inserted in a subscription table
together with the identifier of the subscriber, and the sub-
scription is forwarded to all the neighbors. During this prop-
agation, the dispatcher behaves as a subscriber with respect
to the rest of the dispatching tree. Each dispatcher, in turn,
records the event pattern and re-forwards the subscription to
its neighbors, except for the one that sent it. This scheme is
usually optimized by avoiding to forward multiple subscrip-
tions for the same event pattern in the same direction2. This
process effectively sets up a route for events, through the re-
verse path from the publisher to the subscriber. Requests
to unsubscribe from a given event pattern are handled and
propagated analogously to subscriptions, although at each
hop entries in the subscription table are removed rather than
inserted. This behavior is explained in more detail in Sec-
tion 4, and a formalization is provided in the Appendix.

Figure 1 shows a dispatching tree where a dispatcher (the
dark one) is subscribed to a certain event pattern. The
arrows represent the routes laid down according to this sub-
scription, and reflect the content of the subscription tables
of each dispatcher. To avoid cluttering the figure, subscrip-
tions are shown only for a single event pattern. To simplify
the treatment, here and in the rest of the paper we ignore
the presence of clients and focus on dispatchers. Accord-
ingly, even if in principle only clients can be subscribers,

1For more detailed comparisons see [4, 7, 15].
2Other optimizations are possible, e.g., by defining a notion
of “coverage” among subscriptions, or by aggregating them,
as in [4].

Figure 1: Subscription forwarding.

with some stretch of terminology we say that a dispatcher is
a subscriber if at least one of its clients is a subscriber. More-
over, we assume that the links connecting the dispatchers are
FIFO and transport reliably subscriptions, unsubscriptions,
events, and other control messages. Both assumptions are
typical of mainstream publish-subscribe systems, and are
easily satisfied by using TCP for communication between
dispatchers.

3. THE RECONFIGURATION PROBLEM
Publish-subscribe systems are intrinsically characterized

by a high degree of reconfiguration, determined by their very
operation. For instance, routes for events are continuously
created and removed across the tree of dispatchers as clients
subscribe and unsubscribe to and from events. Clearly, this
is not the kind of reconfiguration we are investigating here.
Instead, the dynamic reconfiguration we address can be de-
fined informally as the ability to rearrange the dispatching
infrastructure to cope with changes in the topology of the
underlying physical network, and to do this without inter-
rupting the normal system operation.

We view this problem as composed of three subproblems
that involve:

1. the reconfiguration of the overlay network that realizes
the dispatching infrastructure, to retain connectivity
among dispatchers;

2. the reconfiguration of the subscription information held
by each dispatcher, to bring it up-to-date with the
changes above without interfering with the normal pro-
cessing of subscriptions and unsubscriptions;

3. the minimization of event loss during reconfiguration.

The objective of the work we describe here, and of our
earlier work described in [14], is to solve the second of the
aforementioned problems. The rationale for this choice lies
in the fact that maintaining the consistency of subscription
information is the defining problem of content-based publi-
sh-subscribe systems: if the information necessary for event
dispatching is misconfigured the whole purpose of a content-
based system may be undermined. The availability of a tree
connecting all the dispatchers is a precondition for the type
of content-based systems we are interested in, but it is not
their core feature. This, clearly, does not mean that we are
disregarding the other two problems. Our ongoing activ-
ities are investigating how existing algorithms (e.g., those
developed for MANET routing [16] or IP multicast) can be
adapted to solve the first problem. Meanwhile we devel-
oped, on top of our solutions, a layer based on epidemic al-
gorithms [6] and responsible for recovering events lost during
reconfiguration, providing a solution to the third problem.

Within this general framework, in [14] we tackled the sec-
ond problem without making any special assumption about



either the sources of reconfiguration or the way the over-
lay network is kept connected. In this paper we adopt a
rather different approach. Our goal here is (1) to push over-
head optimization as far as possible and (2) to identify the
requirements our solution places on the tree maintenance
layer, and consequently the scenarios where it is immedi-
ately applicable. By pushing optimization to an extreme,
we are interested in characterizing the whole spectrum of
possibilities with respect to the problem of publish-subscri-
be reconfiguration. The promising results presented in the
following sections demonstrate the effectiveness of our pro-
posal, and therefore provide strong motivation to continue
our investigation of how to exploit further the notion of re-
configuration path.

4. DEALING WITH RECONFIGURATION
As mentioned in the previous section, our goal is to find

an algorithm to rearrange subscription information to keep
it consistent with changes in the dispatching tree. This al-
gorithm should minimize the network traffic involved in the
reconfiguration.

To find such an algorithm, we observe that a tree of dis-
patchers may change in a number of ways. New dispatchers
can be added, dispatchers can be removed, links may van-
ish or appear, and so on, in a potentially infinite number
of possibilities. To identify a single solution that could be
applied to every situation, we decided to focus on reconfig-
urations that involve the removal of a link and the insertion
of a new one, thus keeping the dispatching tree connected.
The reason for this choice is that link substitution represents
the fundamental building block for more complex reconfig-
urations. For instance, the disappearance of a dispatcher
from a tree could be easily dealt with as a number of link
substitutions connecting the children of the dispatcher to
its parent. At the same time, simpler reconfigurations, in-
volving only link removal or insertion and thus leading to
tree partitioning or merging, can be dealt with using plain
subscriptions and unsubscriptions, as we describe later.

Given these premises, Section 4.1 describes a strawman
approach to reconfiguration. Section 4.2 defines the notion
of reconfiguration path, which identifies precisely the mini-
mal portion of the tree that needs to be reconfigured. Fi-
nally, Section 4.3 presents our algorithm which exploits this
notion to rearrange routes for events, thus reducing the traf-
fic overhead involved in the reconfiguration.

4.1 A Strawman Approach
In principle, the removal of an existing link or the inser-

tion of a new one can be treated by using exclusively the
primitives already available in a publish-subscribe system,
leveraging off of the high degree of decoupling among the
dispatchers in the tree. In particular, the removal of a link
can be dealt with by using unsubscriptions. When a link
is removed, each of its end-points is no longer able to route
events matching subscriptions issued by dispatchers to the
other side of the tree. Hence, each of the end-points should
behave as if it had received, from the other end-point, an
unsubscription for each of the event patterns the latter was
subscribed to. Similarly, the insertion of a new link in the
tree can be carried out in a dual way using subscriptions.
This approach is the most natural and convenient when re-
configuration involves only either the insertion or the re-
moval of a link, and is actually adopted by some publish-
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Figure 2: The dispatching tree of Figure 1 dur-
ing and after a reconfiguration performed using the
strawman approach.

subscribe middleware to deal with merging or partitioning.
Nevertheless, as mentioned earlier, in many other situa-

tions it is desirable to replace a link with a new one, thus
effectively reconfiguring the topology of the tree while keep-
ing the same nodes as members of the tree. This case can
be dealt with by some combination of the add and remove
link operations, e.g., as suggested in [4, 23], but the results
are far from optimal. In fact, if the route reconfigurations
caused by link removal and insertion are allowed to prop-
agate concurrently, they may lead to the dissemination of
subscriptions which are removed shortly after, or to the re-
moval of subscriptions that are subsequently restored, thus
wasting a lot of messages and potentially causing far reach-
ing and long lasting disruption of communication.

