
Distributed Abstract Data Types

Gian Pietro Picco1, Matteo Migliavacca1,
Amy L. Murphy2, and Gruia-Catalin Roman3

1 Dip. di Elettronica e Informazione, Politecnico di Milano,Italy,
{picco,migliava}@elet.polimi.it

2 Faculty of Informatics, University of Lugano, Switzerland, amy.murphy@unisi.ch
3 Dept. of Computer Science and Engineering, Washington Univ. in St. Louis, USA,

roman@wustl.edu

Abstract. In this paper we introduce the concept ofDistributed Abstract Data
Type (DADT), a new programming model simplifying the development of dis-
tributed, context-aware applications. ADADT instance logically encapsulates a
collection ofADT instances distributed throughout the system.DADT operations
specify the semantics of access to this distributed state byusing dedicated pro-
gramming constructs. The scope of these operations can be restricted usingDADT

views, i.e., projections over the targetADT instances, defined declaratively and dy-
namically based onADT properties. Interestingly,DADT constructs can be used
to deal not only with application data, but also with the space where it resides.
This leads to a uniform treatment of the data and space concerns, simplifying the
development of context-aware applications and providing the programmer with
considerable flexibility and expressive power. We argue that DADTs are amenable
to incorporation in existing object-oriented programminglanguages, as demon-
strated by our prototype implementation.

1 Introduction

Modern distributed computing places new demands on application programmers, not
only due to the increasing scale, decentralization, and dynamicity, but also because of
new requirements about visibility and control over the physical space where the appli-
cation executes. Examples include scenarios that fall under the umbrella of pervasive
and ubiquitous computing, and ambient intelligence. Here,programmers must deal with
simultaneous access to a plethora of devices, sensors, or application objects dispersed in
the environment to collect the application and contextual data determining the program
behavior. However, despite the popularity of the field, available models and systems
often treat the physical space—or context—where the application executes as external,
introducing specialized constructs and increasing the programming effort. Similarly,
abstractions for dealing with distribution are often quiteprimitive, forcing the program-
mer to deal explicitly with individual remote accesses.

The model described here provides constructs simplifying the access to distributed
state while explicitly taking into account spatial concerns. We accomplish this by ex-
tending the well-established notion of abstract data type (ADT) into a distributed ab-
stract data type(DADT). A DADT instance logically encapsulates a collection ofADT

datatype Sensor extends Object {
data:

int sensorType;
bool isActive;

double value, resolution;
operations:

double read();
void reset();

}

Fig. 1. ADT interface for a simple sensor.

instances distributed throughout the system. This distributed state can be manipulated
through the operations in theDADT interface, whose distributed behavior is defined by
theDADT programmer with appropriate constructs. Moreover, the application program-
mer can dynamically restrict the scope ofDADT operations by defining, in a declarative
way, projections over the distributed state, calledviews. The definition ofDADTs and
views, differently from conventional models and languages, is used also to represent
space. The programmer can model the notion of space best suited for the application
with a DADT, and use its properties to define views over space (e.g., proximity). Our
model fully integrates the spatial and data concerns involved in context definition under
a single, unified framework centered on the notion ofDADT. Data and space become
two distinct, and yet intimately related, perspectives enabling distributed manipulation
of application entities.

The paper is structured as follows. Section 2 introduces a simple and yet realistic
example, used throughout the paper for illustration purposes. Section 3 presents the
basic concepts of ourDADT model. Section 4 discusses the constructs enabling dis-
tributed access, while Section 5 illustrates the aforementioned notion of view. Section 6
reports about the design and implementation of our proof-of-concept prototype. Sec-
tion 7 placesDADTs in the context of related work and Section 8 ends the paper with
brief concluding remarks.

2 A Motivating Example

This section introduces an example used throughout the paper to concretely illustrate
the main concepts of the model. Consider an environment where several sensors are
deployed to report about physical parameters (e.g., temperature, light). A laptop mon-
itoring station needs to collect average temperature readings in its proximity, as well
as to manipulate the configuration of the sensor nodes (e.g.,reset them or change their
transmission range).

In a conventional approach, interaction with sensor data can be modeled with an
ADT, as shown in Figure 1. However, this enables only local access to a single sensor
(i.e.,Sensor instance) at a time. To build the functionality above, requiring compu-
tation of a global property, the programmer must deal with individual, remote access
to sensors, and determine (and keep track of) which are relevant to the computation
(e.g., only nearby temperature ones). Clearly, a newADT (say,SensorGroupProxy)
can be created to encapsulate these concerns. The point, however, is thati) the burden
of defining the behavior of this latterADT is entirely on the programmer;ii) this is
accomplished by mixing the application logic with the management of where data is
deployed and how it becomes dynamically accessible throughphysical space; therefore

datatype DSensor distributes Sensor with {
operations:

void resetAll();
double average();

}

Fig. 2. A dataDADT providing access to multiple sensors.

iii) program understandability and maintainability are negatively affected, and so is the
possibility of reuse across applications.

