Modeling and Analyzing Information Integrity
in Safety Critical Systems

Mohamad Gharib and Paolo Giorgini

University of Trento, Italy

Abstract. In safety critical systems one important aspect of informa-
tion quality is ensuring information integrity. Typically, information in-
tegrity is a problem handled at technical level through solutions such as
checksumming, integrity constraints, and integrity correction techniques.
However, information integrity cannot be considered only as a technical
problem, but it has to be analyzed and studied in the social-technical con-
text of the system. Business processes and relations among all involved
actors may also affect correctness and consistency of the information.
In this paper, we propose an extended version of 7*/Tropos modeling
language to capture and analyze information integrity requirements. We
illustrate the Datalog formalization of the proposed concepts and analysis
techniques to support the analyst in the verification of integrity related
properties. A case study concerning Air Traffic Management (ATM) is
used throughout the paper.

Keywords

Information Integrity, Security, Modeling, Analysing

1 Introduction

The usage of low quality information may cause severe consequences in organi-
zations and result in a loss of millions of dollars [18]. Business processes can
be compromised during their execution and tactical and strategic decisions can
be taken on the base of incorrect informations [19]. Integrity is surely one im-
portant aspect of Information Quality (IQ) and becomes an essential feature of
any safety critical system, where incorrect or conflictual information may pro-
duce disaster and loss of humans lives (e.g., Air Traffic Control Management
Systems).

Information integrity is traditionally considered in the way information are
stored and transmitted and several techniques and solutions have been pro-
posed in the literature such as, integrity violations avoidance (e.g. Readonly
Storage [17]), integrity violations detection (e.g. Checksum [10]), integrity cor-
rection techniques (e.g. RAID [16]), and integrity constraints [14]. However, these
solutions mainly focus on technical aspects of information integrity and do not
solve problems that may rise at business and organizational level.

Consider for example an Air Traffic Controller, that has to provide the takeoff
clearance to the Airlines captain. If the takeoff clearance is provided electron-
ically its integrity can be preserved by a technical solution, such as checksum,
which is a fixed-size datum computed from a block of digital data. The integrity
of the data can be checked at any time by computing the checksum and compar-
ing it with the stored one. If they match, the data is not altered. However, this is
not always the case and very often, even in safety critical systems, incorrectness
or inconsistency of information can be due to unsafe and “too flexible” proce-
dures that pilots and controllers can adopt during their interaction. An example
is the Charkhi Dadri mid-air collision, where, as described in the investigating
commission report [11], the Kazakhstani pilot did not understood correctly the
information transmitted by the controller and there were no procedures imposing
the pilot to readback the received information.

Information integrity is always a socio-technical problem, where socio and
organizational aspects have to be considered along technical solutions. So for
example, in the Chicago-O’Hare runway collision [20], the ATC failed to notify
the pilot that one of the runways was being used by another airplane and there
was no technical support to monitor and alarm the pilot about the problem.
This means that the design of a critical system has always to go through a socio-
technical analysis, where needs about information integrity have to be identified
and studied with respect to all involved social and technical actors, their local
and global objectives and their mutual interactions.

Requirement engineering community suggests concepts and languages for
capturing and analyzing the high-level security aspects of the system-to-be, but
they did not appropriately support the modeling and analysis of information
integrity (e.g. [22,12,3,13]). In this paper, we propose an extended version of
i*/Tropos [23,7] modeling language to capture and analyze information integrity
requirements starting from a socio-technical perspective. We formalize the lan-
guage in Datalog and we will propose formal analysis techniques to support the
analyst in the verification of properties about information integrity over socio-
technical models.

The paper is organized as follows. Section (§2) describes the ATM case study
used throughout the paper. Section (§3) discusses about modeling information
integrity, while Section (§4) presents the Datalog formalization of the extended
version of the i*/Tropos language. Section (§5) shows how the formalization is
used to check information integrity related properties and, finally, we occlude
the paper with related work and final consideration in Section (§6).