Figure 2 illustrates this concept on the dispatching tree of
Figure 1. For simplicity, the figure shows subscriptions for a
single event pattern p, but in a real system the reconfigura-
tion algorithm would process all event patterns in parallel.
The Appendix provides a formalization of the subscription
and event processing operations for a publish-subscribe sys-
tem that adopts a subscription forwarding scheme and of the
operations to add and remove a link between dispatchers.

According to this strawman solution, when the link be-
tween A and B is removed, both end-points trigger unsub-
scriptions in their subtrees, without taking into account the
fact that a new link has been found between C and D. De-
pending on the speed of the route destruction and construc-
tion processes, subscriptions in B’s subtree may be com-
pletely eliminated, since there are no subscribers for p in
that tree. Nevertheless, shortly afterwards most of these
subscriptions will be rebuilt by the reconfiguration process.
A similar problem arises if subscriptions propagate before
unsubscriptions.

The drawbacks of this approach are essentially caused by a
single problem: the propagation of reconfiguration messages
reaches areas of the dispatching tree that are far from the
ones directly involved in the topology change, and which
should not be affected at all. This observation leads to the
idea of delimiting the area involved in the reconfiguration,
a key element of our approach.

4.2 Delimiting the Reconfiguration
When an existing link must be replaced with a new one,

we can identify specifically the portion of the dispatching
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Figure 3: A dispatching tree before and after a re-
configuration.

tree affected by the reconfiguration. This reconfiguration
path can be defined as the concatenation of three sequences
of dispatchers:

• the head path is the sequence that starts with the first
end-point of the removed link, and contains all the
dispatchers connecting it to the end-point of the new
link that lies in the same subtree. The head path is
empty if the first end-point of the removed link and
the end-point of the inserted link coincide;

• the new link is an ordered pair constituted by the end-
points of the link being inserted in the tree;

• the tail path is the sequence that ends with the second
end-point of the removed link, and contains all the
dispatchers connecting it to the end-point of the new
link that lies in the same subtree. The tail path is
empty if the second end-point of the removed link and
the end-point of the inserted link coincide.

The above definition requires the ability to establish an
ordering between the end-points of the vanished link, e.g.
exploiting mechanisms specific to the environment such as
IP addresses. Here it suffices to observe that such an order-
ing, combined with the topological properties of the tree,
makes the reconfiguration path a directed path.

Figure 3 shows an example of reconfiguration where the
link (A, B) is being substituted with the link (C, D). In
this case, the head path is (A, E, F ), the new link is (C, D),
the tail path is (G, B), yielding (A,E, F, C, D, G, B) as the
reconfiguration path.

The decoupling between dispatchers, combined with the
notion of reconfiguration path, are the keys to limit the
scope of the reconfiguration process. In fact, each dispatcher
routes events and subscriptions only based on the local knowl-
edge gathered from its neighbors; similarly, its actions are
limited to messages sent only to its immediate neighbors.
In other words, each dispatcher has knowledge only about
its immediate “next hops”. For instance, there is no way
for X to know that a given event matching a pattern p is
ultimately destined to E and D. All X knows is that F
subscribed to receive events matching p. The distributed
knowledge throughout the dispatching tree steers the event
towards its destinations, E and D in this case.

For this reason, a dispatcher that does not belong to the
reconfiguration path will not experience a change in its sub-
scription tables. It will continue forwarding events the same

way it was doing before, i.e., towards the next hop, according
to the information in its subscription table. This informa-
tion needs to be changed only on the dispatchers lying on
the reconfiguration path. In Figure 3, for instance, X will
keep forwarding events to F as before the reconfiguration.

4.3 Performing the Reconfiguration
To reconfigure the tree, events that used to be routed

through the removed link must now be routed through the
new link and hence along the reconfiguration path. Thus,
subscriptions that were exploiting the vanished link must
now be replaced by subscriptions along the reconfiguration
path. In Figure 3, the subscription ab, that was exploiting
the vanished link (A, B) to route events to D, is removed
by the reconfiguration; the routing it provided is now per-
formed equivalently by subscriptions ab1, ab2, ab3, and ab4.
Similarly, the effect formerly achieved by subscription ba is
now obtained by ba1, ba2, and ba3 that, together with the
subscriptions already present in between C and E, enable
events to reach the subscriber E. Note how, in the particu-
lar tree configuration shown in the figure, only ab2, ab3, and
ab4 need to be added towards B; ab1, instead, was already
present to route events from A towards the subscriber E.
Analogously, only ba3 needs to be added towards A, since
the other subscriptions were already present because of D.

From Figure 3 it can be seen how the subscriptions that
replace ab are needed only on the head path and on the
first end-point of the new link, i.e., from A to C. In fact,
these subscriptions are needed only to route events originat-
ing in A’s subtree into B’s subtree. In the latter subtree,
subscriptions are already in place to further propagate these
events to the proper subscribers, unless an unsubscription
occurred during disconnection. Similar reasoning holds for
the tail path, i.e., from B to D.

This observation can be used to determine how to prop-
agate subscriptions along the reconfiguration path. The re-
configuration process we adopt propagates along dispatchers
only in one direction, following the ordering imposed by the
reconfiguration path. Nevertheless, it must correctly recon-
struct subscriptions that are headed in both directions, from
A to B and vice versa. Thus, the process must be somehow
different in the head and tail paths, and on the new link. To
complicate the process further, the normal operations of the
publish-subscribe system are also being carried out during
the reconfiguration. Still, the reconfiguration must leave the
system in a consistent state.

In the remainder of this section we present a reconfigu-
ration process that leverages off of the definitions and ob-
servations made thus far. For the sake of clarity, the de-
scription of the algorithm is split in two parts. Section 4.3.1
describes the basic operations of the algorithm without the
details concerning the management of the subscriptions and
unsubscriptions issued during the reconfiguration; these are
instead presented in Section 4.3.2. A formal description of
the complete algorithm is provided in the Appendix.

4.3.1 Basic Operation of the Algorithm
This section steps through a single reconfiguration from

initialization, through the head path, across the new link,
and finally on the tail path. Note that in describing the
algorithm we assume that we are dealing with one reconfig-
uration at a time. Multiple, concurrent reconfigurations can
be dealt with by propagating a reconfiguration identifier in



the control messages, as shown in the formalization in the
Appendix. We elaborate further on this issue in Section 6.

