Distributed Abstract Data Types

Gian Pietro Picch Matteo Migliavacca,
Amy L. Murphy?, and Gruia-Catalin Roman

! Dip. di Elettronica e Informazione, Politecnico di Milaritaly,
{picco,mgliava}@let.polim.it
2 Faculty of Informatics, University of Lugano, Switzerlardry. mur phy @ini si . ch
3 Dept. of Computer Science and Engineering, Washington.imBt. Louis, USA,
roman@wst | . edu

Abstract. In this paper we introduce the conceptiftributed Abstract Data
Type (DADT), a new programming model simplifying the development &f di
tributed, context-aware applications. DT instance logically encapsulates a
collection of ADT instances distributed throughout the systembT operations
specify the semantics of access to this distributed stateslmg dedicated pro-
gramming constructs. The scope of these operations castietred usindADT
views i.e., projections over the targebT instances, defined declaratively and dy-
namically based oADT properties. InterestinghhADT constructs can be used
to deal not only with application data, but also with the spadere it resides.
This leads to a uniform treatment of the data and space ammcamplifying the
development of context-aware applications and providieggrogrammer with
considerable flexibility and expressive power. We argueth@1s are amenable
to incorporation in existing object-oriented programmlagguages, as demon-
strated by our prototype implementation.

1 Introduction

Modern distributed computing places new demands on apigic@arogrammers, not
only due to the increasing scale, decentralization, andushycity, but also because of
new requirements about visibility and control over the ptgisspace where the appli-
cation executes. Examples include scenarios that fall uth@eumbrella of pervasive
and ubiquitous computing, and ambient intelligence. Hemegrammers must deal with
simultaneous access to a plethora of devices, sensorglarajpn objects dispersed in
the environment to collect the application and contextasddietermining the program
behavior. However, despite the popularity of the field, ladé models and systems
often treat the physical space—or context—where the aqjidic executes as external,
introducing specialized constructs and increasing th@naraming effort. Similarly,
abstractions for dealing with distribution are often quitamitive, forcing the program-
mer to deal explicitly with individual remote accesses.

The model described here provides constructs simplifyiegaccess to distributed
state while explicitly taking into account spatial concertWe accomplish this by ex-
tending the well-established notion of abstract data tymer{ into adistributed ab-
stract data typgDADT). A DADT instance logically encapsulates a collectiomofr

dat at ype Sensor extends Object {
dat a:
int sensorType;
bool isActive;
doubl e val ue, resolution;
operations:
doubl e read();
void reset();

Fig. 1. ADT interface for a simple sensor.

instances distributed throughout the system. This digteith state can be manipulated
through the operations in tleADT interface, whose distributed behavior is defined by
theDADT programmer with appropriate constructs. Moreover, thdiegupon program-
mer can dynamically restrict the scopenafDT operations by defining, in a declarative
way, projections over the distributed state, caléeivs The definition ofbADTs and
views, differently from conventional models and languagesised also to represent
space. The programmer can model the notion of space bestl duitthe application
with a DADT, and use its properties to define views over space (e.g.irpitg}. Our
model fully integrates the spatial and data concerns imwim context definition under
a single, unified framework centered on the notioabT. Data and space become
two distinct, and yet intimately related, perspectiveshting distributed manipulation
of application entities.

The paper is structured as follows. Section 2 introducesnplsi and yet realistic
example, used throughout the paper for illustration pugpoSection 3 presents the
basic concepts of oubADT model. Section 4 discusses the constructs enabling dis-
tributed access, while Section 5 illustrates the aforeifmeat! notion of view. Section 6
reports about the design and implementation of our proafesfcept prototype. Sec-
tion 7 placesdADTS in the context of related work and Section 8 ends the papér wi
brief concluding remarks.

2 A Motivating Example

This section introduces an example used throughout ther pam®ncretely illustrate
the main concepts of the model. Consider an environmentevbereral sensors are
deployed to report about physical parameters (e.g., testyrey, light). A laptop mon-
itoring station needs to collect average temperature ngadn its proximity, as well
as to manipulate the configuration of the sensor nodes (esgt them or change their
transmission range).

In a conventional approach, interaction with sensor databeamodeled with an
ADT, as shown in Figure 1. However, this enables only local a&ctes single sensor
(i.e., Sensor instance) at a time. To build the functionality above, reiqgi compu-
tation of a global property, the programmer must deal withividual, remote access
to sensors, and determine (and keep track of) which areanelé¢w the computation
(e.g., only nearby temperature ones). Clearly, a apw (say,Sensor G- oupPr oxy)
can be created to encapsulate these concerns. The poirdyéiovs that) the burden
of defining the behavior of this lattexdT is entirely on the programmeii) this is
accomplished by mixing the application logic with the magragnt of where data is
deployed and how it becomes dynamically accessible thrphghical space; therefore

dat at ype DSensor distributes Sensor with {
operations:
void resetAll();
doubl e average();

Fig. 2. A dataDADT providing access to multiple sensors.

iii) program understandability and maintainability are negdtiaffected, and so is the
possibility of reuse across applications.

