
Content-based Publish-Subscribe

in a Mobile Environment

Gianpaolo Cugola, Amy L. Murphy, Gian Pietro Picco∗

Abstract

Content-based publish-subscribe is emerging as a communication para-
digm able to cope with the needs of scalability, flexibility, and reconfigura-
bility typical of highly dynamic distributed applications. However, very
few efforts address dynamic changes in the topology of the publish-sub-
scribe distributed dispatching infrastructure—a fundamental challenge in
mobile computing scenarios. In this chapter we illustrate the problems
posed by mobility in the context of publish-subscribe, discuss protocols
and integrated solutions proposed by our research group, and survey the
state of the art in this research area.

∗G. Cugola and G.P. Picco ([cugola,picco]@elet.polimi.it) are with the Di-
partimento di Elettronica e Informazione, Politecnico di Milano, Italy. A.L. Murphy
(amy.murphy@unisi.ch) is with the Faculty of Informatics, University of Lugano, Switzerland.

1

Contents

1 Introduction 1

2 Publish-Subscribe: An Overview 1

3 Mobility and Publish-Subscribe: The Issues 3

4 Dealing with Mobile Clients 6

5 Dealing with Mobile Brokers: An Integrated Approach 7
5.1 Repairing the Overlay . 8

5.1.1 Mobile Networks . 9
5.1.2 Fixed Networks . 10

5.2 Reconciling Routing Information 11
5.3 Recovering Lost Messages . 14

6 REDS: Mobile Publish-Subscribe in Practice 16

7 Related Approaches 18
7.1 Reconfigurable and Fault-Tolerant Publish-Subscribe 18
7.2 Publish-Subscribe on MANETs 19
7.3 Location and Context-Aware Publish-Subscribe 21

8 Conclusions 22

2

1 Introduction

Modern distributed computing demands not only scalability, as witnessed by
the Internet, but also an unprecedented degree of adaptability to dynamic con-
ditions. Mobile computing is evidence of this trend. The mobility of network
nodes undermines many of the traditional assumptions of distributed systems:
topology becomes fluid as hosts move and yet retain the ability to communi-
cate wirelessly; communication occurs over a shared media that is not only
unreliable, but also largely unpredictable as it strongly depends on the charac-
teristics of the local environment; hosts, and therefore applications, frequently
experience disconnection, which is no longer just a network accident, rather
is often induced deliberately for long periods of time to save power. Other
modern distributed scenarios raise similar issues in terms of dynamicity: peer-
to-peer networks and sensor networks come to mind.

Coping with these demands is a challenging task. In recent years, the
publish-subscribe paradigm has emerged as a promising and effective way to
tackle many of these issues. The implicit and asynchronous communication
paradigm that characterizes publish-subscribe supports a high degree of de-
coupling among the components of a distributed application. In principle, it is
possible to add or remove one component without affecting the others—only
the dispatcher, the element in charge of collecting subscriptions and routing
messages, needs to be aware of the change. Clearly, this form of decoupling
would is desirable in a scenario where the set of available components un-
dergoes continuous change as in the mobile one. Nevertheless, much of the
potential of the publish-subscribe model still remains to be unleashed by publi-
sh-subscribe systems. Indeed, many of the available distributed publish-sub-
scribe middleware exploit a dispatching network arranged in a tree overlay for
increased scalability, but whose design usually does not tolerate any form of
topological reconfiguration. Therefore, paradoxically, these systems cannot be
exploited precisely in those application scenarios where decoupling would be
most beneficial.

In this chapter, we discuss challenges of and solutions for content-based pu-
blish-subscribe in a mobile scenario. Although we focus on our own research in
the field [1,13–16,18–20,27,33,36], we also provide the reader with a discussion
of related and alternative approaches, therefore covering the whole spectrum
of the state of the art.

2 Publish-Subscribe: An Overview

Distributed applications exploiting publish-subscribe middleware are organi-
zed as a collection of autonomous components, the clients, which interact by
publishing messages and by subscribing to the classes of messages they are inter-
ested in. The core component of the middleware, the dispatcher, is responsible
for collecting subscriptions and forwarding messages from publishers to sub-
scribers. This scheme results in a high degree of decoupling among the com-

1

� �

� �

� �

� �

� �

�

(a) Message forwarding.

� �

� 	

�

� �

� �

(b) Subscription forwarding.

� �

� �

� �

� �

� �

�

�

�

(c) Hierarchical forwarding.

Figure 1: Publish-subscribe routing strategies.

municating parties. These ideas have been recently popularized by a wealth of
systems, each interpreting the publish-subscribe paradigm in a different way1.

A first point of differentiation is the expressiveness of the subscription lan-
guage, drawing a line between subject-based and content-based systems. In the
first case, subscriptions contain only the name of a class of messages—usually
called subject, channel, or topic—chosen among a set of pre-defined classes.
Instead, in content-based systems the selection of a message is determined en-
tirely by the client, which uses expressions (often called filters) that allow so-
phisticated matching on the message content.

The second point of differentiation is the architecture of the dispatcher,
which can be either centralized or distributed. In this paper, we focus on the
latter. In this middleware, a set of brokers (see Figure 1) are interconnected in an
overlay network and cooperatively route subscriptions and messages sent by
clients connected to them, therefore increasing the scalability of the system. In
this context, the main design decisions concern the topology of interconnection
and the routing strategy. Although the first approaches based on a graph topol-
ogy are starting to appear (e.g., [1,15]), most of the available systems are based
on a tree topology, as this simplifies routing (e.g., by avoiding the possibility of
routing loops) and provides a high degree of scalability.

Several tree-based routing strategies can be found in the literature (e.g., [5,
8,17]), with the most basic ones shown and compared in Figure 1. The simplest
approach is message forwarding in which a published message is forwarded by
a broker to all the others along the dispatching tree. Instead, subscriptions are

1For more detailed comparisons see [8, 17, 22, 40].

2

never propagated beyond the broker receiving them. This broker stores these
subscriptions in a subscription table that is used to determine which clients, if
any, should receive incoming messages.

Message forwarding may generate high overhead since messages are sent
to all brokers regardless of the interests of the clients attached to them. An al-
ternative strategy, called subscription forwarding, limits this overhead by spread-
ing knowledge about subscriptions throughout the system. When a broker re-
ceives a subscription from one of its clients, not only does it store the associated
filter in its subscription table as in message forwarding, but it also forwards it
to all the neighboring brokers. During this propagation, each dispatcher be-
haves as a subscriber with respect to its neighbors. Consequently, each of them
records the filter associated with the subscription in its own subscription table
and re-forwards it to all its neighboring dispatchers except the one that sent it2.
This process effectively sets up routes for messages through the reverse path
followed by subscriptions.

Finally, hierarchical forwarding strikes a balance between the two aforemen-
tioned strategies by assuming a rooted tree topology. Subscriptions are for-
warded towards the root to establish the routes that published messages follow
“downstream” towards subscribers. Messages, in fact, are always propagated
“upstream” up to the root, and flow “downstream” along the tree only if a
matching subscription has been received from the corresponding sub-tree.

Figure 1 provides a graphical representation of the three strategies. Bro-
kers S1 and S2 subscribed (through their clients, not shown in the figure) to
the same “black” filter, while S3, S4, and S5 subscribed to “gray”. Colored ar-
rows represent the content of subscription tables for the corresponding filters.
Broker P published a message matching the black filter but not the gray one.
The path followed by this message is shown through thick, directed lines. In
hierarchical forwarding, broker R is the root of the dispatching tree.

3 Mobility and Publish-Subscribe: The Issues

The overview in the previous section shows how several approaches enable
distributed content-based publish-subscribe. However, most of the research
efforts focus either on how to provide efficient pattern matching and message
forwarding, or on efficient routing strategies for pushing scalability. Research
essentially aims at improving the performance of content-based publish-sub-
scribe in large-scale settings, implicitly assuming a static dispatching infras-
tructure. This is unfortunate because, as mentioned in the introduction, the
characteristics of the publish-subscribe model and more specifically the high
degree of decoupling it enables, makes it amenable to highly dynamic scenar-
ios such as those defined by mobility. Nevertheless, this is possible only if the

2This scheme is optimized to avoid forwarding the same message filter in the same direction.
Moreover, some systems (e.g., [8,9,26,45]) perform even more aggressive optimizations by exploit-
ing “coverage” relations among filters.

