
Software and Systems Modeling (SoSyM) manuscript No.
(will be inserted by the editor)

Requirements-Driven Deployment

Customizing the Requirements Model for the Host Environment

Raian Ali1, Fabiano Dalpiaz2, Paolo Giorgini2

1 Bournemouth University, UK
2 University of Trento, Italy

Received: date / Revised version: date

Abstract Deployment is a main development phase which
configures a software to be ready for use in a certain envi-
ronment. The ultimate goal of deployment is to enable users
to achieve their requirements while using the deployed soft-
ware. However, requirements are not uniform and differ be-
tween deployment environments. In one environment, certain
requirements could be useless or redundant, thereby mak-
ing some software functionalities superfluous. In another en-
vironment, instead, some requirements could be impossible
to achieve and, thus, additional functionalities would be re-
quired. We advocate that ensuring fitness between require-
ments and the system environment is a basic and critical step
to achieve a comprehensive deployment process. We propose
a tool-supported modelling and analysis approach to tailora
requirements model to each environment in which the sys-
tem is to be deployed. We study the case of contextual goal
model, which is a requirements model that captures the re-
lationship between the variability of requirements (goal vari-
ability space) and the varying states of a deployment envi-
ronment (context variability space). Our analysis relies on
sampling a deployment environment to discover its context
variability space and use it to identify loci in the contextual
goal model where a modification has to take place. Finally,
we apply our approach in practice and report on the obtained
results.

Key words Requirements Engineering, Contextual Require-
ments, Deployment, Context-sensitive Systems Modeling

1 Introduction

Deployment is a main development phase that, among other
things, customizes a software to fit its operational environ-
ment. The goal of deployment is that software becomes ready
for use in its environment and users find it a valid and ef-
ficient way to satisfy their requirements. Traditionally, soft-
ware deployment concerns the technical configuration of an

implemented system, so as to fit to an instalment environ-
ment which includes specific computing resources, operat-
ing systems, etc. Though essential, we argue that having a
system correctly assembled and fitting its technical environ-
ment is only a part of the deployment process. Deployment
has to ensure fitness between requirements and the system
environment. Lack of such fitness could lead to an undesir-
able, and possibly harmful, mismatch between software and
its development purpose. Let us take as an example a require-
ment like “get user input”. This requirement is achievable via
two alternative requirements: “by voice recognition” and “by
click-based dialogue”. If the deployment environment is of-
ten noisy then the alternative “by voice recognition” is in-
applicable regardless a correct deployment of software func-
tionalities, settings and equipments.

The software environment includes whatever provides a
surrounding within which the software operates. The state
of such environment is denoted by the notion ofcontext[1].
Context is variable and requirements are highly affected by
context variability. The system has to monitor context at run-
time and decide upon which requirements to activate, which
software alternatives are applicable and can satisfy the acti-
vated requirements, and the quality of each of these alterna-
tives. Specifying and implementing the relationship between
context and requirements is essential to obtain software sys-
tems which meet user requirements in a dynamic environ-
ment. However, the space of context variability differs from
one deployment environment to another. Each environment
exhibits a specific contextual variability space and, thus,the
requirements have to be customized so as to maximize the
fitness with the environment at hand.

Goal models (i* [2], Tropos [3,4], KAOS [5], and GRL
[6]) are an intentional ontology used at the early requirements
analysis phase to explain thewhyof a software system. Goal
models have been used to represent the rationale of both hu-
mans and software systems [7] and they provide useful con-
structs to analyse high level requirements (goals) and dis-
cover ways to satisfy them. Such features are essential for
the analysis and design of a software system that reflects the
stakeholders’ rationale and their adaptation to a dynamic sys-

2 Raian Ali et al.

tem environment [8,9]. Moreover, goal models help to iden-
tify alternative software functionalities to satisfy goals. This
feature is essential to adapt to context variability of a deploy-
ment environment so that a change in context would cause a
switch to a suitable alternative to fulfil requirements. How-
ever, the context variability profile of a deployment environ-
ment makes some of these alternatives redundant and useless.
Moreover, the space of alternatives may be unable to accom-
modate certain contexts occurring in the environment. The
discovery of these cases is important to determine whether
extra functionalities have to be developed and deployed.

In this paper, we advocate that software customization
should be first studied at the requirements level. The reasonis
that requirements are not uniform and differ according to dif-
ferent factors. Hui et al. [10] describe how requirements can
be customized to fit the actual skills of users. Liaskos et al.
[11,12] discuss customizing the requirements to users’ pref-
erences expressed over non-functional and optional require-
ments. Baresi et al. [13] propose adaptation requirements,
called adaptation goals, to customize a system at runtime and
maintain a correct execution course. Pourshahid et al. [14]
study the alignment between requirements, expressed as goals,
and the business process of an organization based on moni-
toring a set of Key Performance Indicators (KPIs) and then
decide whether an adaptation action should take place. The
context variability of a system environment is also a very im-
portant factor which highly affects the customization of re-
quirements and we focus on it in this paper.

In our previous work, we have proposed contextual goal
models to capture the relation between requirements variabil-
ity and the variability of context [15–17]. Context is spec-
ified at a set of variation points on the goal model and its
truth value defines which requirements are applicable and ac-
tive. We refine high-level descriptions of context into con-
crete and monitorable criteria to judge if the analyzed context
holds. Moreover, we have developed reasoning mechanisms
for (i) runtime derivation of software configurations to satisfy
goals that are applicable in a monitored context and able to
accommodate user priorities, and (ii) design time identifica-
tion of the least expensive alternative which guarantees goals
satisfaction in the considered space of contexts [18] and (iii)
detecting modelling errors which cause inconsistent require-
ments models [19]. Contextual goal models capture the rela-
tionship between the variability spaces of both requirements
and context. Each deployment environment exhibits a differ-
ent context variability space and this makes some parts of
the contextual goal model useless, redundant, or insufficient.
In this work, we address the customization of requirements,
expressed via contextual goal models, to the contextual vari-
ability which characterizes a deployment environment.

In this paper, we propose an engineering approach for
customizing requirements models to fit their deployment en-
vironments as an essential step for a comprehensive and com-
plete systems deployment process. We consider the case of
contextual goal models, which is a requirements model that
explicitly captures the relation between variability of both re-
quirements, expressed as goals, and the state of the system

surrounding environment (its context). We develop reason-
ing mechanisms to analyse a contextual goal model given a
certain deployment environment and customize it by (i) re-
moving redundancy and uselessness, and (ii) adding default
backup alternatives when the model lacks of alternatives that
accommodate certain context variations. We develop a CASE
tool to automate our reasoning and propose a methodologi-
cal process to support a systematic customization of require-
ments. We evaluate our approach in practice and discuss the
results.

The paper is structured as follows. In Section 2 we review
contextual goal models and present our research questions.In
Section 3 we introduce our approach for requirements-driven
deployment and explain our CASE tool. In Section 4 we pro-
pose a process model for requirements-based deployment. In
Section 5 we apply our approach in practice and discuss the
results. In Section 6 we discuss related work, and in Section7
we conclude the paper and present our future work directions.

2 Background and Research Question

Each system is situated in a possibly dynamic environment.
In our previous work [15,16], we have observed that the dy-
namism of a system environment affects whether a require-
ment needs to be achieved, restricts the space of adoptable al-
ternatives to achieve it, and affects the quality of each of these
alternatives. We have advocated the need to weave together
context and requirements. We have proposed to specify con-
text (we called it “location” in that work) as a precondition
at certain variation points of a goal model. We have also pro-
posed basic automated analysis to (i) derive the set of adopt-
able system’s alternatives for a certain context and (ii) deter-
mine the context that supports a given alternative. In [17,20],
we have proposed the context analysis model, which includes
constructs (statement, fact, support, decomposition) to hier-
archically refine context into a formula of monitorable facts.
We also proposed a way to derive the contextual workflow of
the tasks of a contextual goal model.

In [18], we have proposed an automated analysis to rea-
son about contextual goal models and derive, at runtime, al-
ternatives which best fit both a monitored context and the
preferences of a user expressed as ranking over softgoals.
In the same work, we also developed a design-time reason-
ing for deriving systems’ alternatives with minimal develop-
ment costs. In [19], we have developed automated analysis to
check the consistency of context in a contextual goal model.
We have also developed an analysis to check the conflicts
arising from the parallel execution of the software actions
(goal model tasks). A first version of a CASE tool was im-
plemented to perform the above four types of reasoning.

Research question and contribution. In this work, we
address a different and important research challenge concern-
ing the analysis of contextual requirements to fit a certain
deployment environment. We analyse the fitness between a
contextual goal model, which captures the relation between
requirements and a space of context variations, and the space

Requirements-Driven Deployment 3

of contexts occurring in and characterizing a certain deploy-
ment environment. That is, we customize a contextual goal
model to the characteristics of a specific deployment envi-
ronment. We provide a systematic way to explore that envi-
ronment and an automated analysis to customize the require-
ments model. The customization here means removing parts
of the model which are unusable or redundant in a specific
environment and, also, indicating loci in the model where an
augmentation is needed to cover cases where the system is
unable to meet its requirements in that environment. We also
extend our CASE tool (RE-Context) to support the proposed
deployment analysis (unusability, redundancy, and augmen-
tation) and evaluate our approach on a system for booking
meeting rooms in an academic environment. Table 1 high-
lights the relations between our previous work and this paper.

2.1 Weaving together context and goals

In this section, we describe contextual goal models [15–17],
our framework to model contextual requirements. As a run-
ning example, we consider a mobile information system sce-
nario for promoting products to customers in a shopping mall.
The main goal of this system is to promote a set of products
to the customers that are inside the shopping mall. Both cus-
tomers and sales staff are provided with PDAs as communica-
tion and interaction devices. The system can satisfy its main
goal “promoting a product to a customer” through different
execution courses. The adopted execution course depends on
the context that may include the state of customers, products,
sales staff and other elements in a shopping mall.

In Fig. 1, we show an example of a Tropos contextual goal
model representing a part of the promotion information sys-
tem. Tropos goal analysis [3,4] views the system as a set of
interdependent actors, each having its own strategic interests
(goals). Goals represent requirements at the intentional level
and are analysed iteratively in a top-down way to identify
the more specific subgoals needed for satisfying the higher-
level goals. Goals can be ultimately satisfied by means of ex-
ecutable processes (tasks).

The actor standing for a customer’s mobile information
system (“Customer IS”) has the top-level goal “promote prod-
uct [p] to customer [c] in mall [m]”. Goals are iteratively
decomposed into subgoals by AND-Decomposition (all sub-
goals should be achieved to fulfil the top goal) and by OR-
Decomposition (at least one subgoal should be achieved to
fulfil the top goal). The goal “sales staff [ss] delivers a prod-
uct [p] sample to customer [c]” is AND-Decomposed into
“[ss] is notified” and “[ss] meets [c]”. The goal “promote by
giving free sample of product [p] to customer [c]” is OR-
Decomposed into “[c] gets [p] sample of machine [mc]” and
“deliver [p] sample to [c] by sales staff [ss]”. Goals are ulti-
mately satisfied by means of executable tasks. For example,
the goal “[c] knows about [p] and confirm the sample offer”
can be satisfied by one of the tasks “interact via voice dia-
logue and voice recognition” and “interact via visual dialogue
and click-based interaction”.