The goal of this paper is to simplify the programmer’s tastotiyh a program-
ming model that) separates the application logic from the management oegturml
information;ii) simplifies the specification of the distributed computattmough com-
position of elementary, reusable building block;is easily integrated in mainstream
languages. To provide the reader with a concrete glimpsewfthis is accomplished,
Figure 2 shows the definition ofdistributed abstract data typ@ADT) that embeds the
logic for resetting a group of sensors and computing thairaye reading. The behav-
ior of the operations is specified by the programmer throbglcbnstructs we provide,
which relieve her from the need to deal explicitly with theadks of distribution. More-
over, the execution of the application logic embedded inaperations is decoupled
from the specification of the system portion affected. Fetance, the computation of
the average reading detected by nearby temperature séngtrstively achieved by:

doubl e v = ds. average() on tenperature within proximty;

Here,ds is an instance of th®Sensor DADT in Figure 2, whilet enrper at ur e
andpr oxi m ty are projections over the set of all possible sensors, basdteir
properties. For instance, the former is defined so thatécé&lonlySensor instances
with the proper value of the attribuseensor Type. The spatial properties related to
pr oxi m t y are handled analogously through spacas andDADTS, defined later.

In the following we incrementally present the concepts ssagy to support this
example. Our discussion starts with the basic definitionlscamnections between data
and spaceDTs andbADTs. We then move on to the support for defining the internal
operations of th®ADTSs. Finally we bring back the concepts of views to limit thegeo
of DADT operations. Although each concept is introduced with thguage elements
supporting it, our focus and main contribution is in thwedT model they support.

3 Basic Concepts

We chose to cast our ideas into the notionabftract data typeas it represents a
well-understood programming concept and is general entuglow us to present our
novel constructs without the distractions and idiosyriesasf a specific programming
language or model. While our presentation remains abst&seition 6 describes an
instantiation of thedADT concept for the Java language.

Data and space ADTS. At the core of our model is the notion ebT. As mentioned
in the example, we draw a sharp line between the data negasstire application
behavior, and the space where such data resides, accgrdistihguishing between
dataADTs and spacepDTs.

DataADTSs are conventionalDTs encoding the application logic, e.§gnsor in
Figure 1. Instead, spagepTs (orsiteg represent and characterize an abstract notion

spacetype GPSSite extends Site {
dat a:
Location |;
oper ations:
Locati on getLocation();

Fig. 3. A spaceaDT representing a physical location.

of the computational environment hosting datar instances, e.g., a computer, virtual
machine, a PDA, or a car. Many application-dependent nstidrspace are meaning-
ful. Traditionally, the structure of space is somehow hemded in the run-time of the
distributed application, and programmers retain only tiai—if any—control over it.
Instead, in our approach we empower the programmer withxtpkcé ability to use
(and even define) the notion of space that is most approgdatbe application. For
instance, mobile applications may make use of network tmpoland represent it as a
collection of sites with appropriate operations. As suble, iotion of site built in our
approach is minimalistic, consisting of amT Si t e that must be specialized by the
programmer. For instance, Figure 3 shows a spacewhose position is characterized
by a physical location. How this location is acquired andrdsdi(e.g., from GPS) is
entirely encapsulated in thedT implementation.

The only syntactic difference between data and spdares is the use of the key-
wordsdat at ype andspacet ype, essentially to enable type checking and improve
code readability and understanding.

From ADTs to DADTS. DistributedADTS specialize the notion ofDT by providing

the ability to treat a set of homogeneoAsT instances as a collective unit, accessed
through the operations defined in tbabdT interface. Returning to our example, the
declaration of thddSensor DADT in Figure 2 enables distributed access to instances
of the ADT Sensor defined in Figure 1, through threeset Al | andaver age op-
erations. Similarly, one can define a spae@T for collective access to a set of sites.
For example, later on (in Figure 8) we defingiar el essNet wor k spaceDADT that
allows collective access to the configuration of network$ios

The declaration of @ADT is similar to the one of amDT. This is not surpris-
ing, sinceDADTS areADTS themselves. The only difference is the presence of the
di stri but es relation, which defines a new relationship amamyr types, analo-
gous to inheritanced distributes B, whereA is aDADT and B anADT, states that
a set of instances dB* can be collectively accessed through the operations deifined
A’s interface. Clearly ifA distributes B andA is a spac®ADT, B must be a space
ADT, i.e., it must be a subtype & t e.

The application programmer—which in large developmemtrésfis likely to be dif-
ferent from both theDT andDADT programmers—can manipulate the distributed state
exported byADT instances by creatingm@ADT instance and invoking its operations. For
example,

DSensor ds = new DSensor();
doubl e v = ds. average();

4 Or any other type compatible witB according to the typing rules of the target language.

creates @Sensor instance and uses it to trigger the distributed processicgesu-
lated in itsaver age operation, as specified by tlmaDT programmer with the con-
structs illustrated in Section 4. Note how the invocatioovais indistinguishable from
any other on a conventionabT instance: the application programmer may even be
unaware of the distributed nature of the referetise

The DADT member set. Analogously toADTS, aDADT may declare attributes, which
may assume different values for each of its instances. HerveveryDADT instance
always encapsulates the distributed state constitutetebgdt ofaDT instances avail-
able for distributed computation through its operatiorssaaort of implicit attribute.
This set ofADT instances is called thmember sebf the DADT, and its elements are
ADT instances of the type on the right hand side of diest ri but es relation. In
principle, the content of the member set is the same acribe@ADT instances in the
system. Fulfilling this requirement, however, is impraatin any distributed system,
as asynchrony and concurrency complicate the task of nimiimggglobally consistent
state. Moreover, different applications may allow diffezeveaker notions of member
set consistency. For this reason, we assume that the uimderiyn-time providebest
effort consistency. As a consequence, diffemabT instances may have different val-
ues of thebADT member set. At the same time, however, as we discuss in 8>ibe
flexible architecture of oubADT run-time provides mechanisms to enable customiza-
tion of the middleware with alternative consistency altjoris.