3

systems embodying the model are expressly designed to take into account the
assumptions and challenges posed by the target dynamic scenario.

Mobility poses several challenges to the design of publish-subscribe mid-
dleware. The most evident is that the topology of the system, usually assumed
static by existing systems, now becomes dynamic and undergoes continuous
reconfiguration as the mobile nodes move. Depending on the mobility sce-
nario, this may have different impact.

In many cases, mobility is relegated to the periphery of the system. For
instance, this is the case of the nomadic scenarios many of us experience while
traveling, or even when moving from office to home. The user detaches from
one network (e.g., office) and reconnects to a different one (e.g., home, or a
hotel room). The entry point to the network is different and yet, thanks to
dedicated protocols (e.g., DHCP, VPN), the user retains access to the basic net-
working services. Similar considerations hold for those scenarios where the
user changes its network entry point while in movement, and protocols such
as Mobile IP [34] that transparently maintain connectivity at the network level.
Notably, while in the first case wireless communication is a nice but unnec-
essary feature, in the second one it becomes key to enable unconstrained and
continuous movement. However, in both these scenarios, only the end nodes
are mobile: the networking infrastructure, handling routing and other func-
tionality, is assumed to be stable.

The same concepts can be applied to the typical architecture of a publish-
subscribe system by observing that clients play the role of end nodes, since
they do not provide network functionality, while instead brokers play the role
of routers and switches. Similar to networking, the impact of mobility turns
out to be limited to modifications that shield clients from the complexity of
dealing with mobility, but leave the behavior of the infrastructure largely unaf-
fected. Interestingly, the same applies when the system exhibits logical mobil-
ity of code or agents [28], e.g., because the publish-subscribe clients are mobile
agents, which detach and reattach to the closest broker during migration.

At the other extreme, mobile ad hoc networks (MANETs) [35, 44] define the
most radical mobility scenario, where no assumption is made about the dy-
namic topology of the system and the networking infrastructure itself is as-
sumed to be mobile. The impact of mobility in this case is disruptive, and no
longer limited to the clients dwelling at the fringes of the system, since the
intermediate nodes in charge of routing and other network functions are now
assumed to be mobile. Moreover, most applicative scenarios for MANETs actu-
ally blur the distinction between end nodes and intermediate ones, assuming
that all the network nodes possess the functionality required to cooperate to
enable routing. As a consequence, networking protocols must be rethought
from the ground up to accommodate the new deployment assumptions, as
witnessed by the appearance of entirely new routing protocols (e.g., those de-
scribed in [35]).

Again, publish-subscribe faces similar problems, demanding significant and
radical changes to the behavior of the dispatching infrastructure. For instance,
subscription information can no longer be associated permanently to the link

4

where it came from, because the subscriber can move and become connected
through a route involving a different set of links. Moreover, as in network-
ing scenarios, the distinction between infrastructure and application nodes be-
comes blurred, effectively introducing a different application model where all
client hosts are also brokers [30].

Interestingly, analogous considerations hold for scenarios where the com-
munication topology is dynamic, although not caused by mobility and wireless
communication. For instance, in peer-to-peer networks the hosts and physical
communication links are fixed, but the logical topology of the overlay network
along which file searches are disseminated undergoes continuous change as
peers join and leave. Exploiting a publish-subscribe system in this scenario
faces challenges similar to the one discussed thus far, where the architecture
of the peer-to-peer network (e.g., based on a hierarchical supernode infrastruc-
ture or totally decentralized) determines the level of dynamicity required in
the dispatching infrastructure.

Nevertheless, other challenges are peculiar to mobility, such as those related
to the physical communication media. Wireless communication removes the
need for cables and therefore is a key enabler of mobility. However, the price
to pay for this freedom is lower performance and reduced reliability, which
must often be taken into account at the higher application layers. For instance,
unicast communication is the fundamental building block for many distributed
applications in fixed environments, where it enjoys an efficient network imple-
mentation. On the other hand, in mobile scenarios multi-hop unicast is often
expensive, in that it often requires several local broadcasts (and corresponding
replies) to find a suitable route [35]. Therefore, it should be used sparingly in
the development of middleware for these scenarios.

Similarly, the communication links of a conventional distributed system are
often thought of as fairly reliable. For instance, the fault model assumed by
many systems and protocols (notably including TCP) is one where communi-
cation failures are rare and transient, i.e., the communication target is assumed
to become reachable again. Instead, in mobile scenarios disconnections are fre-
quent, not only because the communication media is more sensitive (e.g., to
the fluctuations in the propagation of radio waves as induced by the environ-
ment) but also because disconnection is no longer an accident, rather it is often
deliberately induced by the user or application, e.g., to save battery power3.
Moreover, failures are not guaranteed to be transient: for instance, cars mov-
ing on a highway in opposite directions may never meet again. Reliability is
usually taken into account at the network level. However, in the field of mo-
bility it is often useful to reduce the size of the network stack by blurring the
distinction among levels, for the sake of reducing the system footprint and en-
able optimizations (e.g., reduce the use of unicast). Moreover, in the specific
case of publish-subscribe, another challenge to reliability comes directly from
the application level, where the messages being routed on the overlay network

3Power management is another relevant issue in mobility, which affects not only the host, but
also network communication. However, in this paper we do not have the opportunity to touch
upon these issues.

5

may get lost along stale routes due to the topological reconfiguration induced
by mobility. The net result of these considerations is that the design of publi-
sh-subscribe middleware must often deal directly with reliability.

Finally, besides posing challenges to the implementation of the core com-
munication layer, mobility brings along the necessity of a new way to approach
the development of distributed applications, i.e., one that is context-aware. By
definition, mobile hosts change their location in the physical space, and in do-
ing so experience a different context, in terms of physical (e.g., temperature,
light, reachable hosts) or logical (e.g., application services) constituents of the
environment. Devising programming abstractions to properly capture, dis-
seminate, and exploit context is an open research problem. Publish-subscribe,
and in particular content-based systems, appear to provide a sound founda-
tion for many approaches, thanks to their decoupling and reactive paradigm
of interaction.

The rest of paper analyzes many of these issues in more detail.

4 Dealing with Mobile Clients

The first and simplest form of mobility that should be supported by a publish-
subscribe middleware tailored to mobile scenarios is that of clients, by offering
them the possibility to disconnect from the dispatching infrastructure and re-
connect from a different place at a later time. This facility is fundamental to
effectively support those scenarios of mobility, such as nomadic computing,
which involve only the leaves of the system, i.e., the clients, as described in
Section 3. In these situations, the publish-subscribe middleware must offer ap-
propriate mechanisms to make mobility transparent to the other components,
reconfiguring routing and storing messages addressed to the moving clients
until they reconnect.

In the presence of a centralized dispatcher, supporting mobile clients is just
a matter of buffering messages addressed to disconnected clients until they re-
connect. The problem becomes much harder in the presence of a distributed
dispatcher. In this case, a client must be allowed to disconnect from the bro-
ker currently acting as its entry point to the dispatching network, and to later
reconnect to a broker potentially different from the previous one, which is usu-
ally chosen as the closest one to the new location of the client. To support
this form of mobility, not only the publish-subscribe middleware must buffer
messages addressed to the client while it is disconnected, but it must also be
able to change the brokers’ subscription tables (see Section 2) when the client
reconnects. This requires a distributed protocol that coordinates the involved
brokers and avoids loosing (or duplicating) the messages sent while the recon-
nection process is running.