The goal of this paper is to simplify the programmer’s task through a program-
ming model thati) separates the application logic from the management of contextual
information;ii) simplifies the specification of the distributed computationthrough com-
position of elementary, reusable building blocks;iii) is easily integrated in mainstream
languages. To provide the reader with a concrete glimpse of how this is accomplished,
Figure 2 shows the definition of adistributed abstract data type(DADT) that embeds the
logic for resetting a group of sensors and computing their average reading. The behav-
ior of the operations is specified by the programmer through the constructs we provide,
which relieve her from the need to deal explicitly with the details of distribution. More-
over, the execution of the application logic embedded in theoperations is decoupled
from the specification of the system portion affected. For instance, the computation of
the average reading detected by nearby temperature sensorsis intuitively achieved by:
double v = ds.average() on temperature within proximity;

Here,ds is an instance of theDSensor DADT in Figure 2, whiletemperature
andproximity are projections over the set of all possible sensors, based on their
properties. For instance, the former is defined so that it selects onlySensor instances
with the proper value of the attributesensorType. The spatial properties related to
proximity are handled analogously through spaceADTs andDADTs, defined later.

In the following we incrementally present the concepts necessary to support this
example. Our discussion starts with the basic definitions and connections between data
and spaceADTs andDADTs. We then move on to the support for defining the internal
operations of theDADTs. Finally we bring back the concepts of views to limit the scope
of DADT operations. Although each concept is introduced with the language elements
supporting it, our focus and main contribution is in theDADT model they support.

3 Basic Concepts

We chose to cast our ideas into the notion ofabstract data type, as it represents a
well-understood programming concept and is general enoughto allow us to present our
novel constructs without the distractions and idiosyncrasies of a specific programming
language or model. While our presentation remains abstract, Section 6 describes an
instantiation of theDADT concept for the Java language.

Data and space ADTs. At the core of our model is the notion ofADT. As mentioned
in the example, we draw a sharp line between the data necessary to the application
behavior, and the space where such data resides, accordingly distinguishing between
dataADTs and spaceADTs.

DataADTs are conventionalADTs encoding the application logic, e.g.,Sensor in
Figure 1. Instead, spaceADTs (or sites) represent and characterize an abstract notion

spacetype GPSSite extends Site {
data:

Location l;
operations:

Location getLocation();
}

Fig. 3. A spaceADT representing a physical location.

of the computational environment hosting dataADT instances, e.g., a computer, virtual
machine, a PDA, or a car. Many application-dependent notions of space are meaning-
ful. Traditionally, the structure of space is somehow hard-coded in the run-time of the
distributed application, and programmers retain only limited—if any—control over it.
Instead, in our approach we empower the programmer with the explicit ability to use
(and even define) the notion of space that is most appropriatefor the application. For
instance, mobile applications may make use of network topology, and represent it as a
collection of sites with appropriate operations. As such, the notion of site built in our
approach is minimalistic, consisting of anADT Site that must be specialized by the
programmer. For instance, Figure 3 shows a spaceADT whose position is characterized
by a physical location. How this location is acquired and defined (e.g., from GPS) is
entirely encapsulated in theADT implementation.

The only syntactic difference between data and spaceADTs is the use of the key-
wordsdatatype andspacetype, essentially to enable type checking and improve
code readability and understanding.

From ADTs to DADTs. DistributedADTs specialize the notion ofADT by providing
the ability to treat a set of homogeneousADT instances as a collective unit, accessed
through the operations defined in theDADT interface. Returning to our example, the
declaration of theDSensor DADT in Figure 2 enables distributed access to instances
of the ADT Sensor defined in Figure 1, through theresetAll andaverage op-
erations. Similarly, one can define a spaceDADT for collective access to a set of sites.
For example, later on (in Figure 8) we define aWirelessNetwork spaceDADT that
allows collective access to the configuration of network hosts.

The declaration of aDADT is similar to the one of anADT. This is not surpris-
ing, sinceDADTs areADTs themselves. The only difference is the presence of the
distributes relation, which defines a new relationship amongADT types, analo-
gous to inheritance.A distributesB, whereA is aDADT andB anADT, states that
a set of instances ofB4 can be collectively accessed through the operations definedin
A’s interface. Clearly ifA distributesB andA is a spaceDADT, B must be a space
ADT, i.e., it must be a subtype ofSite.

The application programmer—which in large development efforts is likely to be dif-
ferent from both theADT andDADT programmers—can manipulate the distributed state
exported byADT instances by creating aDADT instance and invoking its operations. For
example,

DSensor ds = new DSensor();
double v = ds.average();

4 Or any other type compatible withB according to the typing rules of the target language.

creates aDSensor instance and uses it to trigger the distributed processing encapsu-
lated in itsaverage operation, as specified by theDADT programmer with the con-
structs illustrated in Section 4. Note how the invocation above is indistinguishable from
any other on a conventionalADT instance: the application programmer may even be
unaware of the distributed nature of the referenceds.

The DADT member set. Analogously toADTs, aDADT may declare attributes, which
may assume different values for each of its instances. However, everyDADT instance
always encapsulates the distributed state constituted by the set ofADT instances avail-
able for distributed computation through its operations, as a sort of implicit attribute.
This set ofADT instances is called themember setof the DADT, and its elements are
ADT instances of the type on the right hand side of thedistributes relation. In
principle, the content of the member set is the same across all the DADT instances in the
system. Fulfilling this requirement, however, is impractical in any distributed system,
as asynchrony and concurrency complicate the task of maintaining globally consistent
state. Moreover, different applications may allow different, weaker notions of member
set consistency. For this reason, we assume that the underlying run-time providesbest
effort consistency. As a consequence, differentDADT instances may have different val-
ues of theDADT member set. At the same time, however, as we discuss in Section 6, the
flexible architecture of ourDADT run-time provides mechanisms to enable customiza-
tion of the middleware with alternative consistency algorithms.