Binding an ADT into a DADT. Although we defined the notion of member set, we
did not discuss howDT instances become part of it. In our model, this is represiente
as a binding between each instance of sAlve and theDADT. This can be explicitly
managed on a per-instance basis by the application progeamith bind and unbind
operations, as itbi nd(new Sensor (), " DSensor") . However, this constitutes
also the basic functionality for higher-level automaticalm&nisms, e.g., to automati-
cally bind ADTs to DADTs based on information about types and dhest r i but es
relation.

Note how anaDT instance is bound to BADT type not to a specifiénstance In
fact, it is theDADT name that serves to identify collectively a groupaafT instances;
DADT instances, instead, provide antry pointtowards this group. Moreover, while the
effect of binding (and unbinding) is global, as mentioneeMprusly the model does not
guarantee a globally consistent view of the resulting mamsbt and therefore these
entry points may have different values of the member set.

Puttingit all together: Theinterplay of dataand space. Figure 4 provides a graphical
representation of the concepts discussed thus far andlintes some new ones. The
ADT instances in the figure are bound tmabpT and become part of its member set.
The latter is represented visually as a plane, onto whizhinstances (the solid circles
and squares) are projected as a consequence of bindingtiéb&omeaDT instances
are left unbound either explicitly by the application pragpmer or by some property
of the implicit binding. Collective access to the membeirisenabled through aADT
instance (represented as a star), which serves as the eiritytg@the member set.
While this allows access to either data or space, we have etadligcussed how
the two are related. Conventional programming languagp#ditly bind data to space

operation invocation on a data DADT instance
~= (e.9. ds..average ())

dataDADT
(member set) >

data ADT
instances
(application objects)

space ADT
instances
(sites)

space DADT
(member set)

operation invocation on a space DADT instance’ %
(e.g., wn.modifyRange (0.1))

Fig.4. Data and space in theaDT model.

when an object is created, including it in the local “compiotaal environment”. As

we abstract the latter into a spagBT instance (site), we need to establish the proper
binding between a dateDT instance and the site where it resides. In our model, this is
achieved using thpl ace operation, represented by the thick lines in Figure 4. It can
be invoked explicitly by the programmer by binding datar and spacabDT instances
co-located in the same computational environment. For ei@rif g is aGPSSi t e,
thenpl ace(new Sensor (), g) binds a newly created sensor to the existing site
g. For applications that do not require this degree of fleiibih default site can be
specified and every newly created datar instance is automaticallglacedon it. In
either case, the explicit definition of a site allows symiiegteatment of data and space.

As shown in the figure, multipleDTs can be placed on the same site. Also, the
sameADT can be bound to multipl®ADTs; an option that could be represented in
the figure by drawing another plane (data or space) for the mwemr. By creating
instances of botbADTS, the sam@DTs can be accessed through multiple application
perspectives at different times. To see why this is usefusites, consider a host with
multiple network interfaces, e.g., Bluetooth and WiFi. §ban be supported with two
spaceDADTS, one for each network interface. Hosts supporting botirfiates should
bind to bothDADTSs. For the sake of simplicity the remainder of this paper mesua
site is bound to a single spacabT, however the same assumption is not made for
data.

voi d DSensor::resetAl () {
(all in targetset).reset();

1

2

3}

4 doubl e DSensor::average() {

5 doubl e sum = 0;

6 doubl e[] readings = (all in targetset).read();
7 for(int i=0; i<readings.length; i++)

8 sum += readings[i];

9 return suni readings. | ength;

=

o}

Fig. 5. Aggregating sensor data throughaDTS.

Data and spaceDTs can be regarded as the basic elements of the world relevant
to the application, that can be manipulated globally throtige “knobs” provided by
the DADT definition. In doing this, the application programmer iseftte choose the
perspective (data or space) more appropriate for the fumality at hand. For instance,
she can request a global average through a olatar but modify the communication
range of nodes through a spawedT, as shown in Figure 4. The two perspectives are
coherently integrated in a single model, astihend andpl ace operations effectively
connect data and spaeeTs among themselves and to the correspondikmyr planes.
Moreover, the model is further enriched by the ability toitithe portion of the system
affected by this global manipulation through view definitiagain based on data and/or
space concerns. Before delving in this subject, howeveneee to illustrate distributed
access taDTs.

4 Distributed Accessto ADTs

After the DADT’s interface and targetDT are declared, as shown for instance in Fig-
ure 2, theDADT behavior realizing distributed, transparent access meistdfined by
specifying the body of theaDT methods. Appropriate constructs are needed to access
and manipulate the distributed state in tadT member set. For this, we introduce two
programming constructeperatorsandactions

4.1 Operators

We start by focusing on the task of implementingttes et Al | method ofbSensor
whose intended behavior is to reset all the sensors in theraysSince theADT op-
erates on a set ofDT instances, one would like to specify the desired behavior by
operating on the set in a declarative way. For instance, HilkeZormal language, with

Vo |z € Mexreset()

where M is the member set dSensor . This is expressed in omADT language as
shown in Figure 5, where the expression above is represegttte statement on line
2. In this statement, the invocation target—normally anexiee to amDT instance—is
replaced by an expression denoting the set of instances wh Wie method eset is
executed. The semantics of execution is suchttlestet gets invoked independently
and concurrently on each of th@T instances belonging to the invocation target. Fig-
ure 5 also shows the implementation of theer age method, where the results of the
various invocations are collected and used bydtheT implementation.

Selection vs. condition operators. Next we look more closely at the expression repre-
senting the invocation target in line 2 of Figure 5. The Valea ar get set , to which
everyDADT operation has implicit access, is the sepofr instances available for dis-
tributed processing. At this point of our presentation, tdrget set always coincides
with the member set, however this changes whenT views are introduced in Sec-
tion 5. The keyword n plays the role of the mathematical membership operator
Finally, the operatoal | allows one to extract a collective reference to the instainte
the target set.