Jedi [17] was the first distributed publish-subscribe middleware to offer this
form of mobility. It adopts a hierarchical forwarding routing strategy and ex-
pects clients to proactively inform the middleware when moving away from
or arriving at a broker. Figure 2 illustrates the procedure taking place when a

6

R

B1

B2

C

(a) Before.

R

B1

B2

control
informationbuffered

messages

C

(b) During.

R

B1

B2 C

(c) After.

Figure 2: Dealing with client mobility in Jedi: the situation before, during, and
after the migration of a client C.

client C moves, and therefore detaches from broker B1 and reattaches to B2.
Upon disconnection, B1 starts buffering the messages addressed to C. When
C reconnects at B2, the latter initiates and coordinates the distributed proto-
col to rearrange the routing information and retrieve the messages buffered at
B1. This protocol consists of the following steps. First, B2 re-propagates the
subscriptions held by C, to set up the new routes that will steer messages to-
ward the new location of C. Any message received as a consequence of these
subscriptions is buffered at B2 until the reconnection process ends. After the
new routes are in place, B2 asks B1 to stop buffering messages, to remove C’s
subscriptions, and to forward the buffered messages. These messages, together
with those buffered at B2, represent the whole set of messages circulated in the
system during the migration of C. Some duplicates may be present in this set
because the old routes and the new ones co-existed for a short time, as shown
in Figure 2(b). However, these duplicates are easily detected and discarded at
B2. The filtered set of messages is finally sent to C, ending the reconnection
process.

Similar distributed protocols, albeit in the context of a subscription for-
warding routing strategy, are adopted by the extended version of Siena in [7],
Elvin [43], REBECA [24], and by the system described in [39].

5 Dealing with Mobile Brokers: An Integrated Ap-

proach

As mentioned in Section 3, dealing with mobility scenarios that make no as-
sumptions about the stability of the infrastructure requires an entirely differ-

7

ent approach from the one discussed in the previous section. The topological
reconfiguration induced by mobility disrupts the very dispatching infrastruc-
ture, therefore new solutions are required to preserve its operation and yet
support its dynamicity.

The reconfiguration problem we address in this section can be defined in-
formally as to adapt the dispatching infrastructure of a distributed publish-subscribe
system to changes in the topology of the underlying physical network, and to do so
without interrupting the normal system operation. In the following, we focus on
content-based systems that adopt a subscription forwarding strategy and an
unrooted tree overlay, since these are assumed by the majority of existing sys-
tems. For these systems, the reconfiguration problem stated previously can be
broken down into three subproblems, namely:

1. repairing the overlay dispatching network, to retain connectivity among
brokers without creating loops;

2. reconciling the subscription information held by each broker and used
for routing messages, to keep it consistent with the topological changes
above, without interfering with the normal processing of subscriptions
and unsubscriptions;

3. recovering messages lost during reconfiguration.

In this section we present solutions to these problems, based on our own
research on the topic [13, 14, 18, 20, 27, 33, 36]. To reduce complexity, each prob-
lem is addressed separately by leveraging off the fact that the three problems
are orthogonal. When the techniques we describe here to solve each problem
are combined in a single coherent system (e.g., the REDS system we describe in
Section 6), they provide an integrated solution to the overall problem of deal-
ing with mobile brokers.

5.1 Repairing the Overlay

Given that the overlay network we consider is a tree, there are two options to
consider for repairing: to allow cycles to form and remove them later, or to
disallow the formation of cycles. We choose the second approach because it is
most appropriate when considering updates to the subscription tables, as seen
in the next section.

We also consider two different types of failures: link and broker. From
a theoretical perspective, link failure creates two trees with exactly the same
nodes as before the link break. Repair, therefore, involves adding a link with
endpoints in each of the two trees. Failure of a node with n neighbors results
in n partitions, which require the addition of n − 1 new links.

The main challenge to address in repair of the overlay network is the selec-
tion of these links to repair the tree. We have developed two approaches, the
first specifically for mobile ad hoc networks and the second for dynamic net-
works in which connectivity exists between each pair of brokers (e.g., peer to
peer networks). In the following, we consider these two scenarios, separately.

8

�

�
�

� �

�

�

�

Figure 3: Overlay network in a mobile environment where B moves out of
contact with A and into contact with D and G. All brokers are labeled with
their numerical depth from the leader, C.

5.1.1 Mobile Networks

Our work to build and maintain an overlay network in a mobile environment
is based on the prior study of multicast in MANETs. In particular, we started
from the MAODV (Mobile Ad hoc On-Demand Distance Vector) protocol [41],
since it focuses on building and maintaining a single tree, containing the mo-
bile nodes participating in a multicast group.

In MAODV, one node is identified as the leader, and all nodes know their
distance from it in the tree. When a link breaks (or a node fails, causing sev-
eral links to break), the node(s) farther from the leader initiate the reconnection
process, searching for a link that will reconnect their subtree to the subtree of
the parent through a node with depth less than or equal to their own. This
constraint guarantees that insertion of a link will not create a cycle. For ex-
ample, in Figure 3, if the link fails between A and B, B will search for a new
link between its subtree and the subtree of its parent A. D satisfies the depth
constraint, consequently the link (B,D) is added and the depths of all nodes
are updated.

Identification of potential links is accomplished by broadcasting a route re-
quest (RREQ) message a small number of hops from B. Any node with a depth
less than or equal to B’s depth responds with a route reply (RREP) message
that follows the reverse path of the RREQ, identifying the path between the
two trees. In MAODV, nodes not participating in the multicast group may also
serve as routers in the multicast tree. Our approach [33], instead, assumes that
all nodes act as brokers in the publish-subscribe network; a similar assumption
as made in [30]. With this assumption, we have designed more efficient mech-
anisms for reconnecting the tree, specifically changing the propagation rules of
the RREQ message and altering the selection criteria for the new link.

In our approach, members of the tree are allowed to propagate the RREQ
message, an act disallowed in MAODV to prevent the formation of loops. This

9

forwarding of the RREQ extends the limits of the search for a broker with suit-
able depth, and the identification of a path between it and the requesting bro-
ker. To prevent the introduction of loops, we prohibit the RREQ from being
propagated across a non-tree link more than once. In other words, the RREQ
cannot propagate from B to G (a non-tree link) and then to H (a second non-
tree link). This disallows the addition of links (B,G) and (G,H) a situation
that forms cycles in the overlay tree. However, when G receives the RREQ
from B, it is forwarded to F along the overlay tree, a situation explicitly pro-
hibited in MAODV. In this case, F meets the depth criteria and responds to the
RREQ message, indicating the possible addition of the link between B and G,
an option for restoring the tree that MAODV does not identify.

Our second extension to MAODV is the selection criteria for the new link.
In Figure 3, both D and F reply to the RREQ message with options for repairing
the tree and B must choose one. The main selection criteria in MAODV is the
length of the path to the tree, which in MAODV may include several nodes that
are actually not part of the multicast group. Instead, in our approach where all
nodes acting as brokers, the distance to the tree is always one hop. Therefore,
we adopt a selection criteria that minimizes the effect of the reconfiguration on
the subscription tables. Specifically, the reply with the shortest path between
the endpoint of the old link on the tree (A) and the new endpoint (D or G) is
selected. In the example, D’s reply is selected because the path length from A

to D is shorter than from A to G.
A more detailed description of this approach, together with experimental

results collected from our implementation, can be found in [33].

5.1.2 Fixed Networks

As an alternative to networks where connectivity is determined by broker prox-
imity, we have also devised a protocol [27] for a fixed network scenario, as
found in peer-to-peer networks. In this scenario, dynamicity comes from ad-
dition and removal of brokers, not links, and the presence of a fixed network
enables the addition of a link between any pair of connected brokers. Our solu-
tion is again inspired by MAODV, but adapted to the aforementioned scenario
requirements. Furthermore, since we have greater control over connectivity,
we also enforce a maximum degree on each broker, therefore limiting its mes-
sage forwarding burden.