Binding an ADT into a DADT. Although we defined the notion of member set, we
did not discuss howADT instances become part of it. In our model, this is represented
as a binding between each instance of theADT and theDADT. This can be explicitly
managed on a per-instance basis by the application programmer with bind and unbind
operations, as inbind(new Sensor(),"DSensor"). However, this constitutes
also the basic functionality for higher-level automatic mechanisms, e.g., to automati-
cally bind ADTs to DADTs based on information about types and thedistributes
relation.

Note how anADT instance is bound to aDADT type, not to a specificinstance. In
fact, it is theDADT name that serves to identify collectively a group ofADT instances;
DADT instances, instead, provide anentry pointtowards this group. Moreover, while the
effect of binding (and unbinding) is global, as mentioned previously the model does not
guarantee a globally consistent view of the resulting member set, and therefore these
entry points may have different values of the member set.

Putting it all together: The interplay of data and space. Figure 4 provides a graphical
representation of the concepts discussed thus far and introduces some new ones. The
ADT instances in the figure are bound to aDADT and become part of its member set.
The latter is represented visually as a plane, onto whichADT instances (the solid circles
and squares) are projected as a consequence of binding. Notethat someADT instances
are left unbound either explicitly by the application programmer or by some property
of the implicit binding. Collective access to the member setis enabled through aDADT

instance (represented as a star), which serves as the entry point to the member set.
While this allows access to either data or space, we have not yet discussed how

the two are related. Conventional programming languages implicitly bind data to space

d a t a D A D T(m e m b e r s e t)

s p a c e D A D T(m e m b e r s e t)
s p a c e A D Ti n s t a n c e s(s i t e s)

d a t a A D Ti n s t a n c e s(a p p l i c a t i o n o b j e c t s) p l a c eb i n d d a t a
s p a c e

o p e r a t i o n i n v o c a t i o n o n a d a t a D A D T i n s t a n c e(e . g . , d s . a v e r a g e ())

o p e r a t i o n i n v o c a t i o n o n a s p a c e D A D T i n s t a n c e(e . g . , w n . m o d i f y R a n g e (0 . 1))
b i n d

Fig. 4. Data and space in theDADT model.

when an object is created, including it in the local “computational environment”. As
we abstract the latter into a spaceADT instance (site), we need to establish the proper
binding between a dataADT instance and the site where it resides. In our model, this is
achieved using theplace operation, represented by the thick lines in Figure 4. It can
be invoked explicitly by the programmer by binding dataADT and spaceADT instances
co-located in the same computational environment. For example, if g is aGPSSite,
thenplace(new Sensor(),g) binds a newly created sensor to the existing site
g. For applications that do not require this degree of flexibility, a default site can be
specified and every newly created dataADT instance is automaticallyplacedon it. In
either case, the explicit definition of a site allows symmetric treatment of data and space.

As shown in the figure, multipleADTs can be placed on the same site. Also, the
sameADT can be bound to multipleDADTs; an option that could be represented in
the figure by drawing another plane (data or space) for the newDADT. By creating
instances of bothDADTs, the sameADTs can be accessed through multiple application
perspectives at different times. To see why this is useful for sites, consider a host with
multiple network interfaces, e.g., Bluetooth and WiFi. This can be supported with two
spaceDADTs, one for each network interface. Hosts supporting both interfaces should
bind to bothDADTs. For the sake of simplicity the remainder of this paper assumes a
site is bound to a single spaceDADT, however the same assumption is not made for
data.

1 void DSensor::resetAll() {
2 (all in targetset).reset();
3 }
4 double DSensor::average() {
5 double sum = 0;
6 double[] readings = (all in targetset).read();
7 for(int i=0; i<readings.length; i++)
8 sum += readings[i];
9 return sum/readings.length;

10 }

Fig. 5. Aggregating sensor data throughDADTs.

Data and spaceADTs can be regarded as the basic elements of the world relevant
to the application, that can be manipulated globally through the “knobs” provided by
the DADT definition. In doing this, the application programmer is free to choose the
perspective (data or space) more appropriate for the functionality at hand. For instance,
she can request a global average through a dataDADT but modify the communication
range of nodes through a spaceDADT, as shown in Figure 4. The two perspectives are
coherently integrated in a single model, as thebind andplace operations effectively
connect data and spaceADTs among themselves and to the correspondingDADT planes.
Moreover, the model is further enriched by the ability to limit the portion of the system
affected by this global manipulation through view definition, again based on data and/or
space concerns. Before delving in this subject, however, weneed to illustrate distributed
access toADTs.

4 Distributed Access to ADTs

After the DADT ’s interface and targetADT are declared, as shown for instance in Fig-
ure 2, theDADT behavior realizing distributed, transparent access must be defined by
specifying the body of theDADT methods. Appropriate constructs are needed to access
and manipulate the distributed state in theDADT member set. For this, we introduce two
programming constructs:operatorsandactions.

4.1 Operators

We start by focusing on the task of implementing theresetAllmethod ofDSensor,
whose intended behavior is to reset all the sensors in the system. Since theDADT op-
erates on a set ofADT instances, one would like to specify the desired behavior by
operating on the set in a declarative way. For instance, in a Z-like formal language, with

∀x | x ∈ M • x.reset()

whereM is the member set ofDSensor. This is expressed in ourDADT language as
shown in Figure 5, where the expression above is representedby the statement on line
2. In this statement, the invocation target—normally a reference to anADT instance—is
replaced by an expression denoting the set of instances on which the methodreset is
executed. The semantics of execution is such thatreset gets invoked independently
and concurrently on each of theADT instances belonging to the invocation target. Fig-
ure 5 also shows the implementation of theaverage method, where the results of the
various invocations are collected and used by theDADT implementation.