Other operators also make sense. The dual opeaatpy for example, is such that
the effect of

(any in targetset).reset();

is to reset one among the sensors in the target set, chosetetenministically. Both
al | andany areselection operatorsr, selectors because they allow selection of a
subset of the instances contained in the target set.

Selectors essentially enable the programmer to specita@gively a reference to a
distributed invocation target constituted by multipleled®DT instances. Interestingly,
this is achieved transparently, i.e., the programmer doéseguire any knowledge of
the actualdentity of the instances. In addition, we providendition operatorswhich
can be used to make the code af#DT method dependent on a global condition over
the target set. The operation? tests whether one set is contained in another, while
returns the number of elements currently in it. With refeeeto Figure 5, it is possible
to rewriter eset Al | so that it resets all the sensors only if a given “master” sens
(whose identifier we assume known) is not available, anditeaver age to compute
the average only if more than 3 sensors are around:

if (!({master} in? targetset)) (all in targetset).reset();

if ((# targetset)>3) readings = (all in targetset).read();

We support also other operators, e.g., to explicitly aceesst ofaDT instances based
on their identifiers as i {al, a2, al0} in targetset).read(),andanotion
of iterator. The latter enables the programmer to accessathie instances one at a
time rather than interacting with all of them at once, whialsome cases may reduce
communication overhead. Due to space limitations we retlitee interested reader
to [10].

Other operators beyond those discussed here can be defimdples include a
variant ofany that non-deterministically selects a given number of insts (e.g.,
any(4)), or selectors relying on contextual information (e.gnesar est operator
that returns the geographically closest instance). Oueatiprototype provides a built-
in implementation for the operators described thus far, elé as the required mecha-
nisms to enable the programmer to define her own, as illestiatSection 6.

4.2 Actions

The use of operators enables concurrent access to remotinstances and thus far
we have assumed that such access occurs by invoking one ebthie operations.
However, in many cases, this is not sufficient. For instaassume theDT’s r ead
operation is capable of signaling a malfunction by retugram ERROR value. In this

1 doubl e DSensor: :average() {

2 action double reliabl eRead() {

3 doubl e reading; int tries = 3;

4 while (tries > 0) {

5 reading = |l ocal .read();

6 if (reading == ERROR) --tries;

7 el se break;

8 }

9 if (reading == ERROR) {

10 | ocal .reset();

11 reading = local .read();

12 }

13

14 doubl e[] readings=(all in targetset).reliableRead();
15 bool found = false; int i = 0;

16 while (!found & i < readings.|ength)
17 found = (readings[i++] == ERROR);

18 if (!found) {

19 doubl e sum = 0;

20 for (int i=0; i<readings.length; i++)
21 sum += readi ngs[i];

22 return suni readings. | ength;

23 } else /*+ report fault to the application **/;
24 }

Fig. 6. Accessing remotaDTs using actions.

case, it may be reasonable to circumvent transient faulis (rie to interference of the
sensor with physical phenomenons) with simple counterorease.g., retry the read
operation a number of times, after which the sensor is reskttee read repeated again.
If also this last attempt fails, the fault is reported.

To implement this behavior we could leverage off the opesapresented, by at-
tempting a distributed ead operation (e.g., using thal | operator as in line 6 of
Figure 5) and then dealing with faulty nodes. However, thig/roe inefficient. If the
al | operator is used again to retry the reads and possibly resebss, its effect is
global instead of being limited to faulty sensors. On thesotiand, if faulty sensors are
singled out by using the aforementioned ability to accepti@hy a given sensor based
on identifier, a great deal of communication is generated s retries and reset oper-
ations need be invoked from the (remab@DT instance. Both solutions are inherently
unsatisfactory because they ignore a fundamental poiatsélquence of failingead
and corrective eset operations do not require intervention of theDT instance and
instead can be controlled local to theT instance. In other words, a distinction is nec-
essary between the application logic that determines heecver from a fault (which
is entirely local to a sensor) and its distribution acrogssystem.

This separation can be achieved elegantly and efficiently thie notion ofaction
An action is an operation that is defined in theDT but whose execution occurs local
to theADT instance on which it is invoked without requiring additibcammunication.
Loosely speaking, actions enable the programmer to WAtET code that operates on
ADT instances as if they were exporting a richer interface.

Figure 6 illustrates the concept. The action declaraticcoigtained in lines 2—-13,
and is identical to the one for a standard programming lagguautine, prepended by
the keywordact i on. The only difference is the use of the keywdrdcal , which is
bound at runtime to thebdT instance on which the action is currently being evaluated.
Note howl ocal is different from the traditional hi s keyword, pointing in this case
to theDADT instance on which the operation containing the actaoref age) is being

invoked. This should not be surprising, given that althotighactiordefinitionbelongs
to the DADT and its execution is triggered through one of theDT operations, the
actionexecutionis entirely local to the sensor, as if it were just anotherrafien of
the ADT. These semantics can be visualized by considering actenmmdile code [4]
being shipped dynamically and remotely evaluated onabe instances. However,
mobile code is only one of the options available for theitritisited execution.

The action code in Figure 6 performs the local read and, ifraorés reported,
retries the read and possibly resets the sensoraVlee age DADT operation exploits
this action definition by simply invoking the action over thensors in the target set
(line 14) using the notation described in Section 4.1. Teaiader of the operation
scans the obtained readings for error codes (returned lBpeewith a persistent fault)
and either computes and returns the average as in Figuregports the error to the
application.