2 Case Study

Our case study concerns System Wide Information Management (SWIM), which
is an advanced technology program designed to facilitate greater information
sharing between Air Traffic Management (ATM) systems. SWIM enables infor-
mation sharing between ATM services across the whole European ATM system
segments (Civil and Military, Ground-Ground and Air-Ground) [21]. Informa-

tion handled by SWIM, includes but not limited to, AOC Data (flight plans),
Capacity Data, Separation data, and Meteo Data. These information are pro-
duced, shared and consumed by different actors of the system. For instance,
any airlines (AOC) wants to fly in Europe has to produce and send its flight
plan to EUROCONTROL where it is checked and send out to all Air Traffic
Control Units (ATCU) that is affected by the flight. Furthermore, each airport
and ATCU produce and published maximum capacity, and CFMU uses this
information to manage the air traffic flow.

Furthermore, Air Traffic Control (ATC) is a service provided by ground-
based controllers (ATCs) working at different ATCU, with the main purpose
of preventing aircraft collisions by providing airline captain with the required
separation information. For instance, the ground controllers provide separation
information at maneuvering area, while the local controllers provide separation
information during take-off and landing. Moreover, departure and approach con-
trollers provide separation information during the departure and approach phase
respectively. Finally, en-route controllers provide separation information within
its sector.

In such systems, information (e.g. AOC data, Separation data, and Capacity
data) might be used by several actors, and the system should be able to main-
tain their integrity between all those actors at any time. One way to enhance the
integrity of information is by controlling the delegation of modification permis-
sion, which can prevent unauthorized actors from modifying it. However, this
does not ensure that the authorized actors will not misuse their permissions,
which may be a main reason of compromising the integrity of information in the
system. Thus, permissions should be delegated based on some criteria that can
be captured by the social aspects of the system (trust), i.e., there should be a
trust relation along with any permission delegation to ensure that such perme-
ssions will not be misused. Figure 1 shows the main actors of the ATM system
along with their goals and information.

3 Modeling Information Integrity

Our modeling language revises and extends the i* modeling language [23] with
new primitives for capturing information integrity requirements of the system-to-
be. It provides primitives for modeling actors, their specializations, their goals,
their relations with information, the notion of delegation and trust among them.
In the following section, we discuss information and information integrity dimen-
sions to get better understanding of what information integrity requirements are,
and when they are needed.

3.1 Information and Information Integrity

Information ! can be produced in many different ways. Following Buckland[8],four
sources of information are identified: (1) information can be generated internally;

! In this paper data and information are used as synonyms

. / \ /Manage

ATC alrcraft
info

K // \separatio

/ \ AOC Data
G @
AC Da: —] (Eurocontrol]

/% o B i vl S o
Airline ‘ (flight plan) ——
ata

N/ - 9
;e " <N§\

Capacity AOC Data

'%A Data (flight plan)
[0

® /Register™ Metxh 1
service |<a}-| Data |
Q \provider/ rovider > k\/
< : Register apacm\
- @ pata) | cFMU
@sum i \%owder &/

Goal Delegation Info provision

Fig. 1. The main actors, goals and information in the ATM system

(2) it can be acquired from objects (e.g., an ATCs is able to acquire information
about the airplane position by visual observation); (3) it can be acquired from
documents; and (4) it can be acquired by communication. We define information
producer as following;:

Definition 1 (Information Producer). AOC is responsible for dispatching
AOC data (flight plan). Thus, AOC is the producer of the AOC data.

Ezample 1. AOC is responsible for dispatching AOC data (i.e. prepare flight
plans). Thus, AOC is the producer of the AOC data.

Usually, information is produced for a certain reason, i.e., to be consumed
for a certain purpose. We call the actor(s) who consume(s) information as infor-
mation consumer(s), which can be defined as following:

Definition 2 (Information Consumer). Information Consumer is the actor
who consumes information, i.e., information is within its objective, and it is
considered as the final destination of information.