A dependency indicates that an actor (depender) relies on
another (dependee) to attain a goal or to execute a task: the
actor “Customer IS” depends on the actor “Sales Staff IS”
for achieving goal “deliver [p] sample to [c] by sales staff
[ss]”. Softgoals are qualitative objectives for whose satisfac-
tion there is no clear-cut criteria (“less disturbance” is rather
a vague objective), and they can be contributed either posi-
tively or negatively by goals and tasks: “interact via visual
dialogue and click-based interaction” contributes positively
to “less disturbance”, while “interact via voice dialogue and
voice recognition” in some cases contributes negatively toit.

The goal model of Fig. 1 incorporates multiple alterna-
tives the system can adopt to fulfil its main goal “promote
product [p] to customer [c] in mall [m]”. A goal model alter-
native is a root-to-leaf path in a goal model constructed by se-
lecting one subnode in OR-Decompositions and Means-Ends,
all subnodes in AND-Decompositions, and one dependency
when multiple dependencies exist for the same node. The
model explicitly represents the relation between the spaceof
alternatives incorporated in it and context. Contexts, labelled
byC1 . . . C15 in Fig. 1 and explained in Table 2, can be spec-
ified at the following variation points:

1. OR-Decomposition. The adoptability of a subgoal (sub-
task) in an OR-Decomposition may require a specific con-
text.

2. Means-end. Goals can be ultimately satisfied by means
of specific executable processes (tasks). The adoptability
of each task may require a specific context.

3. Actors dependency. A certain context may be required
for an actor to establish a dependency on another actor
for a goal to be achieved or a task to be executed.

4. Root goal. A root goal may be activated only in certain
contexts.

5. AND-Decomposition. The satisfaction (execution) of a
subgoal (subtask) in an AND-Decomposition could be
required only in certain contexts. In other words, some
subgoals (subtasks) are not always mandatory to fulfil the
top-level goal (task).

6. Contribution to softgoal. Softgoals are qualitative ob-
jectives, i.e., there is no clear-cut criteria for their satis-
faction. Softgoals can be contributed either positively or
negatively by goals and tasks. The contributions to soft-
goals can also vary from one context to another.

Observation.Some contexts could precondition a goal or
a task no matter where it appears in the goal model hierarchy.
That is, certain contexts could inherently precondition the op-
erability of a goal or a task. For example, let us take the task
T = “print the map of the shopping mall” which belongs to
the reception office system actor, say. For the operability of
T , a context likeC= “the receptionist’s PC is connected to a
printer” should hold no matter where this task appears. Let us
call this aninherent context. However, some other contextual
conditions apply on this same task only when it is part of a
certain refinement and we call this arefinement context. If T
is a means to satisfy a goalG1= “familiarize emergency team
with the mall”, we should add toC the contextCa= “there

4 Raian Ali et al.

Work Contribution
Weaving context with
requirements [15,16]

- A theoretical ground for weaving together the variabilities of both context and requirements
- Defining a set of variation points on goal models where context conditions can be specified
- A basic formalization of the model and a set of basic analysis implemented in Datalog

Context analysis [17,
20]

- A systematic way to refine context and elicit its specification
- A modelling language for context refinement
- A systematic way to derive contextual workflows from contextual goal models

Automated analysis of
contextual goal mod-
els [18,19]

- Derivation of the goal alternatives which fit a context monitored at runtime and a set of user preferences
expressed over softgoals
- Derivation of a set of alternatives with minimal costs and able to meet all goals
- Checking the consistency of context specification
- Checking the consistency of tasks and avoid conflicting actions
- A first version of a CASE tool (RE-Context) which implementsthe above four reasoning mechanisms

This work - Advocating the need to explore a deployment environment and customize the requirements model
- Providing a systematic approach, based on contextual goalmodels, to explore a deployment environment
- Proposing analysis mechanisms to customize a contextual goal model to fit the characteristics of an ex-
plored environment by removing uselessness and redundancyand suggesting augmentations
- Extending our CASE tool (RE-Context) proposed in [18] to implement the proposed analysis

Table 1 Summary of our previous work and contribution of this paper

Fig. 1 A goal model annotated with contexts at its variation points

is an emergency situation and the emergency team is not fa-
miliar with the mall”. If T is a means to achieve a goalG2=
“promote the mall” then we should add toC a context like
Cb= “the customer is visiting the mall for the first time and
he did not visit another branches with a similar structure”.�

By attaching the context condition to the refinement and
not to the task/gaol itself, we capture both cases: the draw-
back is that the annotation of the inherent contexts is repeated
each time the corresponding tasks or goals appear in a refine-

ment. On the other hand, associating context with a task or a
goal itself regardless where it appears in the model leads to
mistakes as the previous example shows. It was our design
choice to tolerate this redundancy to improve simplicity and
readability of the model. Alternatively, the analyst can spec-
ify inherent and refinement contexts separately. The analysis
we propose in the rest of this paper apply to both ways as
it processes the accumulated context of a whole goal model
alternative rather than the individual contexts specified on it.

Requirements-Driven Deployment 5

Ci Description Variation point type
C1 the customer is in the product area for more than 5 minutes, has not got a previous promotion on it, and

promotion is potentially realizable
Root goal

C2 the product can be used with another product the customer already has OR-Decomposition
C3 the product is discountable and interesting to the customer OR-Decomposition
C4 the product is free sampled and the customer does not have theproduct and does not know about it OR-Decomposition
C5 the customer has experience with free samples machines and can reach one of the machines and start to

use it in a short time
OR-Decomposition

C6 a sales staff has the ability and time to explain sufficientlyabout the product to the customer Actors dependency
C7 the customer place is not noisy, and the system is trained enough on the customer voice Means-end
C8 the customer has a good level of expertise with regards to using technology and a good control on his

fingers, and the used device has a touch screen
Means-end

C9 there is a sample machine close to and in the same floor as the customer and he is familiar with digital
maps technology

Means-end

C10 the path between customer and the machine is complex and the customer knows how to interact and
follow the guidance wizard

Means-end

C11 the sales staff PDA vibration is activated and he is holding his PDA and not using it for a call Means-end
C12 the sales staff is putting his headphone on and he is not usinghis PDA for a call Means-end
C13 the customer is not moving quickly Means-end
C14 the customer stays around the sales staff and can be seen easily AND-Decomposition
C15 there are other people around the customer and the place is quiet Contribution

Table 2 Description and variation point type for each context in Fig. 1

The context preconditions propagate in a top-down style.
The context which preconditions a root goalG will also pre-
condition all the nodes belonging to its subhierarchy whenG

is to be achieved. However, certain nodes in the subhierar-
chy might also belong to the hierarchies of other goals. Thus,
the context preconditioning a node depends on the top nodes
which were activated and selected. For example, consider a
taskT= “turn on the siren”, which could be a means to fulfil
two goalsG1= “protect mall from robbery” andG2= “protect
mall from fire”. Each of these two goals is activated in differ-
ent contexts:C1= “a customer with unchecked item is leav-
ing”, andC2= “smoke sensors indicate a fire”, respectively.
When taskT is a means to satisfyG2, it is also precondi-
tioned byC3 = “there is some staff or someone who can hear
the siren and call the emergency”. Thus,C2 andC3 are not
always preconditions forT but only when it is meant to sat-
isfy goalG2. WhenT is part of the goal model alternative to
fulfil G1, contextC1 will be propagated to it, whileC2 and
C3 will not be considered.

2.2 Context analysis

Similarly to goals, contexts need to be analysed. On the one
hand, goal analysis provides a systematic way to discover al-
ternative sets of tasks an actor can execute to satisfy a goal.
On the other hand, context analysis should provide a system-
atic way to discover alternative sets of facts an actor needs
to verify to judge if a context applies. We specify context as
a formula of world predicates. The EBNF of this formula is
shown in Code 1. We classify world predicates, based on their
observability by an actor, into two types:factsandstatements:

Definition 1 (Fact) A world predicate F is a fact for an actor
A iff F is observable by A.

Code 1The EBNF of context world predicates formula
Formula :- WorldPredicate| (Formula)| Formula AND Formula|
Formula OR Formula

Definition 2 (Statement) A world predicate S is a statement
for an actor A iff S is not observable by A.

An actor can observe a fact if it has the ability to capture
the necessary data and compute the truth value of a fact. A
statement cannot be observed by an actor for different rea-
sons, such as (i) lack of information to verify it: (ii) its ab-
stract nature makes it hard to find an evaluation criteria. Some
decisions that an actor takes may depend on contexts specifi-
able by means of only facts, while some other decisions may
depend on contexts that include also statements. However,
a statement can be refined into a formula of facts and other
statements. We call the relation between such a formula of
word predicates and a refined statementSupport, and we de-
fine it as following:

Definition 3 (Support) A statement S is supported by a for-
mula of world predicatesϕ iff ϕ provides enough evidence to
the truth of S.

Thesupportrelation is an approximation that analysts in-
troduce to infer the validity of a statement from monitorable
facts. In turn, this enables to verify high-level contexts (ex-
pressed in business terms) from monitorable facts (expressed
in physical terms). In an iterative way, a statement is refined
to a formula of facts that supports it. In our contextual goal
model, we allow only for monitorable contexts. A context is
monitorable if it can be specified in terms of facts and/or
statements that are supported by facts. A monitorable con-
text, specified by a world predicate formulaϕ, applies if all

6 Raian Ali et al.

the facts inϕ and all the formulae of facts that support the
statements inϕ are true. In Fig. 2, we analyse contextC1.
In this figure,statementsare represented as shadowed rectan-
gles andfactsas parallelograms. The relationsupportis rep-
resented as curved filled-in arrow. Theand, or, implication
logical operators are represented as black triangles, white tri-
angles, filled-in arrows, respectively.

Our context analysis technique helps the analyst to refine
the high level descriptions of contexts in an iterative and sys-
tematic way to ultimately reach observable facts. In order to
decide the observability of a world predicate, i.e., to decide
whether it is a statement or a fact, the analyst looks first for
a set of data the system can collect and judge upon the truth
value of that world predicate. If such a set exists, then the
world predicate is a fact. When reaching a fact, the analyst
has also to depict explicitly those data required to verify it.
For example, and taking the context analysis shown in Fig. 2,
the truth values of the leaf facts can be determined based on
the data conceptually modelled in Fig. 3. Each fact, however,
concerns a fragment of the model and the figure shows the
aggregation of those fragments in one model.