5 Restricting the Scope of Operations

Distributed sharing oADTs as we have defined it thus far is a powerful concept. How-
ever, the invocation of an operation ol the instances in the member set may not
always be desirable. For example, performance reasons emaerr it impractical or
application needs may suggest policies to constrain aratiparto a subset of thebT
instances.

Our reference example helps to clarify these concepts. trsoenario, different
kinds of sensors (e.g., temperature, light, humidity) meypbesent, accounted for in
Figure 1 with the attributeensor Type. As discussed so far, the sharing rules include
all instances of a giveaDpT, therefore including multiple types of sensors in the same
aver age computation, yielding a meaningless result. Instead, welavitke to select
a subset of the available sensors, namely those of a giveh ®ne could argue that
the sensor kind could (or should) be encoded as a diffeyemnt e.g., inheriting from
an abstract sensor. Unfortunately, subtyping is not pessilo other characteristics of
a sensor, such as those representing a portion its statppased to a static charac-
teristic like the sensor type. For instance, the laptop hooinig station in our example
may need to reset all the sensors currently inactive or topctenthe average over
only sensors guaranteeing a given resolution. For thess cae would like to specify
something such as

Vo | =(zis activg A © € M e z.reset()

We provide this level of flexibility and expressivenessbinDTs through the no-
tions of property and view. Aropertyis a characteristic of aADT defined in terms
of anADT’s data and operations, and evaluated local taam instance. In program-
ming terms, properties are specified as part oftheT interface as boolean oper-
ations. Figure 7 shows theSensor defined earlier augmented with properties. For
instancej sAct i ve returns true if the corresponding local attribute (see Fadl) on
the Sensor instance where the property is being evaluated is true ds Sialilarly,

i sSensor Type andi sPr eci se return true if the target sensor is of the kind spec-
ified or provides a sufficient resolution, respectively. Dedinition of these properties

1 datatype DSensor distributes Sensor with {
2 properties:

3 bool isActive();

4 bool isSensorType(int sensorType);

5 bool isPrecise(double resolution);

6 actions:

7 doubl e[] reliabl eRead();

8 operations:

9 doubl e average();

10 void resetAll();

}
12 bool DSensor::isActive() {
13 return local.isActive;

15 bool DSensor::isSensorType(int sensorType) {
16 return | ocal.sensor Type == sensor Type;

18 bool DSensor::isPrecise(double resolution) {
19 return |l ocal.resolution >= resol ution;

}
21 void DSensor::resetAll() {/x ...as in Figure 5... */}
22 doubl e DSensor::average() {/* ...as in Figure 5... */}

Fig. 7. Restricting the scope of operations over data.

relies onthe ocal keyword to access theDT instance they are currently being evalu-
ated upon, similarly to actions in Section 4.2. Indeed, éi&gons, properties are defined
on theDADT but evaluated on (remotepTs.

This simple concept enables the definition of dynamic pttajas over the member
set, calledADT views Views are defined by theaDT programmer using properties
and dedicated constructs. For instance,

dat avi ew active on DSensor as isActive();

defines the vievact i ve as the subset of the member seD8ensor that contains
only thoseSensor instances for which the evaluation of the propdrg/Acti ve
yields true. ThebADT name refers implicitly to its member set.

Properties can have parameters. For instance, the viewinorg all temperature
sensors can be defined as:

dat avi ew tenperature on DSensor as isSensor Type(TEMP);

After a view is defined, it can be used to restrict dynamictily scope of @ADT
operation. For instance,

ds.resetAll () on !active;

resets all sensors that are currently inactive. The exatgimantics is such that the
t ar get set inline 2 of Figure 5, which in Section 4.1 was bound to the mensget,
is here bound at invocation time to the identifiers of Almg instances belonging to the
view. Of course, the resulting view may be empty, i.e., ndanse satisfies the view
definition. In this case no operation is performed.

Just as we used negation in the above formula, we supportethergl ability to
compose views by connecting properties with boolean opesaéVhile the mechanics
are simple, the feature itself is powerful as it allows onesxpress views using union
and intersection. For instance,

dat avi ew preci seOn on DSensor as isPrecise(0.1) && isActive();

captures the subset of sensors that are active and provédelation greater than 10%.

spacetype Wrel essNetwork distributes WrelessSite with {
properties:
bool isReachabl e(int hops);
oper ations:
voi d nodi f yRange(doubl e percent);

Fig. 8. A spaceDADT providing distributed access to sites.

Additional features of our model enable the definitionasfymmetricviews. The
content (i.e.ADT instances) of these views, unlike those defined thus fagmigpon
attributes of the specifibADT instance on which the operation restricted by the view
is invoked. Although this feature increases the expressis® of view definition, space
limitations force us to refer the reader to [10] for furthetalls.