Ezxample 2. The Airplane captain and EUROCONTROL both are AOC data
(flight plan) consumers, since AOC data is within their objectives.

3.2 Information Integrity Dimensions

Information integrity is defined as the representational faithfulness of informa-
tion to the true state of the object that the information represents [5]. Several
studies have demonstrated that information integrity is a multi-dimensional con-
cept [2,6,5] that can be characterized using multiple attributes, or dimensions.
For instance, Bovee et al. [6] defined four attributes to evaluate information in-
tegrity: accuracy, completeness, consistency and existence. In the work of Boritz

[5], information integrity can be evaluated based on four attributes: complete-
ness, currency /timeliness, accuracy/correctness and validity /authorization.

Following [6] the three core integrity dimensions are defined as follows: (1)
Information accuracy: means that information should be true or error free
with respect to some known, designated or measured value. (2) Information
completeness: refers to having all required parts of an entity’s information
presented, and (3) Information consistency: requires that multiple recordings
of the value(s) for an entity’s attribute(s) be the same across time or space. For
example, let’s consider a flight plan that usually should include: 1- Type, 2-
Aircraft Identification, 3- Aircraft Type, 4- Departure Point, etc. We say that
the flight plan is accurate, if all information items included in it are accurate.
We say it is complete, if it contains all information items composing it. Finally,
we say it is consistent if all information items composing it are consistent.

It is well known that not all the goals have the same criticality to the or-
ganization performance, and preserving information integrity is not free. Thus,
information integrity requirements will be determined based on the criticality of
the consuming goal. In the next section, we introduce two concepts to determine
when information integrity requirements is needed, namely, critical goal, and
critical information (its integrity has been preserved).

3.3 Critical Information and Critical Goal

Within the organizational context, the failure of some goals may lead to serious
problems for the organization, while the failure of other goals can be handled.
Thus, not all goals have the same criticality to the organization. In this paper,
we call these goals critical goals and they are defined as following:

Definition 3 (Critical Goal). A critical goal is any goal that its failure may
lead to major problems to the organization, and they can be used to represent the
stakeholders critical objectives.

Moreover, if the critical goal is decomposed into sub-goals (And/ Or decom-
position) the criticality is propagated to its sub-goals, i.e., all its sub-goals are
critical as well. Furthermore, compromised information might be a main reason
of critical goals failure if they consume it. Thus, in ordered to guarantee that
a critical goal will be satisfied properly, we should guarantee that the integrity
of information consumed by it is preserved. To this end, we call information
consumed by critical goals critical information and it is defined as follows:

Definition 4 (Critical Information). Critical information is any informa-
tion that its integrity should be preserved at any given time.

Ezxample 3. Airline captain has to satisfy the critical goal “manage gate-to-gate
safe flight”, which is decomposed into 8 sub-goals (And-decomposition), each
one of these goals is a critical goal (the criticality is propagated from the parent
goal), and consumes critical information.

Load
control
manager

Meteo
Data
provider

En route
Controller

Eurocontr
ol

Ground
Controller

Local
Controller

Approach
Controller

/ Departure
\ Controller

Take off Landing Taxi Vectoring Enroute Vectoring

AOC Data clearance || clearance || . . Instructions || Separation || Instructions
instructions

(flight plan) (departure) (approach)

AOC Data

/’ \‘\// (flight plan) CAaIrItlz?; Manag
| AOC | P | gate-to-gate |

safe fligh77

Taxingito

” flne

(anage cqu;re fllght route ‘
Managel©]| Airplane | | [the takeoff airplane

gate-to-gate K runway
safe fligh - 2

anding '"fo gj /
P Z
(H 2 2 AOC Data
z g)
Manage 3 z . Vectwormg Landing Meteo (flight plan)
cargo Taxi Take off || Vectoring n route ! !
Instructi Separation Instructions || ¢jearance info
I — instructions || clearance || 'Nstructions (annroach)

(departure) || Instructlons —

Goal) C O
= LT, 2

Produce Needs ~ AND dec OR dec Goal & Trust deleganon Integrity provision Permission & Trust delegation

Fig. 2. A partial goal model concerning the ATM scenario

Information might lose its integrity during the provision process, thus, beside
the normal provision that just consider information exchange between two actors,
we define integrity provision that can preserve the integrity of the provided
information, which will be used for the critical information provision and it can
be defined as following;:

Definition 5 (Integrity provision (I-Provision)). Integrity provision de-
scribes information provision between two parties in which the integrity of the
provided information is preserved.