3 Requirements-Driven Deployment Framework

In this section, we discuss the customization of requirements,
expressed via contextual goal models, to fit a system deploy-
ment environment. Such environment could exhibit certain
characteristics that originate shortcomings, redundancies and
uselessness in parts of the requirements model. Modifying the
requirements model to fit its environment is an essential step
for a holistic software deployment. While requirements cus-
tomization could also consider decisions about different as-
pects, such as users preferences, costs, qualities, and organi-
zational rules, we are here interested in modifying the model
to suit the contextual variability profile of a deployment en-
vironment. For this reason, we propose to first sample the en-
vironment where the system is to be deployed (Section 3.1).
Then, the collected samples are analyzed for two purposes: (i)
to locate loci in the contextual goal model where augmenta-
tion with extra alternatives is required (Section 3.2) and (ii) to
minimize development costs by removing alternatives which
are inapplicable or redundant (Section 3.3).

3.1 Sampling a deployment environment

The context variations in a system environment can influence
users requirements. Certain variations may activate certain re-
quirements, or be required to adopt a specific alternative set
of functionalities to satisfy the active requirements. Forex-
ample, if a customer seems interested in a product (context)
then a product promotion has to be established (requirement).
Establishing the promotion can be done via different alterna-
tives, such as giving a free sample, cross-selling, or discount-
ing. The adoptability of each of these alternatives requires a
certain context to hold. For example, promoting by giving a

sample requires a context like “the product is new to the tar-
get customer“ to hold.

Sampling a deployment environment means monitoring
what context variations, which influence the systems require-
ments, occur in that environment. The sampling process mon-
itors the contexts that activate requirements. If one of these
contexts holds, then the process also monitors the contexts
required to adopt each of the alternatives that the model sup-
ports for fulfilling the activated requirement. The values of
the monitored contexts will be stored as asample. Sampling
the system environment is an iterative activity which should
be performed during a period of time at the deployment phase.

Contextual goal models can provide guidance and ratio-
nale for the environment sampling process as they explicitly
capture the influence of context variations on requirements
at the goal level. Our models represent the influence of con-
text on goal activation, as well as on possible alternativesand
their qualities. Accordingly, we have specialized contextinto
three types, each associated with a different set of variation
points in a contextual goal model:

1. Activation context makes it necessary to achieve (exe-
cute) a set of goals (tasks). In our contextual goal model,
activation contexts reside at the variation points (i)Root
goals activationand (ii) AND-decomposition. An acti-
vation context decides if a goal should be satisfied or a
task should be executed. The activation context of a goal
model alternative is the logical conjunction of the con-
texts at the variation points of these two types (see Fig. 4).

2. Required contextis necessary to adopt a certain way for
achieving (executing) a set of active goals (tasks). Re-
quired contexts are those associated to the contextual vari-
ation points (i)OR-decomposition, (ii) Means-end, and
(iii) Actors dependency. These contexts are required to
make a specific alternative of the goal model applicable.
The required context of a goal model alternative is the
logical conjunction of contexts at the variation points of
these three types (see Fig. 4).

3. Quality context influences the quality of an alternative
of the goal model. Only the contexts at the variation point
Contribution to softgoalsare quality contexts. Contribu-
tions (links) to softgoals are, indeed, used in Tropos to
capture the impact of a goal/task to a quality measure
(i.e., softgoal). In this paper, we do not address softgoals
and quality contexts. We only focus on the operability of
the system and we leave the quality dimension for future
work.

Sampling the environment means monitoring the activa-
tion contexts of a contextual goal model alternatives untilone
context is true. Such event activates one or more alternatives
in the goal model. whose required contexts are then moni-
tored. At this point, we can face two situations:

– If there exists at least an alternative with a holding re-
quired context, then the sample ispositiveand the system
has a way to satisfy the activated set of goals/tasks.

Requirements-Driven Deployment 7

Fig. 2 Context analysis forC1

Fig. 3 The data needed to verify the facts of contextC1 shown in Fig. 2

– If there exists no such alternative, then there is no adopt-
able way to satisfy the activated goals/tasks and, thus, the
sample isnegative.

The sampling process stores the values of monitored con-
texts as environment samples. The sampling process will mon-
itor the environment at deployment time and collect a set of
environment samples to decide upon whether there is a need
to augment the goal model with additional alternatives (Sec-
tion. 3.2) and also if we need to clean it from redundant and
useless ones (Section. 3.3).

3.2 Augmenting contextual goal models

A contextual goal model can be deployed in multiple environ-
ments. The space of alternatives that the goal model supports,
each preconditioned by a specific context variation, could be
insufficient for meeting users’ goals in one environment for
several reasons. The reason we address in this paper is the un-
satisfiability of contexts that are required to adopt activated
goal model alternatives. In other words, certain contexts of
the deployment environment activate a set of goals and there
is no alternative with a valid required context. Thus, some re-
quirements are activated but unsatisfiable. We propose a so-
lution to this problem based on augmenting the goal model
alternatives space to enhance the operability of the system
when contextualized alternatives are missing.

8 Raian Ali et al.

promote product [p] to
customer [c] inmall [m]

promote by giving free
sample of product [p] to

customer [c]

deliver [p] sample to
[c] by sales staff [ss]

guide [ss] to [c]
place

and

sales staff [ss] delivers a
product [p] sample to

customer [c]

notify [ss] by
vibration

show [c] place
to [ss]

show [c]
picture to [ss]

and

[ss] is notified
[ss]meets [c]

Sales Staff
IS

C4

C6

C11

C14

Customer IS

C1

V1: GoalModel Alternative

V1.Activation_Context= C1 C14
V1.Required_Context= C4 C6 C11 C13
V1.Context = C1 C14 C4 C6 C11 C13

C13

Fig. 4 An example of a goal model alternative and its accumulative contexts

We augment the goal model with default domain-independent
solutions that can be adopted when no adoptable contextual-
ized alternatives exist. Default solutions are backup options,
and are typically not as good as contextualized ones. They are
meant to allow operability of the system when it does not find
an alternative that is expressly tailored to a current context.

Example 1Consider the contextual goal model of Fig. 1. When
C1= “the customer is in the product area for more than 5 min-
utes, he has not already got a promotion on it, and the pro-
motion is potentially realizable” is true, the root goal “pro-
mote product to customer in mall” is activated. If none of the
contextsC2= “the product can be used with another product
the customer already has”,C3= “the product is discountable
and interesting to the customer”, andC4= “the product is free
sampled and the customer does not have the product and does
not know about it” holds, then none of the alternatives to ful-
fil the activated root goal will be adoptable. Thus, we have
an activated requirement and no alternative to fulfil it. When
such a situation occurs, a default solution could be executed
by sending an SMS to the customer introducing the basic fea-
tures of the product.

The algorithmDiscover Global Solutionsshown in Fig. 5
takes as an input a contextual goal model and a set of envi-
ronment samples obtained as described in Section 3.1. As an
output, it returns the set of possible solutions (alternative aug-
mentations sets) for each negative sample. To this end, the al-
gorithm generates the set of goal model alternatives together
with their contexts (Line 1). For each environment sample
(Line 2), the algorithm checks if the system can find a way
to satisfy the activated set of goals (Line 3). If so, the algo-
rithm does not need to find any solution as the sample is pos-
itive (Lines 3-4). Otherwise (Line 5), the algorithm invokes
another algorithmProcess Sample(reported in Fig. 6 and de-
scribed later) to specify loci in the goal model where an aug-
mentation could be needed (Line 6). Then, the algorithm tra-
verses the resulting annotated goal model to organize the par-
tial augmentations suggested by the invoked algorithmPro-
cess Sampleas sets of global solutions and associates these

solutions with the processed sample (Line 7). The algorithm
cleans the contextual goal model by deleting the annotated
augmentations (Line 8), before processing the next sample.

Input: CGM : a contextual goal model
Samples: Array [1..n] of environment samples

Output: Solutions: Array [1..n] of set of possible solutions

1: V := Generate Alternatives Set(CGM)
2: for i = 1 to n do
3: if ∃v ∈ V,Holds(v.Activation C, Samples[i]) ∧

Holds(v.Required C, Samples[i]) then
4: Solutions[i] := ∅
5: else
6: Process Sample(CGM.Root Goal, Samples[i], CGM)
7: Solutions[i] := Construct Global Solutions(CGM)
8: Delete Annotated Augmentations(CGM)
9: end if
10: end for

Fig. 5 Algorithm Discover Global Solutions

The algorithmProcess Sampleis shown in Fig. 6. The al-
gorithm is invoked for negative samples and its purpose is to
identify loci where augmentations with default non-contextual
alternatives are needed and to annotate the goal model ac-
cordingly. The algorithm starts processing the root goal node
and traverses the model recursively. For each subnode of the
node being processed (Line 1), the algorithm checks if an-
other recursion is needed (Lines 2-4), i.e, if augmentations
in the hierarchy rooted by that subnode could be needed.
This happens when the context preconditioning this subnode
is true in the processed negative sample (Line 2). If such a
context is false then any augmentations in that subnode hi-
erarchy will not be even satisfiable and are therefore use-
less. While traversing the model, the algorithm annotates a
possible augmentation for each refinement of the typesOR-
Decomposition, Means-end, Dependency(Lines 5-6). The rea-
son is that these types of refinements introduce alternatives
and, therefore, a non-contextualalternative may be added there
when contextualized alternatives are not adoptable.

Example 2In Fig. 7, we show the results of processing the
contextual goal model of Fig. 1 with respect to a negative

Requirements-Driven Deployment 9

Input: N : a contextual goal model node (goal/task)
s: an environment sample
CGM : contextual goal model

Output: CGM annotated by possible augmentations

1: for all {Ni : IsSubnode(Ni, N)} do
2: if Holds(Ni.Context, s) then
3: Process Sample(Ni, s, CGM)
4: end if
5: if N.Refinement Type ∈ {OR,Means−end, Dependency}

then
6: Annotate Augmentation(CGM,N.Refinement)
7: end if
8: end for

Fig. 6 Algorithm Process Sample

environment sample. The activation context that holds here
is C1 ∧ C14. In this sample, there is no alternative to satisfy
the activated set of goals and tasks. In other words, there is
no alternative with a true required context supported in the
contextual goal model. AlgorithmDiscover Global Solutions
will find this sample negative and then invoke the algorithm
Process Samplethat will traverse the model looking for loci
where augmentations could convert the sample to a positive
one. The algorithmProcess Samplereturns the goal model
annotated with the augmentationsA1 . . . A7. Algorithm Dis-
cover Global Solutionstraverses the goal model and orga-
nizes these partial augmentations as a set of global solutions
{{A1, A2}, {A3, A4}, {A5}, {A6}, {A7}}. The implementa-
tion of any of these sets will enable an alternative to fulfil
goals when the sample under discussion occurs.

The algorithmDiscover Global Solutionsproduces a set
of possible solutions concerning each negative sample sep-
arately. Each solution includes one or more augmentations
to the goal model (e.g.,{A1, A2} is a solution that includes
2 augmentations as shown in Fig. 7). However, a suggested
augmentation is could not be implementable. Therefore, the
analyst has to specify for each augmentation whether it is re-
alizable and refine the model specifying how this can be done.
This specification will decide which samples are convertible
to positives and support the final decision about which aug-
mentations to implement. The decision may rely upon, e.g.,
a cost-benefit analysis concerning the feasibility of the aug-
mentations. We leave this topic for future work.