In our approach, we exploit three types of repair procedures: local, global,
and root-specific. In a local recovery, only brokers close to the recovering one
are involved. Global recovery reaches brokers anywhere in the tree. Finally,
root-specific protocols come into play only when the root broker fails.

Local recovery exploits the fact that all brokers know the identities of their
siblings as well as the identities of some of their direct ancestors (brokers on
the path between itself and the root). When a broker fails, the tree can be re-
connected by linking its former children to each other and at least one of these
children to an ancestor. We have developed protocols that balance the broker
degree, preventing all brokers from connecting to the same ancestor (creating

10

a star network with high broker degree) and similarly preventing all but one
child from connecting to one another (creating a line with low broker degree).

Our local recovery procedure also allows a broker to refuse a request if the
addition of the broker as a child will increase its degree beyond a predefined
limit. In this case, the request to find a parent is forwarded downstream from
the refusing broker in hopes of finding a broker that has not yet reached its
maximum degree. This technique is surprisingly effective, exploiting the trend
that brokers farther from the root have lower degrees.

Global recovery comes into play when local recovery fails because broker
degree requirements cannot be met or because a new parent cannot be identi-
fied among the siblings and the ancestors, a case that arises when a cluster of
brokers fails. In these situations, the broker seeks a new parent from a cache
that it maintains of other brokers in the tree. This cache is populated, for ex-
ample, by recording the source of messages propagated over the tree. To find a
new parent, a broker is selected from the cache and sent a request to allow the
requesting broker to become a child. To avoid loops, we adopt an algorithm
based on the notion of tree depth, similar to MAODV. If the broker has a lower
depth than the requesting broker, it can accept to become the new parent. Oth-
erwise, it can forward the request upstream to find a broker with lower depth,
downstream to find a broker with lower broker degree, or simply reject the
request.

It may still happen that a broker cannot identify a new broker to serve as
its parent. In this case, it declares itself to be a new root, creating its own tree.
Because our goal is to maintain a single overlay tree, we need a mechanism to
merge trees when they discover each another. For this, we assign an identi-
fier to each tree. After a broker has declared itself to be a root, it periodically
contacts brokers in its global cache. If a broker is found with a different tree
identity, the two trees are merged.

This notion of merging trees can also be exploited in the case of root failure.
When the root fails, all its former children declare themselves to be roots of
their subtrees. They then exploit their global cache to identify the other sub-
trees and re-merge the tree. Unfortunately, this may take a long time, during
which message routing on the tree is disrupted. Therefore, we defined a pro-
tocol specific to root-failure, essentially electing a new root among the former
children of the old root and allowing the remaining children to connect to this
new root or to one another.

By combining local, global, and root-specific protocols we can keep a tree
connected despite brokers frequently being added and removed. A full evalu-
ation of the effectiveness of these techniques is available in [27].

5.2 Reconciling Routing Information

After ensuring the maintenance of the overlay tree, the next step is maintaining
the subscription tables to allow messages to continue to reach the subscribers.
Here we consider protocols that address link loss rather than broker loss, since
the latter case can be addressed as a combination of several link repair actions.

11

A

C

B

D

S

A

C

B

D

S

before during

A

C

B

D

S

after

Figure 4: A dispatching tree of before, during and after a reconfiguration per-
formed using Strawman. The shaded broker is a subscriber. Arrows indicate
the propagation direction for messages.

When a link fails between a pair of brokers the overlay management pro-
tocols described in the previous section take on the responsibility of finding
the replacement link. Once this link is found, the subscription tables must be
updated so that all messages that traversed the now broken link are sent across
the new link to reach the subscribers on the other subtree. We have developed
a series of protocols to accomplish this, each with different requirements from
the overlay management protocols and with different assumptions about the
environment [18, 20, 36].

The first solution, which we refer to as Strawman protocol, is the only prior
proposal in the literature [8]. This approach utilizes only the usual publish-
subscribe subscription and unsubscription messages. When a link disappears,
a broker behaves as if it received unsubscription messages from the former
neighbor, updating its subscription table and propagating the unsubscription
message if necessary. This has the effect of stopping message forwarding across
a broken link. When the new link is added, its endpoints send subscriptions
to one another for all entries in their subscription table, allowing messages to
flow across the new link.

While this approach successfully reconfigures the subscription tables, it
may cause unnecessary overhead. For example, consider the scenario in Fig-
ure 4 in which only one broker in a subtree is a subscriber. When the link
breaks between A and B, the unsubscription process removes all entries in the
subscription tables of the brokers in B’s subtree. When the subscription pro-
cess begins across the link (C,D), it reinserts most of these entries exactly as
before, creating unnecessary overhead to remove many subscriptions that are
immediately reinserted. To overcome this, we experimented with delaying the
unsubscription process until the subscription process is complete. This rever-
sal technique, that we termed Deferred Unsubscription, is effective in reducing
the overhead of reconfiguration, up to 50% over Strawman in simulations stud-
ies characterized by a large number of reconfigurations. In the simple example

12

above, it prevents the removal and replacement of all subscriptions on the sub-
tree to the right of B and D as well as the broker above B. Details about two
different mechanisms for deferring subscriptions can be found in [36] and [20].

Analysis of the publish-subscribe behavior reveals that reconfiguration is
restricted to the brokers on the path between the endpoints of the old and new
links, termed reconfiguration path [18]. The subscription tables of all other bro-
kers remain unchanged. In Figure 4, the reconfiguration path is composed of
the brokers from A to C, across the new link from C to D, and from D to B.
To exploit this property, we designed a protocol [18] that starts at one endpoint
of the old link and moves along the reconfiguration path, updating the sub-
scription tables as it progresses. One drawback of this protocol is the require-
ment that the path remains intact during the entire reconfiguration. If a second
link fails on the reconfiguration path, the reconfiguration messages stop prop-
agating and the system is left with inconsistent subscription tables. A second
drawback is the need to know the identity of the brokers on the reconfiguration
path, an additional requirement for the overlay management protocol. Finally,
this protocol is complex when considering the details to address the subscrip-
tion and unsubscriptions that occur during the reconfiguration. On the other
hand, this protocol can achieve overhead reductions up to 78% over Strawman
in scenarios where reconfigurations do not overlap.

To bridge between the resilient delayed unsubscription protocol and the
efficient reconfiguration path protocol, we have designed a new protocol that
exchanges information among the brokers on the the old and new links, called
Informed Link Activation. Specifically, the endpoints on the old link send the
contents of their subscription tables to the endpoints of the new links. Combin-
ing this with their own subscription tables, the endpoints of the new link calcu-
late which subscriptions to send across the new link. Again, this is complicated
by the insertion and removal of subscriptions during reconfiguration, still the
protocol is not as complex as Reconfiguration Path protocol. With these ap-
proaches that share information between the old and new link, we have shown
that few brokers outside the reconfiguration path are affected by reconfigura-
tion, enabling an overhead reduction by up to 76%, similar to Reconfiguration
Path but in the presence of concurrent reconfigurations.

Each of these protocols operates with varying expectations from the over-
lay management protocol and tolerance for change during tree repair. This
leads to a number of tradeoffs that must be considered when selecting the pro-
tocol for a given system. For example, although Reconfiguration Path has clear
advantages with respect to reduction of overhead, it adds the burden to the
overlay management protocol to identify all nodes on the path, and requires
the environment to keep the path stable during reconfiguration. On the other
side, Deferred Unsubscription makes no assumptions about either stability or
knowledge passed from the overlay management protocol, however its over-
head reduction is not as significant. The Informed Link Activation protocol is
in between Reconfiguration Path and Deferred Unsubscription both in terms
of overhead reduction and required knowledge. Notably, the endpoints of the
old link must be informed of the identities of the endpoints of the new link in

13

order to send information to aid reconfiguration.
In summary, our suite of protocols provides many options to the system

designer, who can select the most appropriate protocol based on the character-
istics of the deployment environment.