Ezxzample 4. The ground controller has to provide “taxi instructions” to the air-
line captain by integrity provision, since it is a critical information and its in-
tegrity has to be preserved during the provision.

Trust is a very important factor in almost every organization, since it may
increase efficiency and save costs only if it is used efficiently (e.g. facilitate coor-
dinated actions) [4]. Usually, trust is defined as a ternary relation between two
parties (trustor, trustee) for the object of this trust (trustum). Trust is still a
new research thread within the requirement engineering (RE) area. Several RE
researchers suggested concepts for capturing trust relationships (e.g. [15]), but
no previous work according to our knowledge, has studied the role of trust in
enhancing information integrity. In this paper, we discuss the effect of trust over
goal and permission delegation, since it represents the mental counter-part of
delegation [9]. Therefore, trust plays an important role in deciding to delegate
or not.

Table 1. General predicate

needs(needer : n',info: i) wants(actor : a, goal : g)

produce(goal : g,info : i) modify(goal : g,info: i)

has(actor : a,info : i) producer(actor : a,info: i)

consumer (actor : a,info: 1) provide(actor : a,actor : b,info : 1)

proChain(actor : a,actor : b,info : i) ip_provide(actor : a,actor : b,info : 1)

ip_prvChain(actor : a, actor : b,info : i) can_prv(actor : a,info: i)

can_sat(actor : a, goal : g) is_responsible(actor : a, goal : g)

‘critical,goa,l(goal 1 g) ‘critical,info(info 1) ‘
|critical_consumer(actor : a,info : i) ‘ |
‘and,dec(goal 1 g,goal : g1, goal : g2) ‘ondec(goal : g,goal : g1, goal : g2) ‘
‘delegate(actor : a,actor : b, goal : g) ‘delChuin(actar : a,actor : b, goal : g) ‘
have_perm(type : t,actor : a,infoi) grant_perm(type : t,actor : a, actor : b,infoi)
have,grant,perm(type 1 t,actor : a, z'nfoi) grant,g'rant,perm(type 1 t,actor : a,actor : b,infoi)
need_to_have_perm(type : t, actor : a,infoi)

trust(actor : a,actor : b, goal : g) trustChian(actor : a,actor : b, goal : g)

trust_perm(type : t,actor : a,actor : b,info : i) trust_permChian(type : t, actor : a,actor : b,info : i)
trust_grant_perm(type : t,actor : a,actor : b,info : i)|trust_grant_permChain(type : t, actor : a,actor : b,info : i)
satis fied(actor : a, goal : g) consumed(actor : a,info : i)

critical_consumed(actor : a,info : i) integrity_preserved(actor : a,info : i)

integrity_compromised(actor : a,info: i)

‘ Tneeder : n € {actor : a, goal : g}

Example 5. Airplane delegates “Manage gate-to-gate safe flight” to the Airplane
captain, in this case, it is mandatory to have a trust relation along with the goal
delegation to be sure that the goal well be satisfied. Furthermore, AOC dele-
gates modification permission over “AOC data” to EUROCONTROL, similarly,
a trust relation has to exist to guarantee that the permissions will not be mis-
used.