If no view is specified at invocation time, the operation isfpemed on the whole
member set, as discussed in Section 4.1. Indeed, the megtliafmes the most gen-
eral view containing alhDT instances bound to tieaDT. Moreover, all the constructs
we discussed in Section 4 can be used with views, as thesdtianataly sets ofaDT
instances. This holds not onigsidethe definition of an operation (as specified by the
DADT programmer), but alsoutsidethe DADT definition (as specified by the appli-
cation programmer). For instance, the following prograagfent reliably retrieves
the values sensed by all the active temperature sensorg thsiraction whose coée
appeared in Figure 6, provided that at least three of thewigiesufficient resolution:

if ((# (preciseOn & tenperature)) >= 3)
readings = (all in (active & tenperature)).reliabl eRead();

All the considerations made thus far hold both ftata and spaceviews. For ex-
ample, in our motivating scenario, the laptop requests &natijpn to be executed over
nodeswithin proximity This is accomplished in a two-step process, first definirg th
site, then the view. Figure 8 shows the definition of We el essNet wor k space
DADT. It defines a propertysReachabl e that yields true if the target site is within a
specified number of hops. A space view can represent proxbaged on this property.
This view can be used to restrain not only operations on a olatar, but also on a
SpaceDADT, e.g., to reduce by 10% the communication range of nearhig lassn:

spacevi ew proximty on Wrel essNetwork as i sReachabl e(2);
wn. nodi f yRange(-0.1) within proximty;

wherewn is an instance of thé¥ r el essNet wor k DADT. Note howpr oxi m ty is
asymmetric, as it depends on the location ofth@T instance on which it is invoked.

One of the most powerful uses of views arises in the comlunatf data and space
views, as in:

doubl e v = ds. average() on tenperature within proximty;
wn. nodi f yRange(-0.1) on tenperature within proximty;

which combine the enper at ur e data view with thepr oxi m t y space view to re-
turn either the proximal average temperature with an ofmeratver data, or reduce the
communication range of proximal temperature sensors witberation over space.

5 In Figure 7 the action is declared in the interfaceDSensor , contrary to Figure 6, and is
therefore visible to and can be reused by any ofttheT operations and by the client objects
calling them. The action code is encapsulated indtheT, thus providing information hiding.

* ds.average() on temperature within proximity
temperature \

: DSensor
i (member set)

temperature !
&& :
proximity
(target set) !

data

space

WirelessNetwork
(member set)

proximity
Fig.9. DADT views.

The content of ar get set inside the body of the invoked (data or spacepT op-
eration is computed as the overlap of the subsets definedebiwit views. Figure 9
illustrates the concept w.r.t. the first of the two statersetove. Different from Fig-
ure 4, data and spacedT instances are not shown—only their “projection” on the
member sets and the place relation between glata (circles) and sites (squares).

As mentioned in Section 3, owADT model provides a unified representation of
data and space, where they are simply two different perspsctor accessing and
manipulating the applicatioabTs. The notion ofbADT provides the mechanism for
defining the application behavior manipulating the distiélnl state, as well as the prop-
erties that can be used to define viewsDT instances are instead the dynamic entities
through which distributed access is effected, and whosgessisarestricted dynamically
by means of views. The programmer is free to decide what ibdlse “vantage point”
(data or space) for accessing the distributed system. Imaaiel, data and space be-
come easily interchanged during the programming praatiith,our model coherently
maintaining their semantic interaction.

6 Prototype I mplementation

To verify the feasibility of theboADT model we developed a proof-of-concept prototype,
providing theDADT constructs described thus far in the context of the Javaulkzgg
The prototype, currently nickname@DADT, is divided into two parts: a translator
and a run-time. Thaanslatortakes care of translating a Java program augmented with
statements from oupADT language into a conventional Java program, through a pre-
compilation step. The code generated by the translatoeimehts th@ADT constructs
by using the classes defined in then-timelibrary. Once the translation is generated,
the resulting code can be directly executed on any JavaaVimiachine where the run-
time packages are deployed.

The translator for the source-to-source transformatioimiglemented using the
ANTLR [1] parser generator. The source grammar is a modifinadf the Java 1.5

’ Sensor }é‘ DSensor

<<distributes>> <? <? <<distributes>> [

I I I
N | |

Property . "
<<abstract>> View Site

DADTMgr Operator
<<abstract>> <<abstract>>

’ Network Host ‘

IPMcastAny

[
.

Fig. 10. The architecture of thgZ DADT run-time.

’ IPMcastDADTMgr

’ IPMcastAll

grammar by Studman [12] with extensions f@xDT constructs. When launched, the
ANTLR generator builds the Abstract Syntax Tree (AST) witltstom nodes foDADT
constructs which are next modified tige walkerdo reconstruct a plain Java AST. This
AST is emitted with a standard ANTLR Java emitter into codg tontains invocations
to the run-time as detailed next.

The run-time architecture is composed of several companér main classes of
which are outlined in Figure 10. The top layer is composedopliaation classes, like
those we used in our example. While the definition of debas andDADTS is en-
tirely up to the programmer, our implementation provideittfi notions ofHost and
Net wor k. The layer below constitutes the API of akDT run-time used by the trans-
lator, to map the®ADT constructs into the appropriate run-time objects and iations.
The clasDADTMyr provides the methods handling the bindingrofTs to DADTS, to
specify theSi t e instance abstracting theod€ where the run-time executes, as well
as other auxiliary methods managing configuration aspddiseorun-time. There is
only oneDADTMyr instance per node. TH& ndi ngRegi st r y object associated to
the DADTMgr contains information about which nodesT is bound to whiclDADT,
provides methods to determine the logalt instances that satisfy a given view speci-
fication, and contains information about the available afmes.