Starting the Reconfiguration. The reconfiguration pro-
cess is started by the first of the end-points of the link be-
ing removed from the dispatching tree. It is also the first
dispatcher on the reconfiguration path, referred to as the
initiator of the reconfiguration.

The initiator starts the reconfiguration by determining the
event patterns belonging to subscriptions previously issued
by the other end-point of the vanished link (ab in Figure 3).
Two sets of patterns are relevant: the set Padd of patterns
for which subscriptions need to be added along the recon-
figuration path, and the set Pdel of patterns for which sub-
scriptions need to be removed along the reconfiguration path
since they were formerly used only to route events across the
removed link. Looking at Figure 3, essentially Padd enables
the insertion of the abi subscriptions that are missing on
the path from A to C, while Pdel enables the removal of the
unnecessary subscriptions on the path from C to A.

At the initiator, these two sets are coincident and are
used to modify the subscription table accordingly. For each
event pattern in Padd, a new entry is inserted in the table
as if it were a subscription coming from the next dispatcher
in the reconfiguration path (E in Figure 3). All the entries
in Pdel that were associated with a subscription towards the
other end-point of the removed link (that would originally
direct events towards B in Figure 3) are deleted from the
subscription table. In Figure 3, this step causes the deletion
of ab and the insertion of ab1 in the subscription table of A.
In the formalization in the appendix, this processing occurs
when the initiator emulates a reconfiguration message to
itself from the other end-point of the vanished link.

Reconfiguring the Head Path. At this point, the reconfig-
uration of the initiator’s subscription table is complete, and
processing can proceed along the reconfiguration path. The
next step involves computing a new set Pdel. In general, Pdel

is a subset of Padd, since it must contain the subscriptions
that are used only to route the events towards the removed
link; subscriptions that happen to be on the reconfiguration
path but are also needed to route events towards different ar-
eas of A’s subtree should not be removed. This information
is computed at each dispatcher by looking at its subscrip-
tion table: patterns in Pdel for which a subscription exists
towards a dispatcher or a client other than the next one on
the reconfiguration path are removed from Pdel, shrinking it
during its travel through the head path.

The two sets of patterns Padd and Pdel, together with the
reconfiguration path, are placed in a reconfiguration mes-
sage recmsg. This message originates at the initiator, and
is propagated along the reconfiguration path, starting at
the initiator. Each dispatcher, upon receiving recmsg, per-
forms the same operations originally performed by the ini-
tiator: first, the subscription table is updated, then Pdel is
recomputed, and finally a new recmsg is propagated.

Reconciling Subscriptions Across the New Link. When
the reconfiguration process reaches the end-point of the new
link that belongs to the initiator’s subtree (C in Figure 3),
the new link is already physically available but it has not
been logically “activated” in the tree by the reconfiguration
process.

Therefore C updates its subscription table as described
earlier, activates the new link, and sends to the second end-
point a subscription message for each event pattern in its
subscription table, followed by the recmsg containing Padd.

Completing the Reconfiguration. At this point, the sub-
scriptions sent across the new link propagate throughout the
second subtree as normal subscriptions. Most importantly,
they enable the correct routing of events across the new
link and establish the path for event propagation on the tail
path.

The only remaining step is the removal of superfluous sub-
scriptions on the tail path, i.e., those subscriptions that were
used only to route events to the first subtree via the removed
link (e.g., the subscription from G to B and the one from D
to G in Figure 3). These subscriptions cannot be removed
until the subscription messages have propagated all the way
to the end of the reconfiguration path (B in Figure 3), since
they could also be needed by some other subscribers in the
second subtree, and this information is not known until this
condition has been checked by all the dispatchers on the tail
path. Hence, the second end-point of the new link propa-
gates a recmsg along the tail path. When this recmsg is
finally received by the last dispatcher on the reconfiguration
path, the latter behaves as if it had received a request to
remove the link to the initiator, hence generating an unsub-
scription message for each subscription in its table issued
by the initiator. This eliminates superfluous subscriptions
from the reconfiguration path, without the risk of removing
necessary ones, because the construction part of the recon-
figuration process has already been completed.

4.3.2 Dealing with Concurrent (Un)Subscriptions
This section completes the description of the algorithm

by appropriately tackling some issues arising when subscrip-
tions and unsubscriptions are issued concurrently with the
reconfiguration.

Avoiding Race Conditions on the Head Path. The first
case in which the normal behavior of the system can interfere
with the reconfiguration process is on the head path. Along
the head path, in fact, recmsg propagates in the opposite
direction with respect to the established subscriptions, con-
trary to the usual way of processing subscriptions.

Let us refer to the sender of recmsg as S and to its recip-
ient as R. Normally, a subscription message subscribes the
sender to events sent by the recipient. The subscription be-
comes active when the recipient processes the message and
inserts a proper entry into its subscription table. Instead,
the recipient of recmsg becomes subscribed to events sent
by the sender, which has already inserted the recipient in
its subscription table. In other words, R finds itself sub-
scribed to certain events, and does not know this fact until
it receives recmsg from S.

This can cause problems if R processes an unsubscription
while recmsg is being sent towards it. In fact, it could de-
cide to unsubscribe from S, before knowing that it should
instead keep the subscription as a result of the reconfigura-
tion process. It is important to note that an unsubscription
causing this problem can be originated only by a subscriber
in the subtree of the head path, since, at this point connec-
tivity to the other subtree has not yet been resumed.

A viable solution is to have S ignore unsubscription mes-



sages coming from R, if they refer to a pattern needed by the
reconfiguration process. This solution can be implemented
by means of an ignore table, I, containing the event patterns
whose unsubscriptions should be ignored. This way, S can
check the ignore table before attempting to process an un-
subscription coming from R. Moreover, an additional con-
trol message, ctrlmsg, is needed to allow a dispatcher on
the head path to notify its upstream neighbor that recmsg

has been processed, and the normal processing of unsub-
scriptions can be restored.

The unsubscriptions that need to be ignored are those
related to event patterns for which subscriptions are being
added by the reconfiguration, and are already present due to
a previous subscription. Thus, S should include these pat-
terns in its ignore table before forwarding recmsg. How-
ever, it is not enough to consider only the subscriptions
present when recmsg is processed. In fact, S could re-
ceive a subscription message from R, immediately followed
by an unsubscription, before recmsg reaches R. In this
case the subscription would cause no action, since it would
already have been added by the reconfiguration, but the un-
subscription would instead be processed, thus stealing the
subscription added by the reconfiguration.