Figure 2 shows a partial goal model concerning the ATM scenario, in which
the AOC provide “AOC data” to both EUROCONTROL and the Airline cap-
tain, and delegates modification permission over it along with a trust relation
concerning this delegation to FUROCONTROL. Furthermore, Airplane has 2
goals, it delegates them along with trust relation to Load control manager, and
Airline captain. “Manage gate-to-gate safe flight” is a critical goal and it is
decomposed into 8 sub-goals each one of them is critical goal as well, and con-
sumes critical information that has to be provided through integrity provision
(e.g. AOC data).

4 Formalizing Information Integrity

We use Datalog [1] as the underlying semantic framework. Table 1 introduces
the model general predicates, for example predicates prvChain(a, b, i) and
ip_prvChain(a, b, i) hold if there is a valid provision chain / integrity provi-
sion chain between actor a and actor b concerning information i.

Table 2 list the general axioms of a model. O1-6 deals with actor’s objectives;
for example, O1 express how a goal needs became an actors need. O2-5 are
used to derive and assign new objectives (sub-goals) to the actor responsible

Table 2.

General axioms

O1 needs(A,I) « is_responsible(A, G) A needs(G,T)
03 wants(A, G2) <+ and_dec(G, Gy, G2) A wants(A, G)
05 wants(A, G2) < or_dec(G, Gy, G2) ANwants(A,G)

02 wants(A, G1) + and-dec(G, G1,G2) Awants(A, G)
04 wants(A, Gy1) < or_dec(G,G1,G2) Awants(A, G)
06 wants(A, G) « delChain(B, A, G)

C1 producer(A,I) < can_sat(A, G) A produce(G,T)
C3 has(A,I) « producer(A,I)

C5 has(A, I) < ip_provide(B, A, I) A can_prv(B,I)
CT7 can_prv(A,I) < prvChain(A, B,I) A has(B,I)

C9 proChain(A, B, I) < provide(A, B, I)

C11 ip_prvChain(A, B, I) « ip_provide(A, B, I)

C13 is_responsible(A, G) < wants(A, G) A can_sat(A, G)
C15 can_sat(A, G) < needs(G,I) A has(A,I)

C17 can_sat(A, G) « or_dec(G,G1,G2) A can_sat(A, Gy)

C2 consumer (A, I) < needs(A,T)

C4 has(A,I) < provide(B, A, I) A can_prv(B,I)

C6 can_prv(A,I) < has(A,I)

C8 can_prv(A,I) < ip_prvChain(A, B,I) A has(B,I)
proChain(A, C, I)
AprvChain(C, B, I)
ip_prvChain(A, C, I)
Aip_prvChain(C, B, T)
C14 can_sat(A, G) + delChain(A, B,G) A can_sat(B, G)
and_dec(G, G1,G2) A
can_sat(A,G1) A can_sat(A, G2)
C18 can_sat(A,G) <+ or_dec(G,G1,G2) A can_sat(A, G2)

C10 prvChain(A, B, I) <+ {

C12 ip_prvChain(A, B,I) « {

)
C16 can_sat(A,G) +
)

D1 delChain(A, B, G) < delegate(A, B, G)

delChain(A, C,G)

D2 delChain(A, B, G) <)
AdelChain(C, B,G)

and_decom(G, G1, G2)

A critical_goal(G)

or_decom(G, Gy, G2)

A critical _goal (G)
need(G,I) A

CG1 critical_goal(Gy) +

CG3 critical goal(G1) +

and_decom(G, G1, G2)
Acritical_goal(G)
or_decom(G, G1,Gz)

A critical_goal (G)
is_responsible(A, G)A

CG2 critical_goal(G2) <

CG4 critical_goal(G2) +

CG5 critical_info(I) + { CG6 critical cunsumer(A,I) « {

critical_goal(G) critical goal(G) A need(G, I)

of satisfying the parent goal. O6 is used to show a goal delegation between
two actors. Furthermore, C1-18 deals with actor’s capabilities; for example, C3-
5 represent the actor capability of having information, and C6-8 are used for
actors’ capabilities related to information provision; while C14-18 can be used
to express the actors’ capabilities concerning goals satisfying. Finally, CG1-4
show the criticality propagation from a goal to its sub-goals, and CG5 and CG6
are used to capture critical information and critical consumer respectively.