Example 3Taking the augmentations suggested in Example
2 and illustrated in Fig. 7, the analyst could findA4, A5, A6,
andA7 unrealizable by contrast toA1, A2, andA3. The an-
alyst has then to specify each realizable augmentation. The
analyst may specify thatA1 can be realized via task“inform
via text message & get confirmation by OK button”, A2 via
“leaving a voice mail”, andA3 via “sending SMS”. All of
these augmentations are less effective than the contextualized
ones. For example, by“inform via text & get confirmation
by OK button”, the system cannot interact with the customer
and provide expressive information that leads to better man-
agement of the sample delivery process.

3.3 Reducing contextual goal models

The system environment may exhibit properties having static
nature which help to customize the requirements model at the
deployment stage. In one environment, some requirements
are never activated or applicable and other requirements have
always more than one alternative to satisfy. Contextual goal
models may have unusable or redundant parts when the sys-
tem operates in a specific environment. Thus, the deployment
has to check a contextual goal model against its environment
to detect whether it contains such parts and derive a reduced
version of it that is expressly tailored to its deployment en-
vironment. Reducing contextual goal models helps to reduce
the functionalities the deployed software has to support. Con-
sequently, it reduces the time of the deployment process and
avoids the costs of implementing functionalities that are not
going to be used. We propose a process to reduce contextual
goal models mainly by detecting and removing unusability
(Section 3.3.1) and redundancy (Section 3.3.2).

3.3.1 Processing unusabilityThe contexts specified at a con-
textual goal model may have static values in a certain envi-
ronment. The environment samples may show that some of
these contexts are always true or always false. Each case has
different effect and requires a different reduction action.

The contexts having true truth values in all of the col-
lected samples lead to useless monitoring functionalitiesand,
thus, unjustified costs. Context monitoring requires collect-
ing environment data which requires deploying equipments
(databases, sensors, positioning systems, cameras, etc.)and
processing collected data. If a context is always true, we do
not need to deploy its monitoring functionalities. To detect
and remove this type of contexts, we need to traverse the goal
model and check whether each context (specified at each vari-
ation point) is always true in all the environment samples.

Example 4If the shopping mall, where the system is to be de-
ployed, consists of one floor, has plenty of sample distribution
machines and it is for products usable by young people who
are usually familiar with new technology, thenC9= “there is
a sample machine close to and in the same floor as the cus-
tomer and he is familiar with digital maps technology”would
be always true and there is no need to monitor it. Such con-
text has to be removed from the goal model deployed in that
specific mall. Removing this context avoids installing a posi-
tioning system, preparing a map for the mall, and developing
a database to store customer profiles (presuming that other
system functionalities do not require that).

On the other hand, the contexts having false truth values
in all collected samples lead to unjustified monitoring func-
tionalities. Moreover, the existence of such contexts means
that some goal model alternatives are never applicable. Both
the contexts specified at the variation points and the accu-
mulative contexts of goal model alternatives could have false
values. As we mentioned earlier, the context of a goal model
alternative is the conjunction of two accumulative contexts:

10 Raian Ali et al.

by offering
discount on [p] to

[c]

promote product [p] to
customer [c] inmall [m]

promote by giving free
sample of product [p] to

customer [c]

by cross-selling
[p] to [c]

deliver [p] sample to
[c] by sales staff [ss][c] gets [p] sample of

machine [mc]

[c] arrives to [mc]

or

show [p] demo
to persuade [c]

show [p] place
to [c]

make& show
[p] discount to

[c]

make& give [p]
discount code to

[c]

discount [p] to [c]

and

or

[c] allowed to get [p]
sample from[mc]

and

[c] knows about [p]
& confirm the
sample offer

interact via voice
dialogue& voice
recognition

interact via visual
dialogue& click-
based interaction

generate& give
authentication code

on [p] to [c]

Interactivewizard
to guide [c] to [mc]showpath to

[mc] on [m]map

persuade and inform
[c] about [p]

and

less disturbance

C1

C2

C4

C7

C5

C9

C10
C8

C3

Customer IS

C15 -- +

guide [ss] to [c]
place

and

sales staff [ss] delivers a
product [p] sample to

customer [c]

notify [ss]
by vibration

notify [ss] by
voice

command

show [c] place
to [ss]

show [c]
picture to [ss]

and

[ss] is notified [ss]meets [c]

Sales Staff
IS

C6

C11

C12

C14

FALSE

C13

Sample[i].TrueContexts:= {C1, C4, C5, C6, C14}

Sample[i].FalseContexts:={C2, C3, C7, C8, C9, C10, C11, C12, C13}

The partial augmentations proposed by the algorithm
Process_Sample= {A1, A2, A3, A4, A5, A6, A7}

The augmentations organized as global solutions in Solutions[i]=
{{A1,A2}, {A3, A4}, {A5}, {A6}, {A7}}

TRUE
A7

A6

A5

A1

A2

A3 A4

FALSE
TRUE

TRUE

TRUE

FALSE FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

Fig. 7 An example of augmentations found by sample processing, andalternative solutions resulted by organizing augmentations

the activation context and the required context of that alter-
native (see Fig. 4). The alternatives including contexts (indi-
vidual or accumulative) that are false in all the environment
samples should be removed from the model. This is to avoid
deploying functionalities meant to support inapplicable goal
model alternatives. By removing these alternatives, we po-
tentially reduce the costs of monitoring the contexts included
in them. However, the removal of one alternative does not
mean that the goals, tasks, and contexts included in it will be
removed definitely from the final model, as they might also
appear in other applicable alternatives.

The algorithm reported in Fig. 8 processes a contextual
goal model against a set of environment samples and reduces
it by removing alternatives with always-false contexts. The
algorithm generates all the contextual goal model alternatives
together with their contexts (Line 1). An alternative is adopt-
able with regards to one environment sample if both its ac-
tivation and required contexts hold in that sample. The algo-
rithm then checks all the contextual goal model alternatives
(Line 3–7). If an alternative is adoptable in at least one of
the environment samples (Line 4) then it is added to the set
of the adoptable alternativesV ′ (Line 5). Finally, the algo-
rithm gives as an output the set of adoptable alternatives asa
reduced version of the contextual goal model (Line 8).

Example 5In a noisy shopping mall, the contextC7= “the
customer’s place is not noisy, and the system is trained enough
on the customer voice”will never hold and any alternative
preconditioned by a context includesC7 will be inapplica-
ble. Such alternative should be removed from the final set
of adoptable alternatives. Excluding alternatives means ex-
cluding some functionalities (tasks) from the deployed sys-

Input: CGM : a contextual goal model
S: a set of environment samples

Output: CGM ′: CGM cleaned from useless alternatives

1: V := Generate Alternatives Set(CGM)
2: V ′ := ∅
3: for all v ∈ V do
4: if ∃s ∈ S,Holds(v.Context, s) then
5: V ′ := V ′ ∪ {v}
6: end if
7: end for
8: CGM ′ :=

⋃
{v ∈ V ′}

Fig. 8 Algorithm Process Unusability

tem. The task“voice dialogue and voice recognition”can
be excluded from the requirements model, as it will never
be adoptable. The exclusion of alternatives leads also to ex-
cluding contexts to minimize monitoring costs. RemovingC7

avoids us the costs of sensing and analyzing the noise level in
the location of customer and tracking the system learning of
the user voice.

3.3.2 Processing redundancySome functionalities might be
redundant when the system operates in a certain environment.
An early and main source for redundancy is the requirements
model. The environment may make some requirements re-
dundant and therefore the functionalities that are deployed
to satisfy these requirements will be redundant as well. Ac-
commodating a large space of functional alternatives, even
though redundant, could be desirable for reasons such as sup-
porting high flexibility, different users’ preferences, and fault
tolerance. However, for reasons such as costs and time con-
straints, detecting the functionalities that allow the system to
fulfil its requirements without redundancy is often needed.

Requirements-Driven Deployment 11

Contextual goal models represent explicitly the relation
between two spaces: the space of requirements alternatives
and the space of context variations. Analysing contextual goal
models to discover which requirements alternatives are re-
dundant leads to a model that incorporates the minimum but
sufficient space of alternatives. We consider an alternative of
the goal modelv redundant if there is another alternativev′

that is applicable wheneverv is applicable. In other words,
we deal with redundancy originated by the replaceability of
some alternatives. As we mentioned earlier, supporting re-
dundant alternatives in the deployed system could be justified
to develop high-variability systems. We leave the selection
between redundant alternatives for future work.

The processing of a contextual goal model to remove re-
dundant alternatives and group the rest based on applicability
equivalence is reported in Fig. 9. The algorithm takes as input
a contextual goal model and a set of environmental samples
and returns the redundant and equivalent groups of alterna-
tives. First, the algorithm generates the set of goal model al-
ternatives together with their contexts (Line 1) and initializes
the setEquivalent Gv to an empty set. This set will be used
later to represent the sets of equivalent alternatives (Line 2).
The algorithm then organizes the adoptable goal model al-
ternatives in groups based on equivalence of applicabilityin
the environment samples (Line 3–11). To this end, the algo-
rithm picks randomly an alternativev (Line 4) and finds the
group of alternativesGr.alternatives that are applicable ex-
actly whenv is applicable (Line 5). The samples set in which
these alternatives are applicable is also recorded (Line 6). The
group of equivalent alternatives is eliminated from the setof
all alternatives (Line 7) and considered for further process-
ing if there exists at least one sample in whichv (and there-
fore the other alternatives in the group) holds1. If a group of
equivalent alternatives is replaceable by another, i.e., if in all
samples where the first is applicable so the second is, then
the first group is marked replaceable and removed from the
output (Line 11 – 12).