A conservative solution is therefore to add to the ignore
table all the patterns in Padd before forwarding recmsg,
regardless of whether its recipient is already subscribed to
them, and to remove them from the ignore table when the
control message is received. In this case the ignore table
grows larger than needed, but no special processing is re-
quired when a subscription is received.

Reconciling Subscriptions Across the New Link. An-
other problem caused by subscriptions and unsubscriptions
issued during the reconfiguration arises as soon as recmsg

arrives at the new link and the two subtrees are effectively
joined. In fact, up to that point, the reconfiguration was
confined only to the initiator’s subtree, while the operations
in the other subtree continued normally. In particular, sub-
scriptions and unsubscriptions could propagate through the
second subtree without the possibility to reach the initia-
tor’s subtree. The views in the two subtrees must therefore
be reconciled.

Let us begin by considering unsubscriptions which may
have been issued in the second subtree during the first part
of the reconfiguration. When the second end-point of the
new link (D in Figure 3) receives recmsg, it can determine
which subscriptions have been laid out in the first subtree
that are now superfluous, since they were needed only to
route events towards subscribers in the other portion of the
tree that unsubscribed meanwhile. This set of event pat-
terns is obtained by removing all the patterns that are not
in the second end-point’s subscription table from the Padd

set contained in recmsg. For each of these event patterns,
the second end-point sends an unsubscription to the first
subtree.

The only other step is the propagation to the first subtree
of the subscriptions issued in the second subtree during the
first part of the reconfiguration. Again, this can be done
by comparing the event patterns in Padd against the second
end-point’s subscription table. Subscriptions for event pat-
terns which are in the subscription table but not in Padd can
then be sent back to the first subtree.

Propagating these subscriptions to the first subtree as

soon as recmsg reaches the second end-point of the new link
leads to a correct layout, but may cause some subscriptions
to be added and then removed at the end of the reconfig-
uration. Some of the subscriptions contained in the second
end-point’s subscription table, in fact, may not be needed
anymore because they were only used to route events to
some subscriber in the first subtree via the old link. Propa-
gating these subscriptions to the first subtree would there-
fore be unnecessary and would cause them to be removed
by the unsubscriptions issued as the last step of the recon-
figuration.

To avoid the unnecessary propagation of these subscrip-
tions to the first subtree, it is necessary to wait until the
unsubscriptions propagated as the last step of the reconfig-
uration reach the second end-point of the new link.

Therefore, when the second end-point of the new link re-
ceives recmsg, it will still send unsubscriptions to the first
subtree for the patterns in Padd which do not have a match in
its subscription table; in addition, it will store Padd, propa-
gate recmsg, and wait until it is notified, as described in the
following, that the reconfiguration process has completed.

The reconfiguration message is propagated along the tail
path as described in Section 4.3.1. When the second end-
point of the old link receives it, it first starts the unsubscrip-
tion phase by sending unsubscriptions along the tail path as
described earlier. Subsequently, it sends a special flushmsg

along the tail path to notify the second end-point of the
new link that the reconfiguration process has been com-
pleted. When the second end-point of the new link receives
this flushmsg, it has already processed the unsubscriptions
propagated as the last step of the reconfiguration. There-
fore it retrieves the Padd stored previously and compares it
with its own subscription table. If there are any patterns
not in Padd for which its subscription table contains sub-
scriptions not issued by the other end-point of the new link,
it propagates those subscription across the new link to the
first subtree, completing the reconfiguration process.

5. SIMULATION RESULTS
This section presents an evaluation of our algorithm by

means of simulations which compare it to two other ap-
proaches. The baseline for our comparisons is the straw-
man solution described in Section 4, whereas the other al-
gorithm we consider is the one presented in [14]. This latter
algorithm enhances the strawman solution in a number of
ways, in particular by introducing mechanisms to perform
unsubscriptions only after subscriptions, thus reducing the
disruption of routes. For this reason, hereafter we refer to
this approach with the oxymoron “optimized strawman” so-
lution. The reader can find the complete description of this
algorithm, together with a thorough evaluation through sim-
ulation, in [14].

The simulations we performed were designed with two dif-
ferent goals in mind. The first was to verify that our algo-
rithm behaves correctly in the presence of reconfiguration.
The second was to evaluate the performance of our algorithm
in terms of minimizing overhead with respect to the two
previously described solutions. These two goals were sat-
isfied by two sets of simulations, measuring the percentage
of events correctly delivered, and the number of messages
exchanged during the reconfigurations.



5.1 Simulation Setting
Published work on publish-subscribe systems rarely pre-

sents validation of results through simulation. In the ab-
sence of reference scenarios for comparing these systems we
defined our own, based on what we believe are reasonable
assumptions covering a wide spectrum of applications. The
simulation setting is the same we used in [14], which allows
us to easily compare the results.

Events, subscriptions, and matching. Events are rep-
resented as randomly-generated 9-character strings, where
each character can be any of the (96) printable characters.
Subscriptions are represented as a single character. An event
matches a subscription if it contains the character specified
by the subscription. Hence, 96 different subscriptions are
available in the system. Nevertheless, each dispatcher can
subscribe to at most s subscriptions drawn randomly from
the 96 available. In our simulations, we chose s=10, since
in a content-based system it is unlikely that a subscription
is shared among a large number of subscribers.

Publish rate. The behavior of each dispatcher in terms of
publish and (un)subscriptions is governed by a triple of pa-
rameters, fpub, fsub, and funsub, respectively governing the
frequency at which publish, subscribe, and unsubscribe op-
erations are invoked by each dispatcher. The most rele-
vant is fpub, which essentially determines the system load in
terms of event messages that need to be routed. Based on
this parameter, we defined two load scenarios: one with a
relatively low publish rate (fpub = 0.001, about 1 publish/s),
and one with a large number of events (fpub = 0.05, about
50 publish/s). To put these values in context, the publish
rate of applications dominated by human interaction, such
as collaborative work in mobile environments or publishing
files in a peer-to-peer network, should be comparable to, if
not lower than, 1 publish/s.

Density of subscribers. The extent to which (un)subscriptions
are propagated is determined by the density of subscribers
in the tree: the more subscribers, the less a subscription
travels. We defined two scenarios: one with sparse sub-
scribers (20% of the dispatching tree), and one with dense
subscribers (80% of the tree).

Tree topology. The results we present here are all obtained
with tree configurations up to 200 dispatchers, each con-
nected with at most four others. Clients are not modeled
explicitly, as their activity affects only the dispatcher they
are attached to.