Example 6. Airplane delegates “Manage gate-to-gate safe flight” goal to the Air-
line captain (D1, D2), and it became an objective of the Airline captain (O6),
along with each of its sub-goals (02, O3). Furthermore, Airline captain is re-
sponsible of manage takeoff (C 13), and he needs “takeoff clearance” (O1). Thus,
Airline captain depends on local controller to provide it since the local controller
is the producer (C1), and he is able to provide it (C3). Finally, “Manage takeoff”
is a critical goal, since it is a sub-goal of a critical goal (CG1, CG2), and “takeoff
clearance” is critical information (CG5).

In table 3, P1 show how an actor can have permission T over information I,
P2 and P3 show how an actor can have the grant permission, and P4 describes
who need to have modification permission. Axioms T1 and T2 describe a trust
chain between two actors concerning a goal satisfying, and T3 and T4 describe
a trust chain between for a granted permission. T5 and T6 describe a valid trust
chain between two actors concerning a grant permission type T over info I.

Example 7. AOC have grant permission over “AOC data” since it is the pro-
ducer (P2, P3), and he can delegate this permission (P1) to EUROCONTROL
since it needs such permission (P4). To ensure that EUROCONTROL will not

Table 3. Permission and Trust axioms

grant_perm(T, A, B, I)

A have_grant_perm(T, A, I)

P2 have_grant_perm(T, A, I) < producer(A,I)

grant_grant_perm(T, B, A, I)

A have_grant_perm(T, B, I)

P4 need_to_have_perm(m, A, I) < is_responsible(A, G) A modify(G,I)

T1 trustChain(A, B, G) + trust(A, B, G)

T2 trustChain(A, B, G) < trustChain(A, C, G) A trustChain(C, B, G)

T3 trust_permChain(T, A, B, I) + trust_perm(T, A, B, I)
trust_permChain(T, A, C, I)
Atrust_permChain(T, C, B, I)

T5 trust_chain_grant_perm(T, A, B, I) <+ trust_grant_perm(T, A, B, I)
trust_grant_permChain(T, A, C,I)
Atrust_grant_permChain(T,C, B, I)

P1 have_perm(T, A, I) < {

P3 have_grant_perm(T, A, I) «

T4 trust_permChain(T, A, B,I) +

T6 trust_grant_permChain(T, A, B,I) +

misuse this permission a trust relation coercing this delegation exist (T3, T4).
Moreover, a trust chain exist between Airplane and Load control manager con-
cerning the goal “Manage cargo” (T1, T2).

In table 4 A1-5 list situations where an actor believes his goal will be satis-
fied, and A6-7 list situations where information consumer believes information
it required will be provided. A8 shows when an actor believes that the integrity
of critical information it consumes is preserved, and A9-11 list situations in
which information consumer is not sure that the integrity of information he will
consume is preserved.

Example 8. Airplane captain believes “define flight route” will be satisfied since
he is responsible of it and he has the capability to satisfy it (A1), and Airplane
believes “define flight route” will be satisfied since it is delegated to Airplane
captain (has capability) and there is a trust relation concerning this delegation
(A2). Airplane captain believes that “Manage gate-to-gate safe flight” will be
satisfied because he is able to satisfy all its sub-goals (A3). Airplane captain
believes that “AOC data integrity has been preserved (AS8), since it was pro-
vided by integrity provision chain (A9), and no permission chain concerning this
information is delegated without a trust relation chain to any actor (A10-11).

5 Analyzing Information integrity

We use the DLV system 2 to analyze information integrity requirements, we
define a set of properties that will be used to verify the correctness of the model.
These properties define constraints that designers should consider during the
system design to satisfy the stakeholders requirements.