Selection vs. condition operators. Next we look more closely at the expression repre-
senting the invocation target in line 2 of Figure 5. The variabletargetset, to which
everyDADT operation has implicit access, is the set ofADT instances available for dis-
tributed processing. At this point of our presentation, thetarget set always coincides
with the member set, however this changes whenDADT views are introduced in Sec-
tion 5. The keywordin plays the role of the mathematical membership operator∈.
Finally, the operatorall allows one to extract a collective reference to the instances in
the target set.

Other operators also make sense. The dual operatorany, for example, is such that
the effect of
(any in targetset).reset();

is to reset one among the sensors in the target set, chosen non-deterministically. Both
all andany areselection operatorsor, selectors, because they allow selection of a
subset of the instances contained in the target set.

Selectors essentially enable the programmer to specify declaratively a reference to a
distributed invocation target constituted by multiple actual ADT instances. Interestingly,
this is achieved transparently, i.e., the programmer does not require any knowledge of
the actualidentityof the instances. In addition, we providecondition operators, which
can be used to make the code of aDADT method dependent on a global condition over
the target set. The operatorin? tests whether one set is contained in another, while#
returns the number of elements currently in it. With reference to Figure 5, it is possible
to rewriteresetAll so that it resets all the sensors only if a given “master” sensor
(whose identifier we assume known) is not available, and rewriteaverage to compute
the average only if more than 3 sensors are around:
if (!({master} in? targetset)) (all in targetset).reset();
if ((# targetset)>3) readings = (all in targetset).read();

We support also other operators, e.g., to explicitly accessa set ofADT instances based
on their identifiers as in({a1,a2,a10} in targetset).read(), and a notion
of iterator. The latter enables the programmer to access theADT instances one at a
time rather than interacting with all of them at once, which in some cases may reduce
communication overhead. Due to space limitations we redirect the interested reader
to [10].

Other operators beyond those discussed here can be defined. Examples include a
variant ofany that non-deterministically selects a given number of instances (e.g.,
any(4)), or selectors relying on contextual information (e.g., anearest operator
that returns the geographically closest instance). Our current prototype provides a built-
in implementation for the operators described thus far, as well as the required mecha-
nisms to enable the programmer to define her own, as illustrated in Section 6.

4.2 Actions

The use of operators enables concurrent access to remoteADT instances and thus far
we have assumed that such access occurs by invoking one of theADT ’s operations.
However, in many cases, this is not sufficient. For instance,assume theADT ’s read
operation is capable of signaling a malfunction by returning anERROR value. In this

1 double DSensor::average() {
2 action double reliableRead() {
3 double reading; int tries = 3;
4 while (tries > 0) {
5 reading = local.read();
6 if (reading == ERROR) --tries;
7 else break;
8 }
9 if (reading == ERROR) {

10 local.reset();
11 reading = local.read();
12 }
13 }
14 double[] readings=(all in targetset).reliableRead();
15 bool found = false; int i = 0;
16 while (!found && i < readings.length)
17 found = (readings[i++] == ERROR);
18 if (!found) {
19 double sum = 0;
20 for (int i=0; i<readings.length; i++)
21 sum += readings[i];
22 return sum/readings.length;
23 } else /** report fault to the application **/;
24 }

Fig. 6. Accessing remoteADTs using actions.

case, it may be reasonable to circumvent transient faults (e.g., due to interference of the
sensor with physical phenomenons) with simple countermeasures, e.g., retry the read
operation a number of times, after which the sensor is reset and the read repeated again.
If also this last attempt fails, the fault is reported.

To implement this behavior we could leverage off the operators presented, by at-
tempting a distributedread operation (e.g., using theall operator as in line 6 of
Figure 5) and then dealing with faulty nodes. However, this may be inefficient. If the
all operator is used again to retry the reads and possibly reset sensors, its effect is
global instead of being limited to faulty sensors. On the other hand, if faulty sensors are
singled out by using the aforementioned ability to access explicitly a given sensor based
on identifier, a great deal of communication is generated because retries and reset oper-
ations need be invoked from the (remote)DADT instance. Both solutions are inherently
unsatisfactory because they ignore a fundamental point: the sequence of failingread
and correctivereset operations do not require intervention of theDADT instance and
instead can be controlled local to theADT instance. In other words, a distinction is nec-
essary between the application logic that determines how torecover from a fault (which
is entirely local to a sensor) and its distribution across the system.

This separation can be achieved elegantly and efficiently with the notion ofaction.
An action is an operation that is defined in theDADT but whose execution occurs local
to theADT instance on which it is invoked without requiring additional communication.
Loosely speaking, actions enable the programmer to writeDADT code that operates on
ADT instances as if they were exporting a richer interface.

Figure 6 illustrates the concept. The action declaration iscontained in lines 2–13,
and is identical to the one for a standard programming language routine, prepended by
the keywordaction. The only difference is the use of the keywordlocal, which is
bound at runtime to theADT instance on which the action is currently being evaluated.
Note howlocal is different from the traditionalthis keyword, pointing in this case
to theDADT instance on which the operation containing the action (average) is being

invoked. This should not be surprising, given that althoughthe actiondefinitionbelongs
to the DADT and its execution is triggered through one of theDADT operations, the
actionexecutionis entirely local to the sensor, as if it were just another operation of
theADT. These semantics can be visualized by considering actions as mobile code [4]
being shipped dynamically and remotely evaluated on theADT instances. However,
mobile code is only one of the options available for their distributed execution.