5.3 Recovering Lost Messages

The last problem hampering content-based publish-subscribe on a dynamic
topology is to recover lost messages. Even in the presence of reliable links,
messages can be lost due to the reconfiguration of the dispatching network,
as routing tables are changed while a message is in transit and therefore may
cause its forwarding along stale routes. In this section, we describe a solution
based on epidemic algorithms which does not make any assumptions about
the cause of message loss and therefore enjoys general applicability.

The idea behind epidemic (or gossip) algorithms [6, 21] is for each process
to communicate periodically its partial knowledge about the system “state” to
a random subset of other processes, thus contributing to build a shared view
of the global state. The interaction between hosts can exploit a push or pull
style. In a push style, each process gossips periodically to disseminate its view
of the system. Instead, in a pull style each process requests the transmission
of information from other processes. Usually, a push approach exploits gossip
messages containing a positive digest, while a pull approach exploits a negative
digest (i.e., containing the portion of the state known to be missing). Regardless
of the scheme adopted, the probabilistic and decentralized nature of epidemic
algorithms brings many desirable properties: a constant, equally distributed
load on the processes in the system, therefore improving scalability; resilience
to changes in the system configuration, including topological ones; a simple
implementation and low computational overhead.

In our case, the state to be reconciled is the set of messages that have ap-
peared in the system. Nevertheless, the nature of content-based publish-sub-
scribe systems brings additional complexity because, unlike subject-based pu-
blish-subscribe and IP multicast, not only are messages not bound to a subject
or group determining their routing, but they may also match multiple subscrip-
tions instead of a single group. Together, these features greatly complicate the
task of identifying the subset of brokers that may hold a missing message.

The solutions we describe share a common structure. Each broker peri-
odically starts a new “gossip round”, during which it contacts other brokers
potentially holding a copy of the lost message. The broker playing this gossiper
role builds a gossip message and sends it along the dispatching tree. The con-
tent of the gossip message and its routing by the other brokers along the tree
vary according to the solutions we describe next. We assume that each bro-
ker caches the messages received, and that a unicast mechanism is available
for sending missing messages (e.g., using the reverse path of gossip messages
along the tree, or through an out-of-band transport layer).

Push. Our first solution uses proactive gossip push with positive digests. At

14

each gossip round, the gossiper chooses randomly a filter p from its subscrip-
tion table, constructs a digest of the identifiers4 of all the cached messages
matching p, builds a gossip message containing the digest, and labels it with p.
The gossip message is then propagated along the dispatching tree as if it were
a normal message matching p. The only difference is that, to limit overhead,
the gossip message is forwarded only to a random subset of the neighbors sub-
scribed to p. To increase the chance of eventually finding all the brokers inter-
ested in the cached messages, therefore speeding up convergence, p is selected
from the whole subscription table instead of just the local subscriptions.

When a broker receives a gossip message labeled with p, it checks if it is
subscribed to this filter and if all the identifiers contained in the digest corre-
spond to previously received messages. The identifiers of the missed messages
are included in a request message sent to the gossiper, which replies by send-
ing a copy of the messages. Both messages are exchanged through the unicast
channel mentioned above.

Pull. A pull approach implies the ability to detect lost messages. In subject-
based systems, this is easily achieved by using a sequence number per source
and per subject. In content-based systems this task is complicated by the ab-
sence of a notion of subject and by the fact that each broker receives only those
messages whose content matches the filters it is subscribed to. As detailed
in [14], this problem can be solved by tagging each message with (1) the iden-
tifier of its source, (2) information about all the filters matched by the message
and, (3) for each filter, a sequence number incremented at the source each time
a message is published for that filter. This information is bound to each mes-
sage at its source—an opportunity enabled by subscription forwarding, where
subscriptions are known to all brokers. Event loss is detected when a broker re-
ceives a message matching a filter p whose sequence number, associated to p in
the message identifier, is greater than the one expected for p from that message
source.

Based on this detection technique, we defined two approaches exploiting
different routing strategies: one steers gossip messages towards the subscribers,
while the other steers them towards the publisher.

• Subscriber-based Pull. Upon detecting a lost message, a broker inserts
the corresponding information (i.e., source, matched filter, and sequence
number associated to filter and source) in a buffer Lost . When the next
gossip round begins the broker now a gossiper, picks a filter p among
those associated to local subscriptions5, selects the messages in Lost ma-
tching p, and inserts the corresponding information in a digest attached
to a new gossip message. Finally, the gossip message is labeled with p

and routed as in the push solution. A broker receiving the gossip message

4The pair given by the source identifier and a monotonically increasing sequence number asso-
ciated to the source is sufficient.

5Unlike push, subscriptions are not drawn from the whole subscription table, since here the
goal is to retrieve messages relevant to the gossiper rather than disseminating information about
received messages.

15

checks its cache against the requested messages and, if any are found,
sends them back to the gossiper. Note how the replying broker need not
be subscribed to p. In fact, the broker could have received the gossip
message because it sits on a route towards a subscriber for p, and could
have received (and cached) some of the messages missed by the gossiper
because they match also a filter p′ 6= p the broker is subscribed to.

• Publisher-based Pull. This scheme requires that published messages are
cached not only by the brokers that received them but also by the source,
and that the address of each broker encountered on the route towards
a subscriber is appended to the published message. Processing occurs
similarly to the previous one, but gossip messages are routed towards
publishers instead of subscribers.

These three solutions are described in greater detail as well as formalized
in [14]. Moreover, in [13] we evaluated their performance through simula-
tion. The results confirmed that the approach is effective, and provided in-
sights about how to tune the parameters (most notably, the interval between
two gossip rounds and the size of the message cache) to achieve the desired
level of reliability. Interestingly, we discovered that neither of the pull solu-
tions alone guarantees a satisfactory performance. Instead, the combination of
the two, performed by randomly choosing subscriber- or publisher-based pull
according to a given probability, performs similarly to push albeit with lower
overhead in the case of infrequent reconfiguration.

6 REDS: Mobile Publish-Subscribe in Practice

Developed at Politecnico di Milano, REDS (REconfigurable Dispatching Sys-
tem) [19] puts the mechanisms and algorithms described in the previous sec-
tions into practice. REDS is publicly available at zeus.elet.polimi.it/
reds as open source under the LGPL license, and is implemented entirely
in Java. Its distinctive and innovative feature is reconfigurability, a property
made available on two different planes. The first concerns the configuration
of the middleware architecture, enabling the selection of different mechanisms
(e.g., the format of messages and filters or the routing strategy) for different de-
ployment scenarios. The second concerns the dynamic reconfiguration of the
topology of the REDS distributed dispatcher, addressing the problems of main-
taining the overlay network of REDS brokers in the face of topological changes,
efficiently restoring stale subscription information, and recovering messages
lost during the reconfiguration, as described in Section 5.

To achieve these goals, REDS is conceived of as a framework (in the object-
oriented sense) of Java classes, which allows programmers to easily build a
publish-subscribe middleware explicitly tailored to their application domain.
In particular, REDS defines the architecture of a generic broker organized as a
set of components implementing well-defined interfaces that represent several

16

Core
SubscriptionTable

NeighborSet

ConnectionManager

Router

Neighbor Transport

Routing layer
Transport layer*

Figure 5: The architecture of a REDS broker.

aspects of a publish-subscribe system. For instance, for what concerns mes-
sages and filters, REDS defines two interfaces encompassing the minimal set
of methods required by a publish-subscribe broker to operate. By implement-
ing these interfaces, developers are free to define their own message formats
and, even more important, filters, without the need to change the rest of the
system. Here, however, we are interested in the components used to build the
brokers constituting the REDS distributed dispatcher. As shown in Figure 5,
each REDS broker is organized as a set of components grouped into two lay-
ers, the transport and the routing layer.

Transport. The transport layer encapsulates the mechanisms used to trans-
port messages, (un)subscriptions, and any other kind of broker-specific control
messages through the network. In performing this task, it hides the wire pro-
tocol adopted to move data around and the mechanisms used to address and
access brokers and clients, and to setup the dispatching network in case the
dispatcher is distributed.