In table 5, Prol states that an actor cannot provide information unless he has
the required provision capability; this property will allow the model to detect

2 http://www.dbai.tuwien.ac.at/proj/dlv

Table 4. Achieved Actors Objectives

A1l satisfied(A, G) < is_responsible(A, G)

delChain(A, B,G) A trust_chain(A, B, Q)
A satis fied(B, G)

and_dec(G,G1,G2)A

satisfied(A, G1) A satisfied(A, G2)

A4 satisfied(A, G) < or_dec(G,G1,G2) A satisfied(A, G1)

A5 satisfied(A, G) < or_dec(G,G1,G2) A satisfied(A, G2)

A6 consumed(A,I) < has(A,I)

AT consumed(A, I) « proChain(A, B,I) A can_prv(B,I)

A8 critical_consumed(A, I) « ip_prvChain(A, B,I) A\ can_prv(B,I)

critical cunsumer (A, I)

A2 satisfied(A,G) «

A3 satisfied(A,G) «

A9 integrity_preserved(A, I) «+)])
A not integrity_compromised(A, I)

A10 integrity_compromised(A, I) < pruvChain(B, A, I)
have_perm(modify, B,)
Atrust_perm(modify, A, B, I)
have_grant_perm(modify, B, I)

A1l integrity_compromised(A,I) <

A12 integrity_compromised(A,I) +

Atrust_grant_perm(modify, A, B, I)

any invalid information provision / information provision chain. Pro2 states that
information should not be provided to any actor unless its entitlements require it;
this property allows the model to detect any unrequired information provision
that may threaten the integrity of information. For example, AOC does not
have a provision capability concerning meteo information (Prol), since it is not
a meteo producer, and such information will not be provided to it because none
of his entitlements requires it (Pro2). Thus, if such provision exists the model
will mark it as invalid provision. Depending on Pro3 the model will detect any
situation in which there is no valid trust chain along with a goal delegation chain,
which may endanger the satisfaction of the delegated goal. For example, Airplane
delegates “Manage gate-to-gate safe flight” to Airplane captain, the model is able
to detect and notify the designer if there is no trust chain concerning this goal
delegation.

Pro 4 states that permissions should be delegated to any actor require them.
While Pro 5 states that no actor should have permissions unless its entitlements
require these permissions. For example, Airline captain does not need to modify
the “AOC data”, thus, such permissions should not be delegated to him. While
EUROCONTROL should have such permissions since it may need to modify
the “AOC data”. Similarly, Pro 6 and Pro 7 are specialized for grant permis-
sions. Pro 4-7 enable the model to control the permission delegation properly
by 1- detecting situations in which permission is not delegated to actors require
them, which may prevent them from performing their duties properly; and 2-
detecting situations in which permissions are delegated to actors even their en-
titlements does not require such permissions, which may threaten the integrity
of information.

Finally, Pro 8 states that the integrity of critical information should be pre-
served from the perspective of its consumer. This enables the model to detect

Table 5. Properties of the Design

Pro 1 :- provide(B, A, I), not can_prv(B, I)

Pro 2 :- provide(B, A, I), not wants(A, I)

Pro 3 :- delChain(A, B, G), not trustChain(A, B, Q)

Pro 4 :- need_to_have_perm(T, A, I), not have_perm(T, A, I)

Pro 5 :- have_perm(T, A, I), not need_to_have_perm(T, A, I)

Pro 6 :- need_to_have_grant_perm, not have_grant_perm(T, A, I)
Pro 7 :- have_grant_perm, not need_to_have_grant_perm(T, A, I)
Pro 8 :- critical_cunsumer(A, I), not integrity_preserved(A, I)

any situation that may compromise the integrity of the critical information. For
example, the Airline captain believes that the integrity of “AOC data” he con-
sumes has been preserved, if it was not compromised by any of the situations
listed in table 4 (A9-11).