The action code in Figure 6 performs the local read and, if an error is reported,
retries the read and possibly resets the sensor. Theaverage DADT operation exploits
this action definition by simply invoking the action over thesensors in the target set
(line 14) using the notation described in Section 4.1. The remainder of the operation
scans the obtained readings for error codes (returned by sensors with a persistent fault)
and either computes and returns the average as in Figure 5 or reports the error to the
application.

5 Restricting the Scope of Operations

Distributed sharing ofADTs as we have defined it thus far is a powerful concept. How-
ever, the invocation of an operation overall the instances in the member set may not
always be desirable. For example, performance reasons may render it impractical or
application needs may suggest policies to constrain an operation to a subset of theADT

instances.
Our reference example helps to clarify these concepts. In our scenario, different

kinds of sensors (e.g., temperature, light, humidity) may be present, accounted for in
Figure 1 with the attributesensorType. As discussed so far, the sharing rules include
all instances of a givenADT, therefore including multiple types of sensors in the same
average computation, yielding a meaningless result. Instead, we would like to select
a subset of the available sensors, namely those of a given kind. One could argue that
the sensor kind could (or should) be encoded as a differentADT, e.g., inheriting from
an abstract sensor. Unfortunately, subtyping is not possible for other characteristics of
a sensor, such as those representing a portion its state, as opposed to a static charac-
teristic like the sensor type. For instance, the laptop monitoring station in our example
may need to reset all the sensors currently inactive or to compute the average over
only sensors guaranteeing a given resolution. For these cases one would like to specify
something such as

∀x | ¬(x is active) ∧ x ∈ M • x.reset()

We provide this level of flexibility and expressiveness inDADTs through the no-
tions of property and view. Aproperty is a characteristic of aDADT defined in terms
of an ADT ’s data and operations, and evaluated local to anADT instance. In program-
ming terms, properties are specified as part of theDADT interface as boolean oper-
ations. Figure 7 shows theDSensor defined earlier augmented with properties. For
instance,isActive returns true if the corresponding local attribute (see Figure 1) on
theSensor instance where the property is being evaluated is true as well. Similarly,
isSensorType andisPrecise return true if the target sensor is of the kind spec-
ified or provides a sufficient resolution, respectively. Thedefinition of these properties

1 datatype DSensor distributes Sensor with {
2 properties:
3 bool isActive();
4 bool isSensorType(int sensorType);
5 bool isPrecise(double resolution);
6 actions:
7 double[] reliableRead();
8 operations:
9 double average();

10 void resetAll();
11 }
12 bool DSensor::isActive() {
13 return local.isActive;
14 }
15 bool DSensor::isSensorType(int sensorType) {
16 return local.sensorType == sensorType;
17 }
18 bool DSensor::isPrecise(double resolution) {
19 return local.resolution >= resolution;
20 }
21 void DSensor::resetAll() {/* ...as in Figure 5... */}
22 double DSensor::average() {/* ...as in Figure 5... */}

Fig. 7. Restricting the scope of operations over data.

relies on thelocal keyword to access theADT instance they are currently being evalu-
ated upon, similarly to actions in Section 4.2. Indeed, likeactions, properties are defined
on theDADT but evaluated on (remote)ADTs.

This simple concept enables the definition of dynamic projections over the member
set, calledDADT views. Views are defined by theDADT programmer using properties
and dedicated constructs. For instance,

dataview active on DSensor as isActive();

defines the viewactive as the subset of the member set ofDSensor that contains
only thoseSensor instances for which the evaluation of the propertyisActive
yields true. TheDADT name refers implicitly to its member set.

Properties can have parameters. For instance, the view containing all temperature
sensors can be defined as:

dataview temperature on DSensor as isSensorType(TEMP);

After a view is defined, it can be used to restrict dynamicallythe scope of aDADT

operation. For instance,

ds.resetAll() on !active;

resets all sensors that are currently inactive. The execution semantics is such that the
targetset in line 2 of Figure 5, which in Section 4.1 was bound to the member set,
is here bound at invocation time to the identifiers of theADT instances belonging to the
view. Of course, the resulting view may be empty, i.e., no instance satisfies the view
definition. In this case no operation is performed.

Just as we used negation in the above formula, we support the general ability to
compose views by connecting properties with boolean operators. While the mechanics
are simple, the feature itself is powerful as it allows one toexpress views using union
and intersection. For instance,

dataview preciseOn on DSensor as isPrecise(0.1) && isActive();

captures the subset of sensors that are active and provide a resolution greater than 10%.

spacetype WirelessNetwork distributes WirelessSite with {
properties:

bool isReachable(int hops);
operations:

void modifyRange(double percent);
}

Fig. 8. A spaceDADT providing distributed access to sites.

Additional features of our model enable the definition ofasymmetricviews. The
content (i.e.,ADT instances) of these views, unlike those defined thus far, depends on
attributes of the specificDADT instance on which the operation restricted by the view
is invoked. Although this feature increases the expressiveness of view definition, space
limitations force us to refer the reader to [10] for further details.