It includes an instance of the Transport component and a set of Neigh-
bors. The Transport component is in charge of receiving incoming requests
from neighboring brokers or clients (e.g., connection requests, subscriptions,
etc.), interpreting them, and calling the appropriate methods on the Core com-
ponent that, as we describe below, is the pivot of the whole architecture. Simi-
larly, Neighbor instances are used internally by the components of the routing
layer as proxies to interact with the broker’s neighbors, therefore hiding the de-
tails concerned with accessing the underlying network layer.

The current version of REDS provides two different implementations for
the transport layer, and consequently for the two components Transport and
Neighbor: one using TCP links to connect each broker with its neighbors, and
one based on UDP datagrams.

Routing. The routing layer includes three components: Core, Router, and
ConnectionManager, which share two data structures: SubscriptionTa-
ble and NeighborSet. SubscriptionTable plays a critical role in record-
ing the subscriptions received by the broker’s neighbors. By encapsulating

17

the algorithm used to efficiently match messages against a set of filters, its
implementation has a great impact on the performance of the broker. The
NeighborSet is a convenience data structure provided as a way to simplify
the task of accessing, from within the routing components, information con-
cerned with the broker’s neighbors represented by Neighbor instances.

As its name suggests, the Core is the central element of a REDS broker. It
holds the two aforementioned data structures and mediates the communica-
tion among the other components, which therefore do not have direct visibility
to each other. This design choice yields two benefits: it increases the decou-
pling among components, which need to be aware only of the existence of
the Core, and provides a central place through which all communication is
funneled, therefore opening opportunities for transparently intercepting and
modifying messages before redirecting them to the intended components. As
an example, we are currently exploiting this possibility in the implementation
of the epidemic algorithm described in Section 5.3.

The Router is in charge of implementing the specific routing strategy, e.g.,
one of those discussed in Section 2. Its methods are invoked by the Transport,
through the Core, to notify it that a subscription, unsubscription, or message
have been received from one of the broker’s neighbors and must be routed
according to the strategy it encapsulates.

The ConnectionManager is the key component of our architecture en-
abling support for publish-subscribe on a dynamic topology. It is in charge of
(i) maintaining the overlay dispatching network connected and (ii) efficiently
rearranging the brokers’ subscription tables when the topology of the network
changes. It operates in a reactive way, being notified by the Transport (thro-
ugh the Core) when a new client or broker requests to connect or disconnect,
and, most important, when the transport cannot reach a neighbor that was for-
merly connected. The protocols described in Section 5.1 and 5.2 are currently
implemented in REDS as specializations of this component.

7 Related Approaches

In this section we discuss other approaches to publish-subscribe in mobile sce-
narios, by focusing on the few other publish-subscribe middleware capable of
tolerating reconfigurations of the dispatching network as well as faulty links,
on those providing solutions specific to content-based publish-subscribe on
MANETs and, finally, touching on how location—a fundamental aspect in mo-
bile scenarios—can be introduced into the publish-subscribe communication
model.

7.1 Reconfigurable and Fault-Tolerant Publish-Subscribe

The ability to deal with dynamic reconfiguration of the dispatching network
topology is not common in content-based publish-subscribe middleware.

18

The most relevant exception is Hermes [37, 38], a scalable and reconfig-
urable publish-subscribe middleware that uses peer-to-peer techniques to build
and maintain its overlay routing network. Hermes provides a slightly limited
form of content-based routing, termed “type and attribute based” routing [23].
Type-based routing is comparable to subject-based routing, but preserves in-
heritance among message types. On top of this routing mechanism, Hermes
adds content-based filtering on message attributes. Each message type is as-
sociated to a rendezvous point, which takes the same role as the core node in
core-based tree multicast [2]. The Hermes peer-to-peer substrate associates a
specific Hermes broker to any rendezvous point and helps in building the dis-
patching tree associated to the associated message type. The self-organization
and stabilization features of this peer-to-peer substrate allow Hermes to han-
dle dynamic addition, removal, and failure of brokers. However, Hermes does
not address the problem of recovering messages lost during reconfiguration.

This latter problem is instead addressed by the developers of Joram [3] and
Gryphon [5], which focus on fault-tolerance and reliability by allowing a set of
brokers to operate as a redundant cluster, but not specifically for mobility. A
new feature in Joram 4.2 allows a set of brokers to be grouped together and op-
erate as a single, redundant cluster to transparently handle network handover
and broker fail-over. The Joram brokers that are part of the same cluster com-
municate and coordinate by using JGroups [4], a toolkit for reliable multicast
communication developed at Cornell University. Similarly, an approach based
on a redundant network of brokers to deal with link failures and broker crashes
has been recently proposed for the Gryphon [46] system.

7.2 Publish-Subscribe on MANETs

In Sections 4 and 5 we described a comprehensive set of approaches to dynam-
ically reconfigure a tree of brokers and clients to efficiently support publish-
subscribe interactions in different mobile scenarios, exhibiting various degrees
of mobility. However, in these approaches message dispatching still relies on
a tree-shaped overlay tree. In a MANET environment, and especially if hosts
move frequently, the overhead of maintaining the broker tree may overcome
the advantages offered by this topology. However, very little literature ad-
dresses this problem.

In [29] the spectrum of approaches (from centralized to distributed) to pu-
blish-subscribe is described, and some possible extensions to mobile environ-
ments and particularly MANETs are briefly analyzed. The paper does not pro-
vide any complete solutions to the problem, but offers a good starting point
by eliciting the problems involved. Similarly, the preliminary work described
in [42] analyzes the issues involved in designing a publish-subscribe middle-
ware for MANETs, focusing specifically on the routing problem.

Instead, the work in [30] describes a distributed protocol to build optimized
publish-subscribe trees in wireless networks. The authors make rather con-
straining assumptions, namely they expect to have knowledge about the place-
ment of publishers (which must become the root of the dispatching tree) and

19

about the statistical ddistribution of messages with respect to subscriptions
(to satisfy the optimality requirements of routing). Moreover, they consider
only quasi-static scenarios where nodes move only occasionally and then set-
tle down for a period on the order of minutes. Another proposal [12] describes
a mechanism to reconfigure an overlay dispatching network depending on the
changes in the physical topology of the MANET and on the current brokers’
load. However, each broker must be provided with a global view of the net-
work topology, the mechanism does not handle partitions, and it requires an
underlying unicast protocol.

The problem of providing content-based publish-subscribe for highly mo-
bile scenarios without relying on a tree overlay has recently been tackled by
our research group. In [15], the authors describe a semi-probabilistic routing
algorithm that relies on an overlay network of brokers organized in an undi-
rected connected graph. This topology is easier to maintain than a tree and
it is intrinsically more tolerant to reconfigurations and faults since it provides
multiple routes between any two brokers. Routing is partially deterministic
and partially probabilistic. Subscriptions are forwarded as in subscription for-
warding, but only up to a given distance (i.e., number of hops) from the sub-
scriber, thus providing accurate routing information within a certain horizon
from the subscriber. Along its route, a message is routed using this determin-
istic information—if available. If there is no such information to determine the
next hop, the decision is taken probabilistically, by forwarding the message
along a randomly selected subset of the available links. The simulations in [15]
confirm that a proper tuning of the span of the subscription horizon and of the
fraction of randomly selected links yields very good performance (in terms of
event delivery and overhead) even in highly dynamic scenarios. In particular,
the semi-probabilistic approach performs better than a purely probabilistic (or
deterministic) approach.