Input: CGM : contextual goal model
S: a set of environment samples

Output: CGM ′: CGM without redundancy

1: V := Generate Alternatives Set(CGM)
2: Equivalent Gv := ∅
3: while V <> ∅ do
4: v := Pick alternative(V)
5: Gr.alternatives := {v′ ∈ V,∀s ∈ S,Holds(v.context, s) ↔

Holds(v′.context, s)}
6: Gr.samples := {s ∈ S,Holds(v.context, s)}
7: V := V \ Gr.alternatives
8: if Gr.samples <> ∅ then
9: Add element(Gr.alternatives, Equivalent Gv)
10: end if
11: end while
12: Replaceable Gv := {G ∈ Equivalent Gv, ∃ G′ ∈

Equivalent Gv and G.samples ⊂ G′.samples}
13: CGM ′ :=

⋃
{v ∈ (Equivalent Gv \ Replaceable Gv)}

Fig. 9 Algorithm Process Redundancy

1 This check is unneeded if unusability is already processed

Example 6Fig. 10 shows an example of a replaceable alter-
native. In this example, we suppose that the assistance staff
members have to put the headphone on when they are avail-
able for serving customers. If such a policy holds in the shop-
ping mall where the system is to be deployed, then the impli-
cationC11 → C12, whereC11 = “the sales staff PDA vibra-
tion is activated and he is holding his PDA and not using it
for a call” andC12 = “the sales staff is putting his headphone
on and is not using his PDA for a call”, holds in all of the en-
vironment samples collected from that mall. This means that
V2 is applicable in all samples whereV1 is applicable. There-
fore, V1 can be considered replaceable and can be removed
from the model. Consequently, the task“notify sales staff by
vibration” will not be deployed and the contextC11 can be
also removed from the set of contexts to monitor.

guide [ss] to
[c] place

and

sales staff [ss]
delivers a product
[p] sample to
customer [c]

notify [ss] by
vibration

show [c]
place to
[ss]

show [c]
picture to

[ss]

and

[ss] is notified [ss]meets [c]

Sales
Staff IS

C11

C14

C13

promote the product
[p] to customer [c] in

mall [m]

promote by giving free
sample of product [p] to

customer [c]

deliver [p] sample
to [c] by sales staff

[ss]

C4

C6

Customer
IS

C1

GoalModel Alternative V1

GoalModel Alternative V2

guide [ss] to
[c] place

and

sales staff [ss]
delivers a product
[p] sample to
customer [c]

show [c]
place to
[ss]

show [c]
picture to

[ss]

and

[ss] is notified [ss]meets [c]

Sales
Staff IS

C14

C13

promote the product
[p] to customer [c] in

mall [m]

promote by giving free
sample of product [p] to

customer [c]

deliver [p] sample
to [c] by sales staff

[ss]

C4

C6

Customer
IS

C1

notify [ss] by
voice command

C12

Fig. 10 V1 is replaceable byV2 in a mall whereC11 → C12 in all
samples

3.4 CASE tool: RE-context

We have developed a prototype automated tool (called RE-
Context) to support the customization of a contextual goal
model for a host environment. In our previous work [18,19],
we have developed earlier versions of this tool for different

12 Raian Ali et al.

kinds of analysis concerning the generation and processing
of a contextual goal model alternatives and the verification
of consistency and freedom of conflicts in a contextual goal
models. In this paper, we implement a new component to
support the activities of deploying a contextual goal model
in a host environment: augmentation, unusability, and redun-
dancy processing. The architecture of RE-Context is shown
in Fig. 11 where we highlight the “deployment” component
which is the one implementing the analysis proposed in this
paper.

Fig. 11 The architecture of RE-Context CASE tool

As shown in Fig. 11, RE-Context is composed of three
logical components. These components are developed in Java
and are linked to external reasoners via wrappers. The de-
ployment component is the component specifically developed
for this paper. The derivation of the space of alternatives for a
contextual goal model is a basic step for all types of analysis
of RE-Context. RE-Context can derive alternatives included
in a contextual goal model by running the DLV reasoner as
a planner. RE-Context outputs all the valid models that sat-
isfy the Datalog inference rules in the input file encoding the
contextual goal model. Each alternative consists of a set of
tasks to execute and a set of contexts associated with it. For
more details about the generation of alternatives please see
our work in [18]. In the following, we describe the main com-
ponents of RE-Context:

– Derivation. RE-Context generates the space of alterna-
tives included in a contextual goal model. Re-Context en-
ables the choosing between alternatives in two styles. The
first is a runtime derivation of the alternatives matching a
given context and user’s preferences expressed as rank-
ing over softgoals. The second concerns the derivation of
a set of tasks with minimal development costs which, if
implemented, allows the system to cover and operate in
the space of context variations captured in a contextual
goal model. To this end, the analyst has to specify the re-
sources needed for the development of each task in a goal

model and their costs. Please see our work [18] for more
details about this component.

– Verification. RE-Context generates the space of contex-
tual goal model alternatives and checks context satisfia-
bility for each alternative. This checking is done by re-
lying on the state-of-the-art SMT solver MathSAT2. The
alternatives with unsatisfiable contexts are excluded from
the model since they are inapplicable. Furthermore, the
tool checks the generated alternatives to detect those in-
cluding tasks executing in parallel and leading to con-
flicts. RE-Context expects the analyst to specify the effect
of each task on the environment, the parallel and sequence
operators on a goal model [21], and the logical relations
between contexts. More details on this component can be
found in [19].

– Deployment. This component implements the analysis
we have proposed in this paper. It takes as input the DLV
input file which encode the contextual goal model, and the
CSV file encoding the samples collected from a host envi-
ronment. Both files are provided by the analyst. The DLV
should encode an already verified contextual goal model
(using the verification component) to avoid having unnec-
essary processing and incorrect results. For example, if
we check redundancy before verification, the tool might
return that an alternativea1 is redundant given that there
is always an alternativea2 which is applicable whenever
a1 is applicable. However, the verification might show
thata2 has a conflict and, therefore, we cannot consider
a1 redundant, sincea2 is not functionally correct and can-
not replacea1. The process shown in Fig. 12 and dis-
cussed in Section 4 explains the way of using the au-
tomated analyses. The deployment component performs
three types of analysis which are all implemented in Java:

– Unusability. This analysis implements the algorithm
described in Fig. 8, where the samples file is scanned
to identify contexts which are always true or always
false. Based on that, the analysis reduces the set of
contextual goal model alternatives (as described in
Section 3.3.1), excluding the alternatives which are
inapplicable and replacing the contexts which were
always true or false with their static value.

– Redundancy. This analysis discards redundant alter-
natives, i.e., those operating in an environment where
other alternatives can operate and achieve the same
goals. The analysis enacts the algorithm reported in
Fig. 9 to identify and remove redundant alternatives.
This analysis becomes unnecessary if the designer de-
cides to keep redundant alternatives for reasons such
as flexibility and accommodating the preferences of
different users.

– Augmentation. The purpose of this analysis is to find
loci in a contextual goal model where an augmenta-
tion with a default non-contextual alternative is nec-
essary to deal with negative samples. This processing
enacts the algorithm reported in Fig. 5. It returns a set

2 http://mathsat4.disi.unitn.it

Requirements-Driven Deployment 13

of possible global solutions after processing individ-
ual alternatives. We still did not provide automated
analysis to qualify and evaluate solutions. The deci-
sion about this is still left for the analyst and we plan
to provide automated support for that in our future
work.

4 Systematic Process

In this section, we provide guidance for modelling contex-
tual requirements by means of contextual goal models and
customizing it to a certain host environment. The process
is depicted in the activity diagram of Fig. 12. A number of
macro-activities are identified: goal analysis, context analy-
sis, verification, environment sampling, augmenting alterna-
tives space, processing unusability, processing redundancy,
and composing the final contextual goal model.

1. Goal analysis. Actors and high level goals are identi-
fied and analysed. Actors and goals can be iteratively dis-
covered through the set of scenarios which describe the
problem domain [22]. Moreover, an intentional variabil-
ity taxonomy [23] can guide variability acquisition when
refining a goal/task to discover alternative ways of ful-
filling/executing it. Each refinement step is followed by a
context analysis.

2. Context analysis. This activity is meant to link between
the requirements and the context in which they are acti-
vated and adoptable. The context analysis activity is com-
posed of two steps:

(a) Contextual variation points identification. Each varia-
tion point in a goal model can be contextual. Context
may affect either goal activation or the selection of
alternatives to meet a goal. When a variation point is
identified to be contextual, a high level description of
the correspondent context has to be written down. As
a result of this activity, the contextual variation points
at the goal model should be annotated similarly to the
model we have shown in Fig. 1. Moreover, the con-
texts associated with these variation points should be
described similarly to the descriptions shown in Ta-
ble 2.

(b) Context refinement. The contexts at each contextual
variation point should be analysed. The analysis goal
is to identify ways through which the system can ver-
ify if a context holds. In other words, the context re-
finement has to define the environmentalfactsthe sys-
tem has to capture and the way these facts are com-
posed to judge if an analysed context holds. An exam-
ple of context refinement is shown in Fig. 2.

3. Verification . The requirements model has to be verified
to ensure freedom of modelling errors which lead to in-
consistencies in the context specification and conflicts be-
tween the executable tasks of a goal model. RE-Context
supports this automated reasoning in our work described
in [19]. Some alternatives of the goal model may be pre-

conditioned by a set of contexts which never hold to-
gether. This make the alternative inapplicable and use-
less if implemented. Moreover, the tasks of a goal model
could lead to contradicting changes on the system envi-
ronment. This leads to conflicted actions that prevent a
correct satisfaction of requirements. The verification of
contextual goal models should be done as a preliminary
step for the analysis that concerns the deployment.

4. Environment sampling. The deployment environment has
to be explored through sampling. The samples are used
to process the requirements model and ensure fitness be-
tween the model and the system environment. To do the
sampling, the contexts specified at the contextual goal
model need to be monitored iteratively for a period of
time and their values should be recorded as samples. More
specifically, the contexts that activate goal model alterna-
tives should be monitored until one of them holds. When
this happens, the sampling process records the values of
the contexts specified at all of the variation points of the
activated goal model alternatives. This will allow for fur-
ther analysis to judge if the model supports or lacks ways
to satisfy its activated requirements. Monitoring the envi-
ronment could be established by different techniques such
as surveying prospective users, being physically there and
recording context variations, recording via cameras and
analysing observations, etc. The sampling period has to
be long enough in order to capture contexts variations that
happen less frequently or periodically. However, the ana-
lyst would need to compromise between the coverage and
quality of the sample set and the sampling period as we
discuss in Section 5.2.

5. Augmenting alternatives space. In this activity, the con-
textual goal model has to be analysed using the collected
environment samples to identify places where default non-
contextual solutions are needed. To this end, RE-Context
can be used to analyse the model with regards to each
sample and record the results. Doing that, the tool will
ask the analyst about the realizability of each suggested
augmentation. The analyst can also assign costs to each
augmentation and then use the tool to answer queries like
calculating the minimum-cost solution that converts the
largest number of negative samples to positive. The tool
will record the augmentations approved by the analyst to
be added later to the final goal model. These default so-
lutions may be recorded to be suggested when deploy-
ing the contextual goal model to other environments that
shares similar contextual profile.

6. Processing unusability. The goal of this activity is to re-
move unusable functionalities from the model. This ac-
tivity is fully automated and executable in our automated
RE-Context tool. The tool will scan the environment sam-
ples to elicit the set of contexts specified at the variation
points of the goal model and having always-true values
in all the samples. It will also check the accumulative
context of each goal model alternative to see if it holds
in at least one sample. After doing these two checks, the
tool will remove the always-true contexts from the model

14 Raian Ali et al.

Fig. 12 The deployment process

since deploying the functionalities to monitor them is un-
justified. Moreover, the tool will remove the goal model
alternatives having always-false contexts to avoid deploy-
ing unusable functionalities. As we mentioned earlier, the
removal of one alternative does not necessarily mean that
all the goals, tasks and contexts included in it are remov-
able as, indeed, they may appear in other alternatives that
are applicable.