Tree reconfiguration. In our simulations we are not inter-
ested in cases where a dispatching tree becomes partitioned
or merged with another, as this case is handled in the same
way by all three solutions. Instead, we evaluate the perfor-
mance of the algorithms when a broken link is eventually
replaced by another. The selection of the links breaking or
appearing is done randomly. However, the same random se-
quence was applied to all the three algorithms. To retain
some degree of control about when a reconfiguration occurs,
we assume that each broken link is replaced by a new one
in 0.1s. While this is not necessarily a good representation
of reality, the bias introduced by this assumption affects the
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Figure 4: Event delivery during reconfigurations.

three approaches in roughly the same way, and hence does
not influence our results.

Reconfigurations are allowed only in the interval between
3 and 7 seconds, with a frequency determined by the du-
ration of the interval between two reconfigurations, ρ. In
the scenarios we consider, this interval is set to the value
ρ = 0.3s, which yields non-overlapping reconfigurations.

Reducing the effect of randomization. Since topology,
subscriptions, events, and reconfigurations are determined
randomly, our results had a significant degree of variability.
To reduce the bias induced by randomization, we ran each
configuration 30 times using different seeds, and then av-
eraged the results. Nevertheless, for each configuration the
same seed was used for comparing the three approaches.

Simulation tool. In this paper we compare the algorithms
only at the application level, and we are not concerned about
the underlying networking stack. Our simulations use OM-
NET++ [21], a free, open source discrete event simulation
tool.

5.2 Measuring Event Delivery
Before we proceed, it is important to note that we do not

regard event delivery as a performance metric for our solu-
tion. As we discussed earlier, in this paper we focus only on
identifying more efficient ways to restore the subscription
information necessary to route events and not to prevent
event loss, although this latter topic is the subject of our
ongoing research [6]. Instead, we measure event delivery
to verify that our algorithm is capable of restoring a cor-
rect, loop-free routing of events after each reconfiguration.
If the algorithm behaves correctly, the percentage of events
delivered should drop temporarily as a consequence of re-
configuration, and then come back to exactly 100%. This is
indeed the behavior resulting from our simulations, as shown
in Figure 4.

The measurements were performed by relying on a subset
of the dispatchers belonging to a stable core. Dispatchers
in the stable core have a more constrained behavior than
the others, since they are forbidden to (un)subscribe after a
given time threshold σ, whose value is set to 2s in our tests.
Measurements about event delivery are constructed by com-
puting the ideal set of recipients for each published message,
and comparing it with the actual number of copies received.



The ideal set of recipients can be computed easily based on
knowledge of the subscription tables of the dispatchers in the
stable core, since this information is required to remain sta-
ble after σ. Moreover, since only the stable core is subject to
this limitation, the algorithm is validated not only against
the reconfiguration coming from changes in the topology,
but also for the reconfiguration of routing information de-
termined by the (un)subscriptions coming from dispatchers
not in the core. The results in Figure 4 are derived with 100
dispatchers, 50% of which belong to the core. Moreover,
50% of the dispatchers inside the core, and 50% of those
outside the core are subscribers. The event load is assumed
to be large, with fpub = 0.05 (i.e., about 50 publish/s).

In this chart, we do not report the measurements for the
other two algorithms, since the simulations showed that the
behavior of the three approaches is essentially the same.

5.3 Measuring Reconfiguration Overhead
The amount of reconfiguration overhead is the metric that

we need to compare our solution against the other two.
The overhead is determined by the sum of three compo-

nents: (1) the (un)subscription messages being exchanged
because of reconfiguration; (2) the event messages being
misrouted along obsolete subscriptions; and (3) the addi-
tional messages required by our solution in order to limit
the changes to the reconfiguration path. The first two com-
ponents are present in all the solutions we consider, whereas
the third is present only in our approach.

The overhead generated by messages is calculated in terms
of the number of hops they have traveled. Thus, for instance,
a subscription issued by a dispatcher generates an overhead
equal to the number of hops traveled by the subscription
message. Moreover, overhead is measured by considering
every dispatcher in the network as part of the stable core
defined previously for the measurement of event delivery.
This way, the only (un)subscription messages exchanged in
the system are those caused by reconfiguration. Note how
this is actually a conservative situation: in fact, we verified
the intuition that the percentage of improvement is actually
larger when there are additional (un)subscriptions being in-
jected in the system concurrently to reconfigurations.

Since the messages contributing to the overhead differ
from each other, they were assigned a weight based on an es-
timate of the (traffic) cost incurred during forwarding from
one dispatcher to the others. Events were considered as the
base for our cost model and were assigned a weight of 1.0.
Subscriptions and unsubscriptions were also assigned a cost
equal to 1.0. Each recmsg, on the other hand, contains two
arbitrarily large sets of event patterns: therefore its weight
was evaluated on the basis of the sizes of these sets. Given
a recmsg containing the two sets of patterns Padd and Pdel,
its weight was computed as:

weight(recmsg) = weight(sub) ∗ (
2(|Padd| + |Pdel|)

3
+

1

3
)

where |X| is the cardinality of set X and weight(sub) is
the weight of a subscription containing one pattern. This
weight can be explained by observing that the cost associ-
ated to sending a recmsg can be divided into a fixed costs
determined by the size of the message header and by the
information associated to the reconfiguration path3, and a

3The cost associated to sending the reconfiguration path was
approximated with a constant.
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Figure 5: Percentage of improvement with respect
to the strawman solution with a low (top) and a high
(bottom) density of subscribers.

variable cost associated to the event patterns contained in
Padd and Pdel. The sum of these costs should be comparable
to that of an (un)subscription if the message contains a sin-
gle event pattern, whereas it should be less than the one of
sending an (un)subscription for each of the event patterns
in the two sets, when several patterns are present. The
ctrlmsg is a simple acknowledgment sent to the preceding
dispatcher along the reconfiguration path, and contains only
the reconfiguration identifier. Its weight was therefore set to
0.1. Finally, the flushmsg does not contain any event pat-
terns either, although it is slightly larger than the ctrlmsg

because it needs to contain the addresses of the dispatchers
in the reconfiguration path. Hence, its weight was set to 0.2

Overall improvement. Figure 5 shows the percentage of
improvement of both our solution and the optimized straw-
man with respect to the strawman solution, in a configura-
tion with fpub = 0.001. As in [14], the original data points
are reported together with their Bezier interpolation to help
visualize the overall trend.

By showing the results for dense (80%) and sparse (20%)
configurations of subscribers, the charts in Figure 5 confirm
the intuition that both the optimized strawman and our al-
gorithm perform better in scenarios with a low density of
subscribers. In this case, the unnecessary (un)subscriptions
propagated by the strawman solution travel farther in the
network than with the other two algorithms. In addition,
the percentage improvement of our approach with respect
to the optimized strawman is greater for sparse rather than
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Figure 6: Percentage of improvement with respect
to the strawman solution with a large number of
events and a low density of subscribers.
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Figure 7: Misrouted events in a scenario with sparse
subscribers and a high event load.

dense trees. This is because our approach limits the re-
configuration strictly to the reconfiguration path, while the
optimized strawman algorithm still causes some subscrip-
tions to travel to areas of the network from which they are
later removed.