Instead, the idea in [1] is to let each broker autonomously decide about for-
warding messages, based on its estimated distance from the closest subscriber,
and to perform forwarding by using the broadcast facility provided by wireless
network cards. This allows other neighboring brokers to decide if they must
forward the message or if they should cancel forwarding. In particular, in a
MANET with quickly moving mobile nodes the distance between two such
nodes can be estimated by measuring the time since they were most recently
in communication range. Consequently, routing works as follows: each broker
listens for messages broadcast by neighboring brokers. When it receives such
a message, it stores it and delays forwarding for a time interval proportional
to the estimation it made of its distance from the closest subscriber. During
this time interval, forwarding is canceled if a message with the same identi-
fier is forwarded by some neighboring broker (to avoid unnecessarily flooding
the network). When the delay expires, if forwarding has not been canceled,
the message is broadcast to the neighboring brokers, which reason similarly.
The simulations in [1] confirmed that this is an efficient technique: it exploits
the broadcast nature of wireless communication to send multiple copies of the
same message via a single transmission; it avoids the burden of link breakage

20

detection and, even more important, it provides an intrinsic resilience to the
topological changes caused by the mobility of the nodes.

7.3 Location and Context-Aware Publish-Subscribe

The very notion of mobility is tightly coupled with the notion of location. In-
deed, in mobile scenarios, the ability to send messages only toward specific
locations or that of subscribing to messages published by components located
in specific areas could be beneficial to implement interactions that take into
account mobility. Unfortunately, commonly available publish-subscribe mid-
dleware does not offer location-based services as part of the API and only few
systems address the problem.

In [16] the authors provide a categorization of possible location-based pu-
blish-subscribe services and describe an algorithm to introduce them efficiently
in a distributed publish-subscribe middleware, using a subscription forward-
ing routing strategy. In this scheme, each broker is provided with a location
table used to route location-aware messages and subscriptions. Information
about the actual location of publishers and subscribers is forwarded along the
network of brokers to populate each broker’s location table. This information
is used both at subscription and publish time. If a component subscribes to
messages coming from a specific area A, location tables are used to limit for-
warding of the subscription only toward A. Similarly, if a component publishes
a message toward area A, location tables are used (together with conventional
subscription tables), to route the message only toward subscribers located in
area A, if any. A similar approach is reported in [24], where the authors de-
scribe an extension to the REBECA [26] middleware to implement location-
based subscriptions. The main difference between this approach and the pre-
vious one is that [24] does not take advantage of information about the actual
location of clients to limit forwarding of location-based subscriptions. As a con-
sequence, location-based subscriptions flood the entire network of REBECA’s
brokers, potentially reaching areas that are not relevant. A different approach is
pursued in [25], where a general notion of scope is introduced to structure mes-
sage availability and notification by restricting the visibility of published mes-
sages to a subset of subscribers in the system—those in the requested scope.
In principle, scope can be defined using location or other forms of contextual
information, therefore obtaining a form of context-awareness similar to those
described above.

Instead, STEAM (Scalable Timed Events And Mobility) [32] is a publish-
subscribe middleware designed for deployment over MANETs. STEAM tar-
gets application scenarios that include a large number of application compo-
nents that communicate using wireless technology in an ad hoc scenario. In
STEAM, messages are valid in a certain geographical area surrounding the
publisher. In other words, STEAM provides a special form of location-based
publishing service, in which location is expressed relative to the publisher. The
STEAM implementation is specifically tailored to MANETs and takes advan-
tage of a proximity-based group communication service [31], which uses the

21

number of hops traveled by messages at the MAC networking layer to approx-
imate distance.

The work in [11] tackles the different, but related, problem of efficiently fil-
tering a stream of messages representing the current location of clients against
a set of spatial predicates. The goal is to determine the set of clients that could
be interested in receiving some messages based on their position. The authors
propose a middleware based on a centralized spatial matching engine, which
collects subscriptions and delivers them to clients. Clients are in charge of
matching those subscriptions against their current position. The results of this
process are given back to the engine.

Finally, a complementary approach is taken by Solar [10], a distributed pu-
blish-subscribe middleware explicitly developed to disseminate location, and
more in general contextual information, to a set of distributed components.
Therefore, the emphasis is not on constraining the propagation of messages
and subscriptions based on location, rather, on using the publish-subscribe in-
frastructure to efficiently disseminate contextual data (e.g., gathered by sen-
sors) that can be processed and used by the distributed application. Solar ab-
stracts context information as messages and allows components to subscribe to
the kind of information to be notified of when their context changes. Moreover,
components may use Solar services to aggregate low-level context information
into more expressive and easier to manage high-level ones.

8 Conclusions

The publish-subscribe model holds the potential to become of fundamental
importance in mobile computing, but only if it the technology supporting it
embodies the mechanisms and algorithms necessary to cope with the dynam-
icity of this environment. In this chapter, we presented the challenges posed
by the mobile environment, described our own solutions for bringing dynam-
icity in content-based publish-subscribe technology, and surveyed alternative
state-of-the art proposals in the field.

References

[1] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni. Structure-less
content-based routing in mobile ad hoc networks. In Proc. of the IEEE Int. Conf. on
Pervasive Services, Santorini, Greece, July 2005. IEEE Computer Society Press.

[2] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees. In Proc. of ACM SIG-
COMM’93, San Francisco, CA, August 1993. ACM Press.

[3] R. Balter. Joram: The open source enterprise service bus. Technical report, ScalA-
gent Distributed Technologies, March 2004. www.scalagent.com/pages/en/
datasheet/040322-joram-whitepaper-en.pdf.

[4] B. Ban. Design and implementation of a reliable group communication toolkit for
Java. Technical report, Cornell Univ., September 1998. www.cs.cornell.edu/
home/bba/.

22

[5] G. Banavar et al. An efficient multicast protocol for content-based publish-
subscribe systems. In Proc. of the 19th Int. Conf. on Distributed Computing Systems,
1999.

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Trans. on Computer Systems, 17(2):41–88, 1999.

[7] M. Caporuscio, A. Carzaniga, and A.L. Wolf. Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. IEEE Trans. on Software
Engineering, 29(12):1059–1071, December 2003.

[8] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-
area event notification service. ACM Trans. on Computer Systems, 19(3):332–383,
August 2001.

[9] R. Chand and P.A. Felber. A scalable protocol for content-based routing in overlay
networks. In Proc. of the 2nd IEEE Int. Symp. on Network Computing and Applications,
page 123, Cambridge, MA, April 2003. IEEE Computer Society Press.

[10] G. Chen and D. Kotz. Solar: An open platform for context-aware mobile appli-
cations. In Proc. of the 1st Int. Conf. on Pervasive Computing, pages 41–47, Zurich,
Switzerland, June 2002.

[11] X. Chen, Y. Chen, and F. Rao. An efficient spatial publish/subscribe system for
intelligent location-based services. In Proc. of the 2nd Int. Workshop on Distributed
Event-Based Systems (DEBS), June 2003.

[12] Y. Chen and K. Schwan. Opportunistic brokers: Supporting efficient content de-
livery in mobile ad hoc networks, 2005. Submitted for publication. Available at
http://www.cc.gatech.edu/∼yuanchen/.

[13] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic algorithms for
reliable content-based publish-subscribe: An evaluation. In Proc. of the 24th Int.
Conf. on Distributed Computing Systems (ICDCS04), pages 552–561. IEEE Computer
Society Press, March 2004.

[14] P. Costa, M. Migliavacca, G.P. Picco, and G. Cugola. Introducing reliability in
content-based publish-subscribe through epidemic algorithms. In Proc. of the 2nd

Int. Workshop on Distributed Event-Based Systems (DEBS), June 2003.

[15] P. Costa and G.P. Picco. Semi-probabilistic content-based publish-subscribe. In
Proc. of the 25th Int. Conf. on Distributed Computing Systems, Columbus (OH, USA),
June 2005. IEEE Computer Society Press.

[16] G. Cugola and J.E. Munoz de Cote. On introducing location awareness in publish-
subscribe middleware. In Proc. of the 4th Int. Workshop on Distributed Event-Based
Systems (DEBS), June 2005.

[17] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Trans. on Software
Engineering, 27(9):827–850, September 2001.

[18] G. Cugola, D. Frey, A.L. Murphy, and G.P. Picco. Minimizing the Reconfiguration
Overhead in Content-Based Publish-Subscribe. In Proc. of the 19th ACM Symposium
on Applied Computing (SAC’04), pages 1134–1140. ACM Press, 2004.