7. Processing redundancy. The purpose of this activity is
to discover the set of goal model alternative which are re-
placeable when operating in a certain host environment.
To this end, RE-Context can be used to group the alter-
natives based on the equivalence of their applicability in
all the environment samples. Obviously, the group of al-
ternatives that are inapplicable in any of the deployment
environment samples are not further processed as we de-
scribed in the last activity (processing unusability). The
tool will remove any group of alternatives for which there
is another group applicable in all the samples the first
one is applicable in. Such group will be redundant and
inessential for the availability of the system. The analysts
can then use the tool to select an alternative of each of the
remaining groups according to a certain selection criteria.
The criteria that is currently supported by RE-Context is
the costs of resources needed for each task of the goal
model. The tool is able to select a set of tasks of the goal
model able to implement at least one alternative of the ir-
replaceable groups of variants with a minimum total cos.
The selection algorithm is explained in our previous work
in [18].

8. Composing final contextual goal model. In this activ-
ity, RE-Context can be used to merge the augmentations
suggested by the activity of augmenting the alternatives
space with the goal model alternatives that are usable and
not redundant, i.e., the alternatives delivered by the ac-
tivities of processing unusability and processing redun-
dancy. This goal model will be the final outcome of our
deployment process. It is a version of the original con-
textual goal model tailored to context variations happen-
ing in the system operational environment. This version
removes the useless and redundant parts of the original
model and adds default alternatives to be adopted when
a contextual alternative one is missing. Thus, it leads to
a version of software with maximized operability and re-
duced development costs with regards to a certain deploy-
ment environment. The tool delivers the final goal model
as a DLV code. We need to extend our tool to draw a vi-
sual notation based on such code.

5 Evaluation

To evaluate our proposed approach, we have developed a con-
textual goal model for a room booking system used by aca-
demic research groups. The purpose of the system is to assist
researchers in the room booking process. Room booking can
be performed for different purposes: giving seminars, hold-
ing brainstorming sessions, making conference calls, or hav-
ing a project meeting. Different rooms are available and dif-
fer in their equipment, availability status and times, etc.The
three main requirements of the room booking system are to

Requirements-Driven Deployment 15

assist researchers in booking a room, to announce the meet-
ing/event, and to assist researchers to get and use of supple-
mentary equipments needed to establish the meeting/event.
To collect the environment samples, we monitored the room
booking processes for a period of time of two research groups
(RG1 andRG2) at the Department of Information Engineer-
ing and Computer Science (DISI)3 at the University of Trento.
Then we have used the samples to customize the contextual
goal model as we will explain later. Here we give more de-
tails about the three main requirements of the room booking
system and for more details, please see:
http://disi.unitn.it/∼ali/index files/RoomBooking.pdf:

– Booking a room. This activity can be in charge of the de-
partment secretary or the research group secretary when
the later is available and assigned to the task of rooms
booking. The secretary has to be informed by the system
and, then, she has to check if there is a room available
and reply to the staff who requested to book a room. The
communication with secretaries follows different alterna-
tives in different contexts. Booking a room can be done
by the staff who requested a booking himself if he has the
permission to use the room booking calendar (we used a
free calendar web service).

– Announcing a seminar. The meeting requester needs as-
sistance to announce the meeting/event either to public or
specific set of people. Public announcements can be done
via the website of the research group of the requester, the
website of the department, or the reception screens visible
to people who enters the department. Private announce-
ments can be done via designated mailing lists (all mem-
bers of the research group) or via chosen contacts from
the contact book of the research group.

– Assistance about supplementary equipment. The system
has to inform a room booking requester if there is a need
to get supplementary equipment such as projector, con-
nection cables, remote control, and keys before starting
the seminar. In case supplementary equipment is needed,
the system has to provide the requester with information
on how to get and use that equipment. For example, the
requester has to be assisted on how to get the projector
and use it, the place to get the keys from and the proce-
dure to follow in order to do that, etc.

Our monitoring process lasted for 3 months and the sam-
ples set consists of 61 booking processes: 34 reservations
were made byRG1, and 27 byRG2. To collect samples, we
asked research groups members and department personnel in-
volved in the booking process to fill in a form for the contexts
values regarding each room booking process. Thus, and since
we have not implemented an automated system for the mon-
itoring of context, we did not do the context refinement as
the main purpose of such analysis is to specify contexts as
formulae of facts monitorable by an automated system. The
form included questions to determine the truth values of the
activation and required contexts in our developed contextual

3 http://disi.unitn.it/

goal model for rooms booking. Group members were asked
to specify the truth values of the dynamic contexts, i.e., whose
which vary from one reservation to another. Some other con-
texts were static and their values were known by us in ad-
vance (e.g., the profile of each research group, the rooms each
group is granted access to, and installed equipments). After
the samples collection phase, we used our automated support
tool RE-Context to process the collected samples according
to the analysis proposed in Section 3 and obtained the results
reported and discussed later in this section.

g2: Schedule a
Room

g5: Secretary to
do it

g6:
Autonomously

g9: Via the research
group secretary g10: Via the

department
secretary

or

g13: Research
group ssecretary is

informed

g14:
Secretary

finds a room
g15: Secretary

Informs if room found

and

t1: Via
mail

t4: Via
specific
interface

t2: Urgent
email

t3:
Normal
email

t5: One
time

message t6: Repetitive
reminder

or
or t8: Via

specific
interface

t7: Via
regular

format email

or

and

g16: Room is
requested

g20:
Request is

made

g21:
Coordinator

approves

t9: Requester fills
in automated form

t10: Via
mail

t11:
Email
sent

t12:
Response
analyzed

and

C2

C3

C8
C9

C4 C5 C6
C7

C10 C11

and

...

...

...

...

C1 C16

Staff Comfort

Requester
Comfort

--

+

--

+

...

and

Fig. 13 Part of the contextual goal model for room booking

We now provide details concerning the contextual goal
model we have developed. Part of this model is shown in
Fig. 13. The main requirement of a researcher is to book a
room for a certain scheduled activity. The reservation can be
done by following various alternatives: the researcher cando
it autonomously or can interact either with the research group
secretary or with the department secretary. Each alternative is
adoptable in a different set of contexts (e.g.,C3 states that the
department secretary can be involved only if he is in charge
of that specific group and if he is currently not occupied in
higher-priority tasks) and the system is supposed to support
and track the room booking accomplishment. For instance,
the research group secretary can be notified either by send-
ing an e-mail to him (taskt1) or via a specific web inter-
face (taskt4), depending on the context. Another requirement
for the system is to support the announcement of both pub-
lic meetings and close meetings. Such requirement has to be
supported via different alternatives: announcing via the web
site of the department or the research group, circulating via
mailing lists, displaying on electronic screens in the depart-
ment, etc. Each alternative requires a specific context to hold.
The last requirement of the room booking system is to re-
mind meeting requesters about the supplementary equipment
he would need such as projectors, web cams, network cables,

16 Raian Ali et al.

and also to explain to a meeting requester how to get needed
equipments and to use them. The contextual goal model we
developed for the room booking system consisted of 5 actors,
33 goals, 52 tasks, 6 softgoals, and 34 contextual variation
points. The space of alternatives to fulfil the main goal “hav-
ing a room booked” included 2808 alternatives.

5.1 Samples processing results

In Fig. 14, we summarize the results obtained by applying the
analysis described in Section 3 on the contextual goal model
for the room booking system. In the remainder of this section
we explain these results.

– Samples positivity/negativity. Sampling the room book-
ing process for the first research groupRG1 led to 26
positive samples—where the top-level goals have been
achieved—out of 34 samples, while the sampling forRG2

led to 22 positive samples out of 27 samples. The main
reason for failure in booking a room inRG1 was that
rooms are asked for booking short time before the event
and this led to failure in completing the booking process
on time. For example, the room requester did not have
time to answer the emails concerning the supplementary
equipments needed or to confirm the reservation after be-
ing made by the secretary. The main reason for failures
in RG2 was that the group did not have a secretary that
assists in booking rooms. This group had to rely on the
department secretary who often had other higher priority
tasks to do.

– Unusability processing. This activity detects and removes
static contexts that never vary and, also, inapplicable goal
model alternatives. The developed system does not need
to monitor static contexts (those having the same truth
value in all collected samples). For example, the rooms
assigned toRG2 had all supplementary equipments and
there was no need to monitor that. ForRG1, 3 contexts
had false values in all the collected samples and 3 had
true values. ForRG2, 3 contexts had false values while
2 contexts had true values in all the collected samples.
The contexts that are always false in all the samples pro-
duced a large number of unadoptable alternatives (1512
for RG1 and 2592 forRG2). Consequently, the tasks that
appear only in unadoptable alternatives are never exe-
cuted (6 tasks forRG1 and 20 tasks forRG2). Also, it
is useless to monitor the non-static contexts which appear
in only unadoptable alternatives (3 contexts forRG1 and
12 contexts forRG2). For example, having a set of well-
equipped rooms forRG2 means the removal of all the
goal model alternatives where researchers are reminded
to bring supplementary equipments. This, in turn, led to
unadoptability of the tasks and uselessness of monitoring
the contexts needed to accomplish the assistance of the
researcher to bring such equipments.

– Redundancy processing. A goal model alternativeV is
redundant if in every sample whereV is applicable there
exists another alternativeV ′ which is applicable as well.

As explained in Section 3, to discover redundant alter-
natives, we first remove inapplicable alternatives which
have always-false contexts in all samples, i.e., unusable
alternatives. Then, we partition the rest into groups on the
basis of context value equivalence in all the samples, i.e.,
on the basis of applicability equivalence. The number of
equivalent groups was 864 forRG1 and 144 forRG2.
A group is redundant if its set of positive samples is in-
cluded in the set of positive samples of another group.
We got 792 redundant groups forRG1 (containing 1152
alternatives) and 126 groups forRG2 (containing 180 al-
ternatives). The importance of this computation was the
discovery of tasks that appear only in redundant alterna-
tives (18 forRG1 and 5 forRG2). These tasks are re-
dundant and, therefore, their deployment is optional. For
example, our requirements model has two alternatives to
notify a meeting requester: notification via email to be
adopted when the person is often in office or has access to
Internet, and notification via mobile phone (such as voice
mail or SMS) that is adoptable when the staff is out of
the department and has no access to Internet. In both re-
search groups, researchers had always access to Internet
even when researchers were out of the department. Thus,
the option of communication via mobile phone becomes
redundant and the system can exclude the deployment of
tasks needed to establish it.

– Augmentation processing. Augmenting the requirements
model with default non-contextual alternatives is the so-
lution we proposed when the model lacks applicable con-
textual alternatives to meet goals, i.e., to convert negative
samples to positive. However, it is not always possible
to find a realizable default augmentation. For example,
some of the collected samples ofRG2 were negative due
to the fact that the group secretary and the department
secretary were busy or having a day off. Finding a default
non-contextual human-supported alternative was not pos-
sible and the sample could not be converted to positive.
RE-Context performed the analysis we explained in Sec-
tion 3, which locates a set of augmentations to the goal
model and organizes these individual augmentations as
alternative solutions in the form of sum-of-products for-
mula. Then, analysts need to specify which augmenta-
tions are realizable. On the basis of this specification, a
number of solutions will be marked realizable and, con-
sequently, some negative samples will be convertible to
positive. The total number of augmentations proposed to
convert the negative samples to positive was 6 forRG1

and 4 forRG2. Out of these augmentations, the number
of realizable ones was 2 inRG1 and 2 inRG2. This en-
abled us to convert 5 of the 8 negative samples inRG1

to positive (3 of 5 inRG2). For example, one sample of
RG1 was negative due to the fact that one overseas staff
could not speak a language in common with the techni-
cian to understand the use of video-conferencing. The
default solution was to develop a demo in multiple lan-
guages.