To give a feel of the relevance of the percentage improve-
ment, in a dense tree with 200 dispatchers there are on aver-
age 3,500 messages (with a peak of 8,000) being exchanged
during the reconfigurations using the strawman approach,
while in a sparse tree there are on average 5,300 (with a peak
of 18,000). Hence, even the smallest improvement provided
by the optimized strawman—15% in a dense tree—already
leads to a significant reduction in the traffic overhead. The
improvement of 40% provided by our solution in the same
setting reduces the cost of reconfiguration even further.

Figure 6 shows how the overhead is affected by a low den-
sity of subscribers when the event load is high. Comparing
this to the top of Figure 5, the percentage improvement of
both our solution and the optimized strawman solution is
less than when the event load is low. The reason for this
is that a high publish rate increases the overhead caused by
misrouted events, a phenomenon we analyze next.

Misrouted Events. When events are published at a high
rate, the overhead becomes more dependent on the number

of misrouted events, because more events can be forwarded
along stale routes not yet removed by the reconfiguration.
The solution which suffers most from this phenomenon is
the optimized strawman, since in this approach unsubscrip-
tions are deferred, and hence obsolete routes are maintained
for a longer period of time. Instead, our solution exhibits
a lower overhead than the optimized strawman because the
stale subscriptions which can cause the propagation of mis-
routed events are situated only along the reconfiguration
path. Figure 7 shows graphically the difference in the num-
ber of misrouted events generated by our solution and by
the optimized strawman algorithm, in a scenario with high
event load (fpub = 0.05).

Going back to Figure 6 and the top chart in Figure 5, we
can now appreciate better the impact of misrouted events.
The improvement obtained by the optimized strawman drops
from an average of about 44% with few events to an average
of about 10% with a large number of events. Instead, the
improvement achieved by our solution only decreases from
70% to 60%.

6. DISCUSSION
The results presented in the previous section demonstrate

that our initial goal of pushing optimization to an extreme
has been achieved. The identification of the reconfiguration
path as the minimal portion of the tree of dispatchers to
be involved in the reconfiguration guided us in defining an
algorithm that performs very well even with respect to the
optimized solution described in [14]. On the other hand, the
peculiarities of this solution pose some requirements on the
tree maintenance algorithm which, in turn, suggest specific
scenarios of reconfiguration.

In particular, the new algorithm presented here requires a
tree maintenance algorithm capable of detecting link break-
age and of determining a new route that could replace the
broken link (i.e., the reconfiguration path). Moreover, in
Section 4 we mentioned that we can take into account con-
current reconfigurations by distinguishing them through a
reconfiguration identifier, as shown in the formalization in
the Appendix. However, we implicitly assumed that the re-
sulting reconfiguration paths do not overlap. This is indeed
a limitation of our algorithm: the processing of concurrent
reconfigurations would interfere if performed along overlap-
ping reconfiguration paths.

These considerations suggest that the scenarios where our
algorithm finds immediate and practical applicability are
those involving a reconfiguration triggered at the applica-
tion layer, e.g., when reconfiguration is initiated by a system
administrator for balancing the traffic load or to add new
dispatchers. In these controlled environments the above re-
quirements are easily met, and our algorithm provides the
best performance in terms of traffic overhead due to reconfig-
uration. The applicability of our approach is strengthened
further by the observation that these controlled scenarios
are very common in the domains where publish-subscribe
middleware are currently deployed, i.e., large enterprise net-
works.

Another scenario that has recently been attracting the
attention of both developers and researchers and that can
exploit our approach is provided by peer-to-peer applica-
tions [13]. Well-known problems in this field include how
to route information among peers (e.g., queries and replies
in file sharing applications, or messages in messaging ap-



plications) and how to reconfigure routes to cope with the
frequent changes of the topology of the peer overlay net-
work as users join and leave the system. Here is where our
approach can be applied. In fact, as observed also by other
researchers [9], content-based routing may be easily adapted
to this setting by providing each peer with the ability to
route messages much like a dispatcher. This scenario per-
fectly fits the constraints identified above since connection
and disconnection of peers usually is kept under strict con-
trol of the application, e.g., users must press a button to
join or leave the peer-to-peer network.

More problems exist in less controlled scenarios, such as
those resulting from the adoption of mobile, wireless net-
works. In these settings, reconfiguration is largely out of
control of the application and it is difficult to avoid concur-
rent, overlapping reconfigurations. Currently, our approach
does not solve these issues, but we are investigating alterna-
tive mechanisms exploiting to some extent the notion of re-
configuration path identified for the first time in this paper.
On the other hand, it is worth noting that the solution we
presented in [14] does fit these more extreme situations. To-
gether, the two approaches cover the whole spectrum of re-
configuration: the solution presented here brings maximum
performance in controlled scenarios, while the one presented
in [14] still brings significant improvements but for arbitrary
reconfiguration. Clearly, the choice of whether to use one or
the other depends on considerations tied to the deployment
environment.

7. RELATED WORK
Most publish-subscribe middleware are targeted to local

area networks and adopt a centralized dispatcher. In recent
years, the problem of wide-area event notification attracted
the attention of researchers [19] and systems exploiting a
distributed dispatcher became available, such as TIBCO’s
TIB/Rendezvous, Jedi [7], Siena [4], READY [8], Keryx [22],
Gryphon [1], and Elvin4 [17]. To the best of our knowledge,
none of them provides any special mechanism to support the
reconfiguration addressed by this paper.

The closest match is the work on Siena [4] and the sys-
tem described in [23]. These papers briefly suggest the use
of the strawman solution to allow subtrees of dispatchers to
be merged or trees to be split, but they do not provide de-
tails about its design, let apart providing an implementation
or a validation through simulation. Jedi [7] provides a dif-
ferent form of reconfiguration that allows only clients (not
dispatchers) to be added, removed, or moved to a different
dispatcher at run-time. Similarly, Elvin supports mobile
clients through a proxy server [18]. Finally, some research
projects, such as IBM Gryphon [1] and Microsoft Herald [3],
claim to support a notion of reconfiguration similar to the
one we address in this work, but we were unable to find any
public documentation about existing results.

In addition to the area of publish-subscribe middleware,
IP multicast routing protocols and group communication
middleware are also related to the topic of this paper.