[19] G. Cugola and G.P. Picco. REDS: A reconfigurable dispatching system. Technical
report, Politecnico di Milano, March 2005. Submitted for publication. Available at
www.elet.polimi.it/upload/picco.

23

[20] G. Cugola, G.P. Picco, and A.L. Murphy. Towards dynamic reconfiguration of dis-
tributed publish-subscribe systems. In Proc. of the 3rd Int. Workshop on Software
Engineering and Middleware (SEM), LNCS 2596, pages 187–202. Springer, May 2002.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database main-
tenance. Operating Systems Review, 22(1):8–32, 1988.

[22] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-
lish/subscribe. ACM Computing Surveys, 2(35), June 2003.

[23] P.T. Eugster, R. Guerraoui, and C.H. Damm. On objects and events. In Proc. of the
OOPSLA’01 Conf. on Object Oriented Programming Systems Languages and Applica-
tions (OOPSLA), pages 254–269, Tampa Bay (FL, USA), October 2001.

[24] L. Fiege, F.C. Gartner, O. Kasten, and A. Zeidler. Supporting mobility in content-
based publish/subscribe middleware. In Proc. of the 4th ACM/IFIP/USENIX Int.
Middleware Conf., Rio de Janeiro, Brazil, June 2003.

[25] L. Fiege, M. Mezini, G. Mühl, and A.P. Buchmann. Engineering event-based sys-
tems with scopes. In B. Magnusson, editor, Proc. of the 16th European Conference
on Object-Oriented Programming (ECOOP02), volume 2374 of LNCS, pages 309–333,
Malaga, Spain, June 2002. Springer.

[26] L. Fiege, G. Mühl, and F.C. Gärtner. Modular event-based systems. Knowledge
Engineering Review, 17(4):359–388, 2002.

[27] D. Frey and A.L. Murphy. Maintaining publish-subscribe overlay tree in large scale
dynamic networks. Technical report, Politecnico di Milano, 2005. Submitted for
publication. www.elet.polimi.it/upload/frey.

[28] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Trans.
on Software Engineering, 24(5), 1998.

[29] Y. Huang and H. Garcia-Molina. Publish/Subscribe in a mobile enviroment. In
MobiDe’01: Proc. of the 2nd ACM Int. Workshop on Data engineering for Wireless and
Mobile access, pages 27–34. ACM Press, 2001.

[30] Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in wireless
ad-hoc networks. In Proc. of the 4

th Int. Conf. on Mobile Data Management (MDM
’03), pages 122–140. Springer, 2003.

[31] M. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill. Towards group
communication for mobile participants. In Proc. of ACM Workshop on Principles of
Mobile Computing (POMC’2001), pages 75–82, Newport, Rhode Island, USA, 2001.

[32] R. Meier and V. Cahill. STEAM: Event-Based Middleware For Wireless Ad Hoc
Networks. In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems
(DEBS), July 2002.

[33] L. Mottola, G. Cugola, and G.P. Picco. Tree-based overlays for publish-subscribe in
mobile ad hoc networks. Technical report, Politecnico di Milano, 2005. Submitted
for publication. www.elet.polimi.it/upload/picco.

[34] C. Perkins. IP Mobility Support. RFC 2002, The Internet Engineering Task Force,
1996.

[35] C.E. Perkins, editor. Ad Hoc Networking. Addison Wesley, 2000.

[36] G.P. Picco, G. Cugola, and A.L. Murphy. Efficient Content-Based Event Dispatch-
ing in Presence of Topological Reconfiguration. In Proc. of the 23rd Int. Conf. on
Distributed Computing Systems (ICDCS03), pages 234–243. ACM Press, May 2003.

24

[37] P.R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based middleware
architecture. In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems
(DEBS), July 2002.

[38] P.R. Pietzuch and J.M. Bacon. Peer-to-peer overlay broker networks in an event-
based middleware. In Proc. of the 2

nd Int. Workshop on Distributed Event-Based Sys-
tems (DEBS), June 2003.

[39] I. Podnar and I. Lovrek. Supporting mobility with persistent notifications in
publish-subscribe systems. In Proc. of the 3rd Int. Workshop on Distributed Event-
Based Systems (DEBS), May 2004.

[40] D.S. Rosenblum and A.L. Wolf. A design framework for internet-scale event obser-
vation and notification. In Proc. of the 6th European Software Engineering Conf. held
jointly with the 5th Symp. on the Foundations of Software Engineering (ESEC/FSE97),
LNCS 1301, Zurich (Switzerland), September 1997. Springer.

[41] E.M. Royer and C.E. Perkins. Multicast Operation of the Ad-hoc On-Demand Dis-
tance Vector Routing Protocol. In Proc. of the 5th Int. Conf. on Mobile Computing and
Networking (MobiCom99), pages 207–218, Seattle, WA, USA, August 1999.

[42] K.S. Skjelsvik, V. Goebel, and T. Plagemann. Distributed event notification for
mobile ad hoc networks. IEEE DSOnline, 5(8), 2004.

[43] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness—Transparent
information delivery for mobile and invisible computing. In Proc. of the IEEE Int.
Symp. on Cluster Computing and the Grid, May 2001.

[44] C-K. Toh. Ad hoc mobile wireless networks. Prentice Hall Inc., 2002.

[45] P. Triantafillou and A. Economides. Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In Proc. of the 24th Int. Conf. on Distributed
Computing Systems. IEEE Computer Society Press, March 2004.

[46] Y. Zhao, D. Sturman, and S. Bhola. Subscription propagation in highly-available
publish/subscribe middleware. In Proc. of the 5th ACM/IFIP/USENIX Int. Conf. on
Middleware, pages 274–293. Springer, 2004.

25

Gianpaolo Cugola received his Dr.Eng. degree in Electronic Engineering from
Politecnico di Milano, where he spent most of his professional life. In 1998
he received the Prize for Engineering and Technology from the Dimitri N.
Chorafas Foundation for his Ph.D. thesis on Software Development Environ-
ments. He is currently Associate Professor at Politecnico di Milano and also
Guest Professor at University of Lugano. He collaborates as Information Di-
rector with the ACM Software Engineering Interest Group (SIGSoft). He has
been involved in several projects financed by the EU commission and by the
Italian governor. He is co-author of several scientific papers published in in-
ternational journals and conference proceedings. His research interests are in
the area of Software Engineering and Distributed Systems. In particular, his
current research focuses on middleware technology for largely distributed and
highly reconfigurable distributed applications.

Amy L. Murphy is an Assistant Professor in the Department of Informatics at
the University of Lugano, Switzerland. She received a B.S. in Computer Sci-
ence from the University of Tulsa in 1995, and M.S. and D.Sc. degrees from
Washington University in St. Louis, Missouri in 1997 and 2000 respectively.
She spent three years as an assistant professor at the University of Rochester,
New York and one year as a visiting researcher at Politecnico di Milano, Italy
before joining the department in Lugano. Her research interests include the
design, specification, and implementation of middleware systems for mobile
ad hoc, sensor, and dynamic peer to peer networks. The driving theme of the
work is to enable the rapid development of dependable applications for these
complex environments. More information at www.inf.unisi.ch/murphy.

Gian Pietro Picco is an Associate Professor at the Department of Electronics
and Information of Politecnico di Milano, Italy. He received his M.Sc. degree
in Electronic Engineering from Politecnico di Milano in 1993, and his Ph.D. in
Computer Science from Politecnico di Torino in 1998. He visited Washington
University in St. Louis, MO, USA as a research assistant (1996-98) and then as
a Visiting Assistant Professor (1998-99). He is with Politecnico di Milano since
September 1999. His research interests are in distributed systems that exhibit
mobility (of code or hosts) and in general high degrees of dynamicity. His work
in this area thus far has investigated several aspects spanning from theoretical
models to systems research. More information at www.elet.polimi.it/
upload/picco.

26