If no view is specified at invocation time, the operation is performed on the whole
member set, as discussed in Section 4.1. Indeed, the member set defines the most gen-
eral view containing allADT instances bound to theDADT. Moreover, all the constructs
we discussed in Section 4 can be used with views, as these are ultimately sets ofADT

instances. This holds not onlyinsidethe definition of an operation (as specified by the
DADT programmer), but alsooutsidethe DADT definition (as specified by the appli-
cation programmer). For instance, the following program fragment reliably retrieves
the values sensed by all the active temperature sensors using the action whose code5

appeared in Figure 6, provided that at least three of them provide sufficient resolution:

if ((# (preciseOn && temperature)) >= 3)
readings = (all in (active && temperature)).reliableRead();

All the considerations made thus far hold both fordata andspaceviews. For ex-
ample, in our motivating scenario, the laptop requests an operation to be executed over
nodeswithin proximity. This is accomplished in a two-step process, first defining the
site, then the view. Figure 8 shows the definition of theWirelessNetwork space
DADT. It defines a propertyisReachable that yields true if the target site is within a
specified number of hops. A space view can represent proximity based on this property.
This view can be used to restrain not only operations on a dataDADT, but also on a
spaceDADT, e.g., to reduce by 10% the communication range of nearby hosts as in:

spaceview proximity on WirelessNetwork as isReachable(2);
wn.modifyRange(-0.1) within proximity;

wherewn is an instance of theWirelessNetwork DADT. Note howproximity is
asymmetric, as it depends on the location of theDADT instance on which it is invoked.

One of the most powerful uses of views arises in the combination of data and space
views, as in:

double v = ds.average() on temperature within proximity;
wn.modifyRange(-0.1) on temperature within proximity;

which combine thetemperature data view with theproximity space view to re-
turn either the proximal average temperature with an operation over data, or reduce the
communication range of proximal temperature sensors with an operation over space.

5 In Figure 7 the action is declared in the interface ofDSensor, contrary to Figure 6, and is
therefore visible to and can be reused by any of theDADT operations and by the client objects
calling them. The action code is encapsulated in theDADT, thus providing information hiding.

D S e n s o r(m e m b e r s e t)
W i r e l e s s N e t w o r k(m e m b e r s e t)

d a t a
s p a c e

d s . a v e r a g e () o n t e m p e r a t u r e w i t h i n p r o x i m i t yt e m p e r a t u r e

p r o x i m i t y
t e m p e r a t u r e& &p r o x i m i t y(t a r g e t s e t)

Fig. 9. DADT views.

The content oftargetset inside the body of the invoked (data or space)DADT op-
eration is computed as the overlap of the subsets defined by the two views. Figure 9
illustrates the concept w.r.t. the first of the two statements above. Different from Fig-
ure 4, data and spaceADT instances are not shown—only their “projection” on the
member sets and the place relation between dataADTs (circles) and sites (squares).

As mentioned in Section 3, ourDADT model provides a unified representation of
data and space, where they are simply two different perspectives for accessing and
manipulating the applicationADTs. The notion ofDADT provides the mechanism for
defining the application behavior manipulating the distributed state, as well as the prop-
erties that can be used to define views.DADT instances are instead the dynamic entities
through which distributed access is effected, and whose scope is restricted dynamically
by means of views. The programmer is free to decide what is thebest “vantage point”
(data or space) for accessing the distributed system. In ourmodel, data and space be-
come easily interchanged during the programming practice,with our model coherently
maintaining their semantic interaction.

6 Prototype Implementation

To verify the feasibility of theDADT model we developed a proof-of-concept prototype,
providing theDADT constructs described thus far in the context of the Java language.
The prototype, currently nicknamedJDADT, is divided into two parts: a translator
and a run-time. Thetranslatortakes care of translating a Java program augmented with
statements from ourDADT language into a conventional Java program, through a pre-
compilation step. The code generated by the translator implements theDADT constructs
by using the classes defined in therun-time library. Once the translation is generated,
the resulting code can be directly executed on any Java virtual machine where the run-
time packages are deployed.

The translator for the source-to-source transformation isimplemented using the
ANTLR [1] parser generator. The source grammar is a modification of the Java 1.5

V i e wO p e r a t o r< < a b s t r a c t > > R e s u l t D a t aI n v o c a t i o n D a t aA c t i o n< < a b s t r a c t > >
P r o p e r t y< < a b s t r a c t > >D A D T M g r< < a b s t r a c t > >B i n d i n g R e g i s t r yI P M c a s t D A D T M g r I P M c a s t A l l . . .I P M c a s t A n y

*S e n s o r D S e n s o r< < d i s t r i b u t e s > > H o s tN e t w o r k < < d i s t r i b u t e s > > S i t e
. . .

Fig. 10. The architecture of theJDADT run-time.

grammar by Studman [12] with extensions forDADT constructs. When launched, the
ANTLR generator builds the Abstract Syntax Tree (AST) with custom nodes forDADT

constructs which are next modified bytree walkersto reconstruct a plain Java AST. This
AST is emitted with a standard ANTLR Java emitter into code that contains invocations
to the run-time as detailed next.

The run-time architecture is composed of several components, the main classes of
which are outlined in Figure 10. The top layer is composed of application classes, like
those we used in our example. While the definition of dataADTs andDADTs is en-
tirely up to the programmer, our implementation provides built-in notions ofHost and
Network. The layer below constitutes the API of ourDADT run-time used by the trans-
lator, to map theDADT constructs into the appropriate run-time objects and invocations.
The classDADTMgr provides the methods handling the binding ofADTs to DADTs, to
specify theSite instance abstracting thenode6 where the run-time executes, as well
as other auxiliary methods managing configuration aspects of the run-time. There is
only oneDADTMgr instance per node. TheBindingRegistry object associated to
theDADTMgr contains information about which node’sADT is bound to whichDADT,
provides methods to determine the localADT instances that satisfy a given view speci-
fication, and contains information about the available operators.