The abstract classé operty andAct i on represent the corresponding con-
cepts. Both representaDT methods whose execution takes place on a (remaie)

To understand the translation strategy, let us focus onstiRe eci se property shown
in Figure 7. The translator generates the correspondiisg.cla

class isPrecise_Property extends Property {
doubl e resol ution;
isPrecise_Property(double resolution) { this.resolution = resolution; }
bool ean eval uat e(Obj ect 0) {
Sensor |ocal = (Sensor) o;
return | ocal.resolution >= resol ution;
}
}

5 The termnodehere refers to the computational environment where thdime-executes—a
JVM in our implementation. This is not be confused witsite, which is a node’s abstract
representation as a spaceT.

where the property parameter is now a class attribute, amgrbperty body is con-
tained in theeval uat e method. The latter accepts as a parameter an instance of the
ADT (Sensor in our case) distributed by theaDpT. This can be safely substituted
for the keywordl ocal used in Figure 7. A similar strategy is used for translating
actions.Pr operty andAct i on objects are created upon action invocation or view
definition, serialized, and transmitted on the node of thgeiaaDT instance. There,
their eval uat e method is executed by using tM®T instance as a parameter, to
enable invocation of its operations. Note that here we asdinat theDADT class is
pre-deployed on the interested nodes. A more dynamic anad degign is easily ob-
tained with a “code on demand” paradigm [4], enabling cladsaation only if and
when needed.

A view (on data, space, or both) is represented by aw object containing the set
of Pr oper t y objects involved in the view definition, properly arrangedn abstract
tree representing the view predicate. To determine whethggvenADT instance be-
longs to the view, the abstract tree is navigated from theekeéthe property objects)
to the top (the view object), by invoking tleral uat e method of each property and
composing it with others according to the boolean operataaich abstract tree node.
The process terminates at the root with the boolean restiieoévaluation. Composi-
tion of views is easily achieved by composing their predisat.e., their abstract trees.
Finally, a view object'sappl y method allows execution of an action on theT in-
stances selected by an operator.

Operators, both built-in and programmer-defined, are ssisels ofOper at or .
The corresponding implementation is retrieved at run-tfroen DADTMyr , using a
Factory pattern. The operator behavior is specified by @iag only two methods.
eval Renot e(Vi ew v) is invoked on the caller node (e.g., whats. aver age
is called), and embeds the logic for distributing the infatibn necessary to the col-
lective evaluation of the operator on the view, and the ee#li of the results. Instead,
eval Local (I nvocati onDat a d) is performed on all the other nodes involved
in the computation (i.e., those hosting the target instances), and contains the logic
for evaluating the operator local to a single node and sentia results back to the
caller. The parameter contains the information represgin invocation, i.e., the view
specification, the operator to be applied, the action to kewed, and the caller’s iden-
tifier. Both methods above return results packed in a sirReleul t Dat a class. In
essence(per at or subclasses embed all the distribution logic connectingctiler
node and the\DT instances. In our prototype, the implementation ofdéhé opera-
tor leverages off UDP unicast and multicast sockets, as shiowhe bottom layer of
Figure 10 containing the classes specializing our framkwdulticast is exploited for
dispatching invocations to thedT instances bound to a givesnbdT, while UDP is
used for returning results. More details in [10].

To clarify how the various components cooperate, consitgerfdllowing sample
DADT program statements

dat avi ew preci seOn on DSensor

as isPrecise(0.1) && isActive();
spacevi ew proximity on Network as isReachabl e(2);
ds. average() on preciseOn within proximty;

using the fault-tolerant definition @fver age from Figure 6. The translator generates
the Pr oper t y subclasses based on the definition of the two views, crelagesotrre-
sponding objects, and inserts them in the abstract tréeradtrectly or by invoking the
methods&nd, or) for logically composing properties:

Vi ew preci seOn = new Vi ew(new i sPreci se_Property(0.1)

.and(new i sActive_Property()));
View proximty = new Vi ew(new i sReachabl e_Property(2));

Moreover, it transforms the signatureafer age into

doubl e average(Vi ew targetset)

In our case the target set is the conjunctiorppgci seOn andpr oxi i ty, and is
passed upon method invocation:

ds. aver age(new Vi ew(preci seOn).and(proximty));

Note how a newVi ew instance is generated on the fly to represent the clause
on...w thin... oftheinvocation by merging the data view and the space \iew.
our implementation, both are representedvbyew objects, which are then composed
like properties. Different constructors are provided teate a view out of its proper-
ties or based on already existing views. Moreover, the aémsgenerates afct i on
subclass representing the actioal i abl eRead in the figure, as we described ear-
lier. Line 14 of Figure 6, containing the action invocationcionjunction with thel |
operator, becomes

doubl e[] readings = (double[]) view apply("all", new reliabl eRead_Action());

The body ofappl y retrieves from the nodeBADTMyr the proper implementa-
tion of the operator based on the name passed as a parametstads its distributed
execution on the bounsbTs, as shown in the following excerpt
Obj ect apply(String nane, Action a) { ...

Operator op = DADTMyr. get Oper at or (nane) ;

Resul tData d = op. eval Renot e(
new | nvocationDat a(this, nane, a, cal ler));

wheret hi s is theVi ewinstance requesting the invocation aral | er is the identi-
fier of the corresponding node.

The design just described is conceived &mmeworkin the object-oriented sense,
and can be customized (e.g., to use different communicatiotocols) by redefining
only two classes, i.eQper at or and DADTMgr . Moreover, although7DADT is a
proof-of-concept prototype, its realization is still nonal. It is fully decentralized
and, although thus far we have tested it only in a fixed enwiremt, its reliance only
on the most basic network facilities leaves open the oppdstfior a seamless migra-
tion to more dynamic ones, using the appropriate networkimgprotocols (e.g., for
MANET). Nevertheless, it can clearly be improved in manyeeds. Most notably, we
are currently studying distributed algorithms for effidlgrmanaging the distributed
dissemination of actions and results, and for maintainiews. In doing this, we are
supported by our previous work on data sharing middlewanafibile computing (e.g.,
LimE [8] and EgoSpaces [7]), for whiabaDTs actually provide a generalization.