Requirements-Driven Deployment 17

Fig. 14 The results of analysing the room booking contextual goal model for two research groups

5.2 Discussion of the obtained results

The evaluation of our approach for customizing requirements
to a deployment environment showed promising results (as
reported in Fig. 15). A considerable percentage of contexts
(58.8% forRG1 and 61.8% forRG2) were shown removable.
Removable contexts include those having static—either true
or false—value in all the collected samples, those removed
because appearing only in useless alternatives, and those re-
moved when redundant alternatives are dropped. Removing
static contexts results in lower monitoring costs, as theirval-
ues are known a priori. Moreover, a considerable percentage
of tasks were shown removable (46.2% forRG1 and 48.1%
for RG2). The tasks appearing only in alternatives that are
useless, i.e., their contexts are false in all of the collected sam-
ples, should not be supported in the deployed system as they

are not executable. The tasks that appear only in alternatives
that are redundant are optional and thus can be removed to re-
duce costs. Moreover, our analysis has shown also a consider-
able quantity of negative samples where the contextual goal
model does not include alternatives tailored to support cer-
tain contexts in its deployment environment (23.5% inRG1

and 18.5% inRG2). The analysis also suggested places in
the requirements model where augmentations can convert the
negative samples to positive. Some augmentations were real-
izable and this led to convert 62.5% ofRG1 and 60% ofRG2

negative samples to positive. Such transformation will maxi-
mize operability of the system in its prospective environment.

Though our experiment included a considerable percent-
age of removable contexts and tasks, the costs saving is not
proportional to this percentage. The reason is the overlap be-
tween the resources needed for remaining and removed con-

18 Raian Ali et al.

Factor Research Group 1 Research Group 2

Removable contexts 20/34 = 58.8 % 21/34 = 61.8 %

True in all samples 3/34 = 8.8 % 3/34 = 8.8 %

False in all samples 3/34 = 8.8 % 2/34 = 5.9 %

Appear only in useless alternatives 3/34 = 8.8 % 12/34 = 35.3 %

Appear only in redundant alternatives 11/34 = 32.4 % 4/34 = 11.8 %

Removable tasks 24/52 = 46.2 % 25/52 = 48.1 %

Appear only in useless alternatives 6/52 = 11.5 20/52 = 38.5 %

Appear only in redundant alternatives 18/52 = 34.6 5/52 = 9.6 %

Negative Samples 8/34 = 23.5 % 5/27 = 18.5%

Samples convertible to positive 5/8 = 62.5 % 3/5 = 60 %

Fig. 15 Comparing the analysis outcome to the original goal model and collected samples

texts and tasks. For example, both tasks “send the room de-
tails to secretary via email” and “send room details to staffvia
mail” require gathering, storing, and updating the rooms data
(they need the same monitoring effort). Thus, the removal
of one of these tasks leads only to a partial saving of costs.
To precisely compute costs saving, we consider the resources
needed for task execution and context monitoring, similarly
to what we proposed in [18]. The explicit specification of
these resources allows for identifying overlaps between tasks
and contexts and, hence, for accurate calculation of costs and
savings. This enables better decision making about keeping
or removing redundant alternatives.

Our approach reveals shortcomings in a designed require-
ments model and, consequently, in the system to-be for ac-
commodating certain contextual variations in a deployment
environment. Our analysis proposes loci in the requirements
model where augmentation with other alternatives is desir-
able to maximize system ability in a certain environment. We
have discussed augmentation with default non-contextualized
alternatives that the system can support. However, this is just
one possibility to solve the problem. In many cases, the dis-
covery of these loci motivates changes in the organizational
environment. For example, we encountered samples where
there was no technician speaking a language in common with
an overseas researcher and explain to him about the use of
the equipments in the seminar rooms. In this case, the de-
ployed system can be augmented to support a default alterna-
tive, such as showing a demo. However, the solution could be
also at the organizational level by guaranteeing the presence
of at least one technical staff who speaks English. Our analy-
sis motivates also the organization where the system is to be
deployed to make changes that maximize the requirements
satisfaction likelihood.

5.3 Approach limitations and threats to validity

We discuss here the limitations of our approach and the threats
to internal and external validity of our evaluation on the room
booking case study. Table 3 summarizes the main threats to
internal and external validity.

Threats to internal validity
Th1. Experiment time period influence
Th2. Limited number of samples
Th3. Sampling was not transparent to participants
Threats to external validity
Th4. Other factors to support the analysts decisions are missing
Th5. Sampling is not always possible for privacy and security
concerns, law, monitoring costs, etc.
Th6. Experiments performed only in one domain

Table 3 Threats to internal and external validity

The definition of the sample collection period is a sen-
sitive decision to take. Indeed, the contextual variationsthat
may happen in one deployment environment could vary from
one period to another. This will influence the comprehensive-
ness of the samples collected and, therefore, the analysis re-
sults. This is an internal threat (Th1) to validity in our case
study, as we have studied the room booking scenarios be-
tween April and June, which is an active period in academia.
Probably, collecting samples in the vacation months, such as
August, would provide different results. However, for practi-
cal reasons we need to find a compromise between keeping
the samples collection time short and the accuracy of the anal-
ysis results. This leads to another internal threat (Th2), i.e.,
the relatively limited number of samples that we used which
probably does not cover all possible contextual variationsin
the deployment environment.

Moreover, the sampling process itself may need an auto-
mated system which means the development of another sys-
tem. For example, contextual information such as the location
changes of a person may need positioning systems, which
cannot be collected through survey forms. Interviewing do-
main experts and analysing user samples sets are possible
ways to overcome these issues. We leave the development
of these techniques for future work. In our case study, the in-
volvement of users (researchers, secretary, technicians,etc.)
in the sampling process is a threat to internal validity (Th3).
The sampling was not transparent to the system users. Indeed,
they had to fill in our designated forms and answer to our in-
terviews when sampling the environment.

Requirements-Driven Deployment 19

Further analysis is needed to support the analyst’s deci-
sions about the augmentations to support and the redundancy
to remove. Our analysis outputs alternative augmentationsto
support default solutions when the model lacks contextual-
ized alternatives, and leaves the choice between them to the
analyst. It also discovers the redundant alternatives and leaves
the choice of selecting which redundant alternatives to keep
and remove to the analyst. These decisions are not always
easy as they could be subject to different non-functional fac-
tors and quality measures such as maximizing fault tolerance,
accommodating user preferences, reducing development time
and operating costs, and so on. This is a threat to external va-
lidity (Th4). Future work includes providing better support to
the analyst in taking the right decisions. We aim to incorpo-
rate softgoals in the decision about which augmentations to
enact and what redundant elements to remove or keep.

Obtaining context information is not always straightfor-
ward due to several reasons. People usually have privacy con-
cerns that prevent the system from monitoring their behaviours,
location, activity, and so on. Some laws may impose con-
straints on monitoring contextual information without peo-
ple’s clear consent. Compliance with law might be hard to
judge and might differ from one location to another. More-
over, although obtaining more contextual information can max-
imize certainty while taking a context-based decision, there
could be a trade-off between the certainty and the required
costs to establish this monitoring. In our case study, and be-
cause we are members in the academic organization in which
the experiment was done, we have not faced such obstacles:
this is another threat to external validity (Th5). Our approach
still needs to deal with different issues related to monitoring
context (privacy concerns, law, costs, ..) and we leave thisfor
future work. An additional threat to external validity (Th6) is
that we draw our conclusions with respect to a single domain
(seminar rooms booking in academia). Perhaps, applying our
framework in other domains might reveal limitations in both
of our modelling foundations and deployment process.

6 Related Work

The research in context modelling, such as [24–27], is about
finding modelling constructs to represent software and user
context as well as reasoning about context. There is, how-
ever, a gap between the context model and software behaviour
model, i.e., between context and its use. Our work reduces
such a gap at the requirements level and allows for answer-
ing questions like: “how do we decide the relevant context?”,
“why do we need context?” and “how does context influence
software and user behaviour adaptation?”. Moreover, and
rather than representing context data directly and presuming
a prior knowledge of them, we proposed context analysis to
enable a systematic hierarchical refinement to analyse context
and reveal the facts and the data that define it.

Recently, several papers studied the relationship between
requirements and contextual variability. The comparison of
this paper to our previous work can be found in Table 1.

Salifu et al. [28,29] investigate the use of problem descrip-
tions to represent and analyse variability in context-aware
software. However, the nature of problem frames does not
help for representing high-variability. Goal models, instead,
incorporate a large space of alternatives in one compact hi-
erarchy. Moreover, quality measures, softgoals in goal mod-
els, are not a first-class requirement in problem frames and,
thus, goal models offer the basis of representing the influence
of contexts on these measures and prioritizing requirements
alternatives accordingly [18,10,12]. Lapouchnian et al. [30]
share with us similar vision of integrating context with in-
tentional variability captured by goal models. We have inves-
tigated more in this direction and defined a set of variation
points where context affects goal models with clear semantic
and a systematic way to analyse context. Such effort allows
us to develop a formal framework that natively supports au-
tomated reasoning.

Cheng et al. [31] deal with environmental uncertainty us-
ing KAOS goal models and conceptual domain models. Their
core contribution is to introduce tactics to mitigate uncer-
tainty. However, unlike us, they do not rely on sampling and
reflecting the actual contextual variability which character-
izes a certain operational environment. Thus, their mitiga-
tion strategies are based merely on the analyst’s expertiseand
knowledge. Amyot et al. [32] model the impact of context on
softgoals, using GRL models, in the context of service en-
gineering. By not relying on collected contextual data from
the operational environment where the system is to be de-
ployed, their approach heavily relies upon a domain expert
to perform the customization of the requirements model. Our
approach, instead, is more systematic as it models and anal-
yses explicitly the reasons and the method to follow when a
customization is to take place.

Software variability modelling—mainly feature models [33,
34]—concerns modelling a variety of possible configurations
of the software functionalities to allow for a systematic way
of tailoring a product upon stakeholder choices. These ap-
proaches do not bridge the gap between each functionality
and the context where this functionality can or has to be adopted,
the problem we tried to solve at the goal level. Recently,
several works recognized the role of context in the software
products derivation [35–37]. Our work, though proposed in
the area of goal-oriented requirements engineering, can be
adapted to complement contextual software product lines, pro-
viding a clear semantic of the relation between contexts and
features, an automated contextualized derivation process, a
systematic way to identify context itself, and a process to cus-
tomize a product during the deployment. Furthermore, our
work is in line, and has the potential to be integrated, with
the work in [38] and the FARE method proposed in [39],
that show possible ways to integrate features with domain
goals and knowledge to help for eliciting and justifying fea-
tures. Recent work [40] focuses on the selection of feature
model configurations that take into account soft constraints
that represent desired quality attributes. Unlike us, suchap-
proach does not explicitly consider contextual factors, which

20 Raian Ali et al.

are fundamental to discriminate between possible and inap-
plicable alternatives.