The abstract classesProperty andAction represent the corresponding con-
cepts. Both representDADT methods whose execution takes place on a (remote)ADT.
To understand the translation strategy, let us focus on theisPrecise property shown
in Figure 7. The translator generates the corresponding class:
class isPrecise_Property extends Property {

double resolution;
isPrecise_Property(double resolution) { this.resolution = resolution; }
boolean evaluate(Object o) {

Sensor local = (Sensor) o;
return local.resolution >= resolution;

}
}

6 The termnodehere refers to the computational environment where the run-time executes—a
JVM in our implementation. This is not be confused with asite, which is a node’s abstract
representation as a spaceADT.

where the property parameter is now a class attribute, and the property body is con-
tained in theevaluate method. The latter accepts as a parameter an instance of the
ADT (Sensor in our case) distributed by theDADT. This can be safely substituted
for the keywordlocal used in Figure 7. A similar strategy is used for translating
actions.Property andAction objects are created upon action invocation or view
definition, serialized, and transmitted on the node of the target ADT instance. There,
their evaluate method is executed by using thisADT instance as a parameter, to
enable invocation of its operations. Note that here we assume that theDADT class is
pre-deployed on the interested nodes. A more dynamic and open design is easily ob-
tained with a “code on demand” paradigm [4], enabling class relocation only if and
when needed.

A view (on data, space, or both) is represented by aView object containing the set
of Property objects involved in the view definition, properly arranged in an abstract
tree representing the view predicate. To determine whethera givenADT instance be-
longs to the view, the abstract tree is navigated from the leaves (the property objects)
to the top (the view object), by invoking theevaluate method of each property and
composing it with others according to the boolean operator in each abstract tree node.
The process terminates at the root with the boolean result ofthe evaluation. Composi-
tion of views is easily achieved by composing their predicates, i.e., their abstract trees.
Finally, a view object’sapply method allows execution of an action on theADT in-
stances selected by an operator.

Operators, both built-in and programmer-defined, are subclasses ofOperator.
The corresponding implementation is retrieved at run-timefrom DADTMgr, using a
Factory pattern. The operator behavior is specified by overriding only two methods.
evalRemote(View v) is invoked on the caller node (e.g., whereds.average
is called), and embeds the logic for distributing the information necessary to the col-
lective evaluation of the operator on the view, and the retrieval of the results. Instead,
evalLocal(InvocationData d) is performed on all the other nodes involved
in the computation (i.e., those hosting the targetADT instances), and contains the logic
for evaluating the operator local to a single node and sending the results back to the
caller. The parameter contains the information representing an invocation, i.e., the view
specification, the operator to be applied, the action to be executed, and the caller’s iden-
tifier. Both methods above return results packed in a simpleResultData class. In
essence,Operator subclasses embed all the distribution logic connecting thecaller
node and theADT instances. In our prototype, the implementation of theall opera-
tor leverages off UDP unicast and multicast sockets, as shown in the bottom layer of
Figure 10 containing the classes specializing our framework. Multicast is exploited for
dispatching invocations to theADT instances bound to a givenDADT, while UDP is
used for returning results. More details in [10].

To clarify how the various components cooperate, consider the following sample
DADT program statements

dataview preciseOn on DSensor
as isPrecise(0.1) && isActive();

spaceview proximity on Network as isReachable(2);
ds.average() on preciseOn within proximity;

using the fault-tolerant definition ofaverage from Figure 6. The translator generates
theProperty subclasses based on the definition of the two views, creates the corre-
sponding objects, and inserts them in the abstract tree, either directly or by invoking the
methods (and, or) for logically composing properties:

View preciseOn = new View(new isPrecise_Property(0.1)
.and(new isActive_Property()));

View proximity = new View(new isReachable_Property(2));

Moreover, it transforms the signature ofaverage into

double average(View targetset)

In our case the target set is the conjunction ofpreciseOn andproximity, and is
passed upon method invocation:

ds.average(new View(preciseOn).and(proximity));

Note how a newView instance is generated on the fly to represent the clause
on...within... of the invocation by merging the data view and the space view.In
our implementation, both are represented byView objects, which are then composed
like properties. Different constructors are provided to create a view out of its proper-
ties or based on already existing views. Moreover, the translator generates anAction
subclass representing the actionreliableRead in the figure, as we described ear-
lier. Line 14 of Figure 6, containing the action invocation in conjunction with theall
operator, becomes

double[] readings = (double[]) view.apply("all",new reliableRead_Action());

The body ofapply retrieves from the node’sDADTMgr the proper implementa-
tion of the operator based on the name passed as a parameter, and starts its distributed
execution on the boundADTs, as shown in the following excerpt

Object apply(String name, Action a) { ...
Operator op = DADTMgr.getOperator(name);
ResultData d = op.evalRemote(

new InvocationData(this,name,a,caller));
... }

wherethis is theView instance requesting the invocation andcaller is the identi-
fier of the corresponding node.

The design just described is conceived as aframeworkin the object-oriented sense,
and can be customized (e.g., to use different communicationprotocols) by redefining
only two classes, i.e.,Operator andDADTMgr. Moreover, althoughJDADT is a
proof-of-concept prototype, its realization is still non-trivial. It is fully decentralized
and, although thus far we have tested it only in a fixed environment, its reliance only
on the most basic network facilities leaves open the opportunity for a seamless migra-
tion to more dynamic ones, using the appropriate network routing protocols (e.g., for
MANET). Nevertheless, it can clearly be improved in many respects. Most notably, we
are currently studying distributed algorithms for efficiently managing the distributed
dissemination of actions and results, and for maintaining views. In doing this, we are
supported by our previous work on data sharing middleware for mobile computing (e.g.,
L IME [8] and EgoSpaces [7]), for whichDADTs actually provide a generalization.