7 Redated Work

The closest works come from the context of parallel syst&haredapTs (SADTS) [5]
focuses on providing implementations of several standatd types, whose imple-
mentation is designed to scale well in the parallel envirentnConcurrent Aggregates
(CAs) [3] provides language-level support for defining bitb ADT interface and the
implementation of its distributed components. Each comepois defined in terms of
message processing and is explicitly enabled to send messadellow components,
creating aggregate behavior. In comparison to these sgsteoh only doDADTS tar-
get the more general distributed setting, but they alsoigeoa unique and uniform
treatment of data and space, as well as the increased figxdmming from the view
concept. In the other systems, not only is the view the saralt tahes, but the compo-
nents contributing to it cannot change during execution.

Recently, the Spatial Programming model [2] has been pexpfis embedded sys-
tems. It makes an analogy between space and memory and exgpase to applications
through spatial references, which enable the definitioegioms including components
interested in a given computation. Similar ideas have atsmlapplied to mobile ad
hoc networks in the SpatialViews language [9], wheireual networkscan be defined
depending on the physical location of a node and the sery@gqmessed as Java in-
terfaces) it provides. Common to our work is the notion ofpsrg virtual networks
provide. HoweverpADTs provide a clean separation between data and space and the
notion of data views, not supported by the aforementiongagzhes, allows us to
limit execution not only based on spatial constraints, Ibed an application ones, with
the two nicely integrated in our model. Finally, unlike oypaoach, computation is
distributed across nodes in a virtual network by migratirapite agents from node to
node, and this is an integral part of the model. Instead, imoadel we provide simul-
taneous access to multiple instances through a sivwgba reference, and mobile code
is only one of the implementation options.

Some aspects of our work may look reminiscent of distribuibpbct platforms
(e.g., CORBA or Emerald [6]). However, these platforms @hyremote method invo-
cation as a means to access explicitly identified, singledaitinstances. Instead, in our
DADT model the identity of remote objects remains hidden (unésgdicitly needed),
enabling transparent access. Moreover, collective acmss's through a singleADT
interface, while the same aggregation would require exteqsogramming effort in a
distributed object system. Finally, distributed objediteyns hide the object location in
references, whil®ADTS foster a clean separation between data and space, hiding lo
cation when dealing with data, but enabling its (direct dliriect) access when dealing
with space.

Finally, the idea of sets as a programming abstraction wassgired in the early 70’s
(e.g., [11]). However, the aim and results of these appresehne profoundly different
from ours. Indeed, their goal was to use sets as the fundain@mstraction forll
programming tasks. Instead, here we use a (much less pdysafabstraction only to
deal with distribution, and rely on standard imperativeggasnming constructs for the
dealing with the other concerns.

8 Conclusion

Developing distributed applications is a complex task.eesdly when the physical
space must be taken into account, as in the case of contexeaamputing. In this pa-
per, we proposedADTS as a novel distributed programming model enabling callect
access to data and space entities by means of operations wistrsbuted behavior is
encapsulated in theADT using dedicated constructs, and whose invocation scope can
be dynamically defined based on application and contextdairnation. We conjec-
ture that the unified treatment of data and space conceriteittee model, together
with our choice to embed these features in a well-known ardkhkyiused program-
ming technique, is likely to improve programming practigesnodern distributed and
context-aware computing.

Acknowledgments. The authors wish to thank Domenico Bianculli for his work ba t
implementation of the translator. The work described i faper was partially sup-
ported by the European Union under the project IST-004386HRS and by the Italian
Ministry of Education, University, and Research (MIUR) endhe VICOM project.
Roman was supported in part by the US Office of Naval ReseardertONR MURI
research contract NO0014-02-1-0715. Any opinions, finsliagd conclusions or rec-
ommendations expressed in this paper are those of the awthdrdo not necessarily
reflect the views of the sponsoring agencies.

References

1. ANTLR Web pagewww. ant |l r. org.

2. C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and todé. Spatial programming
using smart messages: Design and implementatiof®rdn. of the 24" Int. Conf. on Dis-
tributed Computing Systems (ICDC8)arch 2004.

3. A.A. Chien and W.J. Dally. Concurrent Aggregates (CA)Pinc. of the Symp. on Principles
& practice of parallel programmingpages 187-196, 1990.

4. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Gaalgility. IEEE Trans. on Soft.
Eng, 24(5), 1998.

5. D.M. Goodeve et al. Toward a model for shared data abgiraetith performance.J. of
Parallel and Distributed Computing!9(1):156-167, 1998.

6. E.Jul, H. Levy, N. Hutchinson, and A. Black. Fine-graifdbility in the Emerald System.
ACM Trans. on Computer Systers$2):109-133, February 1988.

7. C.Julien and G.-C. Roman. Active Coordination in Ad Hoaweks. InProc. of COOR-
DINATION, 2004.

8. G.P. Picco, A.L. Murphy, and G.-C. RomanIME: Linda Meets Mobility. InProc. of the
Int. Conf. on Software Engineeringages 368-377, May 1999.

9. Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming atmetworks of mobile and
resource-constrained devices. Rroc. of the ACM SIGPLAN Conf. on Programming lan-
guage design and implementation (PLJDO5.

10. G.P. Picco, M. Migliavacca, A.L. Murphy, and G.-C. Romabistributed Abstract Data
Types. Technical report, Politecnico di Milano, 2004. Ashle atwww. el et . pol i m .
it/ upl oad/ ~pi cco.

11. J.T. Schwartz et aProgramming with sets; an introduction to SET&pringer, 1986.

12. M. Studman et al. Java 1.5 Grammanw. ant | r. or g/ gr anmar/ 1109874324096/
javal. 5. zi p.