6 Related Work and Conclusions

Requirement engineering community suggests concepts for capturing and analyz-
ing the high-level security aspects of the system-to-be, but they did not appropri-
ately support the modeling and analyzing of information integrity. For instance,
misuse case [22] provide high level modeling constructs to capture threads to the
system assets, but offer no special primitives for modeling nor reasoning about
information integrity. In UMLsec [12], integrity was modeled as constraints that
can restrict unwanted modification. SecureUML [3] was mainly developed to
model access control policies, which can protect information integrity to a cer-
tain level. Abuse frame [13] addresses the integrity problem (modification) by
preventing unauthorized actors from modifying information or prevent autho-
rized actors from doing unauthorized modifications. The main limitation in the
previously mentioned languages that they do not consider the social relation
among the actors of the system-to-be (e.g. delegation and trust); even social
relations play a major role in any socio-technical system.

Information integrity modeling is an extension of traditional information
modeling, where information modeling captures the structure and semantics of
information, while information integrity modeling captures structural and se-
mantic issues underlying information integrity. In this paper, we argued that
any solution to enhance information integrity should be first considered at the
organizational level. We proposed an extension of i*/Tropos modeling language
to capture information integrity requirements within the organizational environ-
ment, and provide a reasoning framework to check properties of the design over
models built using this language.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases, volume 8. Citeseer,
1995.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

D.P. Ballou and G.K. Tayi. Methodology for allocating resources for data quality
enhancement. Communications of the ACM, 32(3):320-329, 1989.

D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From uml models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15(1):39-91, 2006.

K. Blomqvist and P. Stahle. Building organizational trust. In Proceedings of 16th
Annual IMP Conference. Citeseer, 2000.

J.E. Boritz. Is practitioners’ views on core concepts of information integrity. In-
ternational Journal of Accounting Information Systems, 6(4):260-279, 2005.

M. Bovee, R.P. Srivastava, and B. Mak. A conceptual framework and belief-
function approach to assessing overall information quality. International journal
of intelligent systems, 18(1):51-74, 2003.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203-236, 2004.

M.K. Buckland. Information as thing. Journal of the American Society for infor-
mation science, 42(5):351-360, 1991.

C. Castelfranchi and R. Falcone. Principles of trust for mas: Cognitive anatomy,
social importance, and quantification. In Multi Agent Systems, 1998. Proceedings.
International Conference on, pages 72—79. IEEE, 1998.

F. Cohen. A cryptographic checksum for integrity protection. Computers & Secu-
rity, 6(6):505-510, 1987.

Flight Safety Foundation. Accident description. http://aviation-
safety.net/database/record.php?id=19961112-1 /, March 1996.

J. Jirjens. Secure systems development with UML. Springer Verlag, 2005.

L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames
for analysing security requirements. 2003.

A. Motro. Integrity= validity+ completeness. ACM Transactions on Database
Systems (TODS), 14(4):480-502, 1989.

H. Mouratidis and P. Giorgini. Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering, 17(2):285-309, 2007.

D.A. Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays of inez-
pensive disks (RAID), volume 17. ACM, 1988.

S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Pro-
ceedings of the FAST 2002 Conference on File and Storage Technologies, volume 4,
2002.

T.C. Redman. Improve data quality for competitive advantage. Sloan Management
Review, 36:99-99, 1995.

T.C. Redman. The impact of poor data quality on the typical enterprise. Com-
munications of the ACM, 41(2):79-82, 1998.

National Transportation safety board. Aircraft accident report file
no. 1-0017. http://libraryonline.erau.edu/online-full-text/ntsb/aircraft-accident-
reports/AAR73-15.pdf /, July 1972.

SESAR. Swim concept of operations, deliverable a01, edition 00.02.00., 2011.

G. Sindre and A.L. Opdahl. Eliciting security requirements by misuse cases.
In Technology of Object-Oriented Languages and Systems, 2000. TOOLS-Pacific
2000. Proceedings. 37th International Conference on, pages 120-131. IEEE, 2000.
Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering.
Ph.d. thesis, Toronto, Ont., Canada, Canada, 1996. AAINNO02887.