The purpose of IP multicast is to provide efficient data-
gram communication services for applications that need to
send the same data to a group of recipients. Typical ex-
amples are audio and video streaming. This goal results in
routing strategies that largely differ from the one adopted in
publish-subscribe systems. In particular, applications based
on multicast exploit a finite number of statically known

groups, while in content-based publish-subscribe systems
the “groups” (i.e., the event patterns) are potentially in-
finite and not statically known. Moreover, IP multicast
groups are disjoint and each packet is explicitly addressed to
a single group, while in the system we are interested in ad-
dressing is based on message content, and hence a message
can match multiple subscriptions. Finally, publish-subscri-
be usually assumes the number of sources to be comparable
to (if not much greater than) the number of recipients, while
multicast protocols are often devised to satisfy a small set
of sources communicating with a large set of recipients.

As a consequence of these differences, it is not practical to
generalize IP multicast routing algorithms to route events in
a content-based publish-subscribe system. For similar rea-
sons, it is hard to implement a content-based publish-sub-
scribe system on top of an existing IP multicast protocol.
This issue is discussed in detail in [12], where several alter-
natives are compared.

The term “group communication” identifies a body of re-
search whose goal is to provide mechanisms for reliable com-
munication among a group of possibly remote processes, and
in addition to guarantee some degree of ordering and atom-
icity [5] of message delivery. Under this umbrella fall reliable
multicast protocols [10, 11] as well as more complex systems
such as Isis [2] and Horus [20].

In contrast to these goals, the main purpose of content-
based publish-subscribe middleware is to distribute mes-
sages (i.e., events) to all the interested parties based on their
content and to do so in a scalable and efficient way. This
difference has a strong impact on the underlying algorithms
and mechanisms adopted. For example, the implementa-
tion of most group communication systems distributes in-
formation by using either point-to-point connections from
each source to each of the group members or IP multicast.
Both of these approaches have drawbacks when applied to
content-based publish-subscribe middleware. The former
because it does not scale well, and the latter because, as
already mentioned, it is very difficult to use IP multicast to
efficiently route events based on content.

8. CONCLUSIONS
Currently available content-based publish-subscribe sys-

tems adopting a distributed event dispatcher do not pro-
vide any special mechanism to support the reconfiguration
of the topology of the dispatching infrastructure to cope with
changes in the underlying physical network. Solutions avail-
able in the literature at best mention a strawman solution
whose simplicity is often outweighed by its inefficiency, since
it involves areas that should not be affected by reconfigura-
tion. In [14] we already tackled this problem by describing
an algorithm that improves the strawman solution and can
be applied to every scenario of reconfiguration.

In this work, we pushed optimization to an extreme by
first identifying the minimal portion of the dispatching tree
that is affected by the reconfiguration, then exploiting this
notion to develop an algorithm that further reduces the traf-
fic involved in the reconfiguration. Simulations show a re-
duction in the overhead of reconfiguration up to 76% with
respect to the strawman solution. These results come at the
price of a partial reduction in the general applicability of the
algorithm.

Our current research efforts are geared towards two di-
mensions. On one hand, as we mentioned in Section 3, we



are investigating solutions to the other two problems intro-
duced by reconfiguration, namely, the reconfiguration of the
overlay network and the minimization of event loss. On the
other hand, we are developing a prototype of a publish-sub-
scribe middleware supporting reconfiguration. This proto-
type is structured as a framework, in the object-oriented
sense, and allows to specialize the middleware along several
dimensions, in particular including the strategy to deal with
reconfiguration. This prototype will ultimately enable us to
validate the suitability of our approaches to reconfiguration
in real scenarios.
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APPENDIX
Formalization
This appendix contains the formalization of the algorithms
described in Section 4.1 and in Section 4.3. The algorithms
are expressed as a set of actions, which are triggered by the
conditions outlined in Figure 9. Figures 10 and 8 define the
notation used in the rest of the formalization as well as the
data structures referred to by the actions.

Each action definition is described with respect to the dis-
patcher performing the action, generically referred to as self .
For example, if an event arrives at node self, all variables ref-
erenced in the action eventReceived are either local to self

or are bound as parameters of the action. When an action
is selected for execution, it executes as a single atomic step.

The formalization is structured as follows. Figure 12 de-
picts the actions which characterize the behavior of a stan-
dard publish-subscribe system. Figure 13 augments the
standard processing by including the two actions necessary
for implementing the strawman solution described in Sec-
tion 4.1.

Finally, Figure 14 contains the actions responsible for the
operation of the algorithm presented in this paper. In par-
ticular, substituteLinkTo is the action triggered when a link
is being replaced with another. It is worth noting that
this figure also contains a modified version of the action
unsubscriptionReceived which takes into account the ignored
table I needed by our solution.

Each dispatcher maintains a subscription table defined as follows:

S , {(n, p), n ∈ N, p ∈ P}

The reconfiguration process uses an unsubscription ignore table

defined as follows:

I , {(d, p, rId), d ∈ D, p ∈ P, rId ∈ ID}

Where the symbols have the following meanings
d the host whose unsubscription messages have to

be ignored.

p the pattern for which unsubscriptions have to be

ignored.

rId the identifier of the reconfiguration process for

which the unsubscriptions should be ignored.

The reconciliation of subscriptions accross the new link uses the

following structure to store Padd.

storedPadd , {(rId, Padd), rId ∈ ID}

where Padd is a set of event patterns.

Figure 8: Tables maintained by each dispatcher.

The following predicates express the events which can trigger the

rules.
substituteLinkTo(d, RP ) the link to dispatcher d has been re-

placed with another, with RP as the

corresponding reconfiguration path

removeLinkTo(d) the link to dispatcher d has been re-

moved without adding a new link

addLinkTo(d) a link to dispatcher d has been added

xyzReceived(n) the message xyz has been received

from node n

Figure 9: Conditions for action activation.

Domains
P the set of possible event patterns

D the set of neighboring dispatchers in the dispatch-

ing tree for the current dispatcher

C the set of clients connected to the current dis-

patcher

N = D ∪ C the set of nodes (clients and dispatchers)

ID the set of possible reconfiguration identifiers

Variables

Unless otherwise specified the following variables are defined as

belonging to the following domains:
A dispatcher d, d′, ... ∈ D

A node n, n′, ... ∈ N

A pattern p, p′, ... ∈ P

A reconfiguration ID rId ∈ ID
In each action, self ∈ D denotes the current dispatcher, i.e. the

one which is executing the action.