7 Related Work

The closest works come from the context of parallel systems.SharedADTs (SADTs) [5]
focuses on providing implementations of several standard data types, whose imple-
mentation is designed to scale well in the parallel environment. Concurrent Aggregates
(CAs) [3] provides language-level support for defining boththe ADT interface and the
implementation of its distributed components. Each component is defined in terms of
message processing and is explicitly enabled to send messages to fellow components,
creating aggregate behavior. In comparison to these systems, not only doDADTs tar-
get the more general distributed setting, but they also provide a unique and uniform
treatment of data and space, as well as the increased flexibility coming from the view
concept. In the other systems, not only is the view the same atall times, but the compo-
nents contributing to it cannot change during execution.

Recently, the Spatial Programming model [2] has been proposed for embedded sys-
tems. It makes an analogy between space and memory and exposes space to applications
through spatial references, which enable the definition of regions including components
interested in a given computation. Similar ideas have also been applied to mobile ad
hoc networks in the SpatialViews language [9], wherevirtual networkscan be defined
depending on the physical location of a node and the services(expressed as Java in-
terfaces) it provides. Common to our work is the notion of scoping virtual networks
provide. However,DADTs provide a clean separation between data and space and the
notion of data views, not supported by the aforementioned approaches, allows us to
limit execution not only based on spatial constraints, but also on application ones, with
the two nicely integrated in our model. Finally, unlike our approach, computation is
distributed across nodes in a virtual network by migrating mobile agents from node to
node, and this is an integral part of the model. Instead, in our model we provide simul-
taneous access to multiple instances through a singleDADT reference, and mobile code
is only one of the implementation options.

Some aspects of our work may look reminiscent of distributedobject platforms
(e.g., CORBA or Emerald [6]). However, these platforms relyon remote method invo-
cation as a means to access explicitly identified, single object instances. Instead, in our
DADT model the identity of remote objects remains hidden (unlessexplicitly needed),
enabling transparent access. Moreover, collective accessoccurs through a singleDADT

interface, while the same aggregation would require extensive programming effort in a
distributed object system. Finally, distributed object systems hide the object location in
references, whileDADTs foster a clean separation between data and space, hiding lo-
cation when dealing with data, but enabling its (direct or indirect) access when dealing
with space.

Finally, the idea of sets as a programming abstraction was pioneered in the early 70’s
(e.g., [11]). However, the aim and results of these approaches are profoundly different
from ours. Indeed, their goal was to use sets as the fundamental abstraction forall
programming tasks. Instead, here we use a (much less powerful) set abstraction only to
deal with distribution, and rely on standard imperative programming constructs for the
dealing with the other concerns.

8 Conclusion

Developing distributed applications is a complex task, especially when the physical
space must be taken into account, as in the case of context-aware computing. In this pa-
per, we proposedDADTs as a novel distributed programming model enabling collective
access to data and space entities by means of operations whose distributed behavior is
encapsulated in theDADT using dedicated constructs, and whose invocation scope can
be dynamically defined based on application and contextual information. We conjec-
ture that the unified treatment of data and space concerns inside the model, together
with our choice to embed these features in a well-known and widely used program-
ming technique, is likely to improve programming practicesin modern distributed and
context-aware computing.

Acknowledgments. The authors wish to thank Domenico Bianculli for his work on the
implementation of the translator. The work described in this paper was partially sup-
ported by the European Union under the project IST-004356-RUNES and by the Italian
Ministry of Education, University, and Research (MIUR) under the VICOM project.
Roman was supported in part by the US Office of Naval Research under ONR MURI
research contract N00014-02-1-0715. Any opinions, findings, and conclusions or rec-
ommendations expressed in this paper are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

References

1. ANTLR Web page.www.antlr.org.
2. C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial programming

using smart messages: Design and implementation. InProc. of the 24th Int. Conf. on Dis-
tributed Computing Systems (ICDCS), March 2004.

3. A.A. Chien and W.J. Dally. Concurrent Aggregates (CA). InProc. of the Symp. on Principles
& practice of parallel programming, pages 187–196, 1990.

4. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding CodeMobility. IEEE Trans. on Soft.
Eng., 24(5), 1998.

5. D.M. Goodeve et al. Toward a model for shared data abstraction with performance.J. of
Parallel and Distributed Computing, 49(1):156–167, 1998.

6. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grainedMobility in the Emerald System.
ACM Trans. on Computer Systems, 6(2):109–133, February 1988.

7. C. Julien and G.-C. Roman. Active Coordination in Ad Hoc Networks. InProc. of COOR-
DINATION, 2004.

8. G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. InProc. of the
Int. Conf. on Software Engineering, pages 368–377, May 1999.

9. Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming ad-hoc networks of mobile and
resource-constrained devices. InProc. of the ACM SIGPLAN Conf. on Programming lan-
guage design and implementation (PLDI), 2005.

10. G.P. Picco, M. Migliavacca, A.L. Murphy, and G.-C. Roman. Distributed Abstract Data
Types. Technical report, Politecnico di Milano, 2004. Available atwww.elet.polimi.
it/upload/∼picco.

11. J. T. Schwartz et al.Programming with sets; an introduction to SETL. Springer, 1986.
12. M. Studman et al. Java 1.5 Grammar.www.antlr.org/grammar/1109874324096/

java1.5.zip.