Reconfiguration Path

RP denotes the whole reconfiguration path

head denotes the head path

newLink denotes the new link

tail denotes the tail path

Messages

The messages that dispatchers and clients can exchange belong

to the following types:
sub(p) a subscription message

unsub(p) an unsubscription message

The messages that only dispatchers can exchange belong to the

following types:
recmsg(rId, Padd, Pdel, RP ) the reconfiguration message.

ctrlmsg(rId) the control message

flushmsg(rId, RP ) the flush message

Where the parameters have the following meanings:
p an event pattern

rId the unique identifier of the reconfiguration pro-

cess

Padd the set of patterns whose subscriptions need to

be restored along the head of the reconfiguration

path

Pdel the set of patterns whose subscription need to be

deleted from the head of the reconfiguration path

RP the reconfiguration path

Functions
newId() returns a fresh identifier

send(n, msg) sends a message msg to a client or dispatcher n

The following functions applied to a sequence of dispatchers Seq

return respectively
first(Seq) the first dispatcher in the sequence

last(Seq) the last dispatcher in the sequence

next(Seq) the dispatcher following self in the sequence

prev(Seq) the dispatcher preceding self in the sequence

Figure 10: Definitions used in the formalization.



//Process unsubscription from node n
processUnsubFrom(n, p) ≡

S ← S − {(n, p)} //Unsubscribe n from pattern p
if ¬∃n′((n′, p) ∈ S) then

//No more subscribers, send pattern to all neighbors
∀d|d 6= n • send(d, unsub(p))

else if ∃! n′((n′, p) ∈ S) then

if (n′ ∈ D) then

//Only one subscriber left, send pattern to it
send(n′, unsub(p))

//Send subscriptions in the subscription table to a new neighbor
sendSubsToNewLink(d) ≡

Padd ← {p : ∃n(n 6= d ∧ (n, p) ∈ S)}
∀p ∈ Padd • send(d, sub(p))

//Update subscription table during head-path reconfiguration
updateSubTable(Padd, dnext, Pdel, dprev) ≡

S ← S ∪ {(dnext, p) : p ∈ Padd}
S ← S − {(dprev, p) : p ∈ Pdel}

Figure 11: Auxiliary macro definitions.

//A subscription is received from a neighboring node n

subscriptionReceived(n, sub(p))

if (n, p) /∈ S then

//n is not subscribed to p

S ← S ∪ {(n, p)} //subscribe n to pattern p

if ¬∃n′((n′, p) ∈ S) then

//First subscription received by self for pattern p

∀d|d 6= n • send(d, sub(p)) //send pattern to all neighbors

else if ∃!n′((n′, p) ∈ S) then

if (n′ ∈ D) then

//Second subscription received by self for p

send(n′, sub(p)) //Send pattern to first subscriber

//An unsubscription is received from a neighboring node n

unsubscriptionReceived(n, unsub(p))

processUnsubFrom(n, p)

//Process event from a neighboring dispatcher or a client

eventReceived(n, event)

//send event to all matching subscribers

∀n′|(∃p((n′, p) ∈ S ∧ match(event, p))) • send(n′, event)

Figure 12: Actions for subscription and event pro-
cessing in a conventional subscription forwarding
scheme.

//A link to dispatcher d has been added

addLinkTo(d)

D ← D ∪ {d}
sendSubsToNewLink(d)

//The link to dispatcher d has been removed

removeLinkTo(d)

Pd ← {p : ((d, p) ∈ S)}
∀p ∈ Pd(processUnsubFrom(d, p))

D ← D − {d}

Figure 13: Actions for handling link insertion and
removal. These actions are used by any of the so-
lutions in the case where a vanished link cannot be
substituted with another.

//An unsubscription is received from a neighboring node n

unsubscriptionReceived(n, unsub(p))

if (n, p) ∈ S ∧ ¬∃rId((n,p, rId) ∈ I) then

//n is subscribed to p and it is not in the ignore table for p

processUnsubFrom(n, p)

//External operation to replace a link to dispatcher d

substituteLinkTo(d, RP )

// the set of patterns to which d was subscribed along the old

link

Padd ← {p : (d, p) ∈ S}
rId← newId() //generate new reconfiguration identifier

D ← D − {d}
//emulate reconfiguration message from d to self

recmsgReceived(d,recmsg(rId, Padd, Padd, RP ))

//Receive a control message from a neighboring dispatcher d

ctrlmsgReceived(d, ctrlmsg(rId))

//Remove d from the ignore table

I ← I − {(d, p, rId) : (d, p, rId) ∈ I}

//Receive a flush message from a neighboring dispatcher d

flushmsgReceived(d, flushmsg(rId, RP ))

//Check if this dispatcher is waiting for a flush message

if ∃Padd((rId, Padd) ∈ storedPadd) then

//Perform the reconciliation using the stored Padd

//Propagate subscriptions received before tree reconnection

∀p|∃n(n 6= prev(RP ) ∧ (n, p) ∈ S ∧ p /∈ Padd)•
send(prev(RP ), sub(p))

storedPadd ← storedPadd − (rId, Padd)

else

//Forward the flush message

send(prev(RP ), flushmsg(rId, RP ))

//Receive a recmsg message from a neighboring dispatcher d

recmsgReceived(d,recmsg(rId, Padd, Pdel, RP ))

if self ∈ head then

I ← I ∪ {(next(RP ), p, rId) : p ∈ Padd}
updateSubTable(Padd, next(RP ), Pdel, d)

if self 6= first(RP ) then send(d,ctrlmsg(rId))

//the set of patterns to be removed along RP

P ′

del ← Pdel − {p : ∃n′(n′ 6= next(RP ) ∧ (n′, p) ∈ S)}
send(next(RP ), recmsg(rId, Padd, P ′

del, RP ))

if self = first(newLink) then

D ← D ∪ {next(RP )}
updateSubTable(Padd, next(RP ), Pdel, d)

//if self is the first node in the RP, do not send ctrl msg

if self 6= first(RP ) then send(d,ctrlmsg(rId))

sendSubsToNewLink(next(RP ))

send(next(RP ), recmsg(rId, Padd, ∅, RP ))

if self = last(newLink) then

D ← D ∪ {d}
//If this is the last node of the RP, stop propagating recmsg

if self 6= last(RP ) then

send(next(RP ), recmsg(rId,∅, ∅, RP ))

//propagate unsubscriptions received

//before tree reconnection

∀p ∈ Padd|¬∃n(n 6= d ∧ (n, p) ∈ S) • send(d, unsub(p))

if self 6= last(RP ) then

//Store Padd so that it will be used later

//for the reconciliation

storedPadd ← storedPadd ∪ (rId, Padd)

if self ∈ tail ∧ self 6= last(RP ) then

send(next(RP ), recmsg(rId,∅, ∅, RP ))

if self = last(RP ) then

//First unsubscribe

removeLinkTo(first(RP ))

if self 6= last(newLink) then

//Then generate the flush message

send(prev(RP ), flushmsg(rId, RP ))

else

//Perform the reconciliation

∀p|∃n(n 6= prev(RP ) ∧ (n, p) ∈ S ∧ p /∈ Padd)•
send(prev(RP ), sub(p))

Figure 14: Actions for dealing with link substitution
in our approach.