Requirements monitoring adds specific code to a running
system to gather information, mainly about the computational
performance, and reason if the running system is always meet-
ing its design objectives, and reconcile the system behaviour
to them if a deviation occurs [8]. The objective is to have
more robust, maintainable, and self-evolving systems. In [41],
the GORE (Goal-Oriented Requirements Engineering) frame-
work KAOS [5] was integrated with an event-monitoring sys-
tem (FLEA [42]) to provide an architecture that enables run-
time automated reconciliation between system goals and sys-
tem behaviour with respect to a priori known or evolving
changes of the system environment. A similar effort along
the same line is Wang’s requirements-driven diagnosis [43],
which diagnoses software errors and their influence at the re-
quirements level. Our work is also focused on monitoring.
Unlike such approaches, however, we provide an explicit no-
tion of context as a main driver to derive the requirements
to meet and the adoptable alternatives to meet them. The de-
ployment process we proposed can be adapted for runtime
adaptation and reconciliation, as relying on correct models is
fundamental to ensure runtime adaptation is in response to
threats to requirements and eventually leads to requirements
satisfaction.

Customizing goal models to fit to user skills and prefer-
ences was studied in [10,12]. Such work can be used at de-
ployment time where specific user skills and preference will
rule out some alternatives and, thus, the deployed system will
not need to support them. We envisage that a joint usage with
our approach would enrich the set of aspects the deployment
process can deal with. Liaskos et al. [23] study the variabil-
ity modelling under the requirements engineering perspec-
tive and propose a classification of the intentional variabil-
ity when OR-decomposing a goal. We focused on contextual
variability, i.e., the unintentional variability, which influences
the applicability and appropriateness of each goal model al-
ternative. Reasoning with goal models has been studied in
[44]. Adding context to goal models creates the need to inte-
grate contextual reasoning and goal reasoning. Our previous
and current work provides concrete answers to such need.

Pourshahid et al. [14] address a very important aspect
concerning the customization and the improvement of a sys-
tem, which is the alignment between business goals and the
business process. It extends the User Requirements Notation
(URN) [6,45] with Key Performance Indicators (KPIs) [46],
whose monitoring guides the alignment between goals and
a business process. KPIs concerns the actual operation of
the overall system and how the system performs. Context,
as proposed in our work, concerns the characteristics of the
environment surrounding the system. Each setting of such en-
vironment could activate certain requirements and make ad-
potable/inadoptable some of the system’s alternatives to fulfil
the activated requirements. Pourshahid et al. [47] introduce
aspectsas a mechanism to model the redesign patterns and
choose the best applicable patterns based on their impact on
different views of the system (process, goal, validation, and

performance). Such approach could be combined with ours
to allow for a comprehensive customization and adaptation
since we would be able to monitor both the characteristics of
the system environment and the operation of the system itself
in practice and decide what modification to do both at design
time and runtime.

The idea behind requirements testing is that testing has to
start with requirements, as code correctness is unachievable
in case requirements are incorrect [48,49]. Our work is sup-
portive to this argument especially when we design require-
ments for adaptive systems where the requirements model
represents a high-level abstraction of the behavior of the pro-
gram itself. Our work provides models and reasoning mech-
anisms to test and customize a requirements model to its de-
ployment environment. We also plan to develop requirements-
driven runtime adaptation, in line with the vision of require-
ments reflection [50], that maximizes this fitness continuously
and allows the system to learn from its experience in its op-
erational environment.

7 Conclusions and Future Work

In this paper, we have discussed deployment of requirements
models as an essential activity of software deployment. Our
argumentation is that requirements are not uniform and may
differ from one environment to another. We provided a con-
ceptual model, the contextual goal model, that explicitly cap-
tures the relation between context variations and requirements.
We showed how this model is customized to fit each par-
ticular environment in which the system is to be deployed.
Our process is based on exploring the system prospective
environment and collecting samples reflecting the truth val-
ues of the contexts specified in the requirements models and
then processing the model against the samples set. The pro-
cessing aims to discover useless and redundant parts of the
model. This, in turn, reduces the costs of the deployed system
and avoids deploying unnecessary functionalities. Moreover,
our proposed processing discovers loci in the model where
extra solutions are needed to handle contexts for which the
model lacks alternatives. This maximizes the operability of
the system in its host environment. We developed a formal
framework and an automated reasoning tool to support our
approach. We also outlined a methodological process that
guides the use of our framework to gather and deploy require-
ments.

We have presented a case study of deploying a require-
ments model for room reservation in an academic research
environment. The case study included 2 research groups and
their room reservations for meetings during 3 months. We
processed the requirements model that we developed for room
booking against the reported room reservations experience.
The processing aimed at customizing the requirements model
to its deployment environments. Our processing showed a
significant amount of detected unusabilities and redundancies
in the model. This is important to save the costs of deploy-
ing functionalities aimed to satisfy unnecessary requirements.

Requirements-Driven Deployment 21

On the other hand, we discovered several cases in which the
model lacks solutions for fulfilling the main requirements:
having a room booked. Discovering these cases and augment-
ing the model with additional alternatives will maximize the
system ability to meet users requirements in the deployment
environment. The application of our framework in practice
(Section 5) gave us insights on several challenges to address
in a future work:

– Certain characteristics of the environment represent con-
straints on the system behaviour which are hard to cap-
ture by our contextual goal model. For example, the secu-
rity and privacy policies in an organization might have
a strong impact on the applicability of certain alterna-
tives and the ability and permission to monitor certain
contexts. By considering these organizational character-
istics, we would be able to customize more holistically a
requirements model.

– We assume that a high percentage of context variations
happens within a period of time that is decidable by the
analyst. However, this assumption may not be true since
some context variations could be infrequent or periodic.
Thus, the environment sampling period might need to be
longer than desirable. Devising techniques to maximize
the comprehensiveness of the collected samples in repre-
senting the deployment environment and at the same time
reducing the sampling period is part of our future work.

– Our approach enables detection of unusability, redundan-
cies, and shortcomings in the requirements model with
respect to its deployment environment. While the ana-
lyst’s decisions about removing unusable parts of the re-
quirements model are often easy to take, decisions about
what redundancies to accept and what augmentations to
implement are often complex decisions. The reason for
this complexity is that multiple factors play a role in that
decision such as increasing flexibility and fault tolerance
and accommodating different users preferences and so on.
Developing a multi-criteria decision making techniques
specialized for this problem is another research problem
we aim to solve.

– Our approach deals with systems that are in the deploy-
ment stage. However, the system runtime operation might
also reveal lack of alternatives, redundancy, uselessness,
static contexts and so on. Maximizing the system aware-
ness of its own behaviour and reflection to its current
status autonomously or semi-autonomously is another re-
search question to address in our future work. This deals
with more challenging problems related to modifying al-
ready deployed and operating system at runtime to take
benefit from the history of operation as a continuous pro-
cess.

Acknowledgements

This work has been partially funded by the EU Commis-
sion, through the ANIKETOS and FastFix projects and by
Science Foundation Ireland grant 10/CE/I1855 to Lero - the

Irish Software Engineering Research Centre (www.lero.ie).
We also thank Vitor E. Silva Souza for discussions that en-
riched the ideas of this paper.

References

1. Anthony Finkelstein and Andrea Savigni. A Framework for Re-
quirements Engineering for Context-Aware Services. InProc.
of the 1st International Workshop From Software Requirements
to Architectures (STRAW 01), 2001.

2. Eric Yu. Modelling Strategic Relationships for Process Reengi-
neering.Ph.D. Thesis, University of Toronto, 1995.

3. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto
Giunchiglia, and John Mylopoulos. Tropos: An Agent-
Oriented Software Development Methodology.Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

4. Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards
requirements-driven information systems engineering: The tro-
pos project.Information Systems, 27(6):365–389, 2002.

5. Anne Dardenne, Axel van Lamsweerde, and Steve Fickas.
Goal-directed Requirements Acquisition.Science of Computer
Programming, 20(1-2):3–50, 1993.

6. International Telecommunication Union (ITU-T). User Re-
quirements Notation (URN) - Language Definition. Recom-
mendation Z.151 (11/08). Geneva, Switzerland, 2008.

7. John Mylopoulos, Lawrence Chung, and Eric Yu. From Object-
oriented to Goal-oriented Requirements Analysis.Communica-
tions of the ACM, 42(1):31–37, 1999.

8. Steve Fickas and Martin Feather. Requirements Monitoring
in Dynamic Environments. InProc. of the 2nd IEEE Inter-
national Symposium on Requirements Engineering, pages 140–
147, 1995.

9. Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer.
From Goals to Components: a Combined Approach to Self-
management. InProc. of the 2008 International Workshop on
Software Engineering for Adaptive and Self-managing Systems,
pages 1–8, 2008.

10. Bowen Hui, Sotirios Liaskos, and John Mylopoulos. Require-
ments Analysis for Customizable Software: A Goals-skills-
preferences Framework. InProc. of the 11th IEEE International
Conference on Requirements Engineering (RE’03), pages 117–
126, 2003.

11. Sotirios Liaskos, Sheila A. McIlraith, Shirin Sohrabi,and John
Mylopoulos. Representing and reasoning about preferencesin
requirements engineering.Requirements Engineering, 16:227–
249, 2011. 10.1007/s00766-011-0129-9.

12. Sotirios Liaskos, Sheila McIlraith, and John Mylopoulos. Rep-
resenting and Reasoning with Preference Requirements using
Goals. Technical report, Dept. of Computer Science, University
of Toronto, 2006. ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

13. L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals for
requirements-driven adaptation. InThe 18th IEEE International
Requirements Engineering Conference (RE), pages 125 –134,
27 2010-oct. 1 2010.

14. Alireza Pourshahid, Daniel Amyot, Liam Peyton, Sepideh
Ghanavati, Pengfei Chen, Michael Weiss, and Alan Forster.
Business process management with the user requirements no-
tation. Electronic Commerce Research, 9:269–316, 2009.
10.1007/s10660-009-9039-z.

15. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-
based Variability for Mobile Information Systems. InProc.

22 Raian Ali et al.

of the 20th International Conference on Advanced Information
Systems Engineering (CAiSE’08), volume 5074 ofLNCS, pages
575–578. Springer, 2008.

16. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-
based Software Modeling and Analysis: Tropos-based Ap-
proach. InProc. of the 27th International Conference on Con-
ceptual Modeling (ER 2008), volume 5231 ofLNCS, pages
169–182. Springer, 2008.

17. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Mod-
eling Framework for Self-Contextualizable Software. InProc.
of the 14th International Conference on Exploring Modeling
Methods in Systems Analysis and Design (EMMSAD 2009),
volume 29 ofLNBIP, pages 326–338. Springer, 2009.

18. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal-based
Framework for Contextual Requirements Modeling and Analy-
sis. Requirements Engineering, 15(4):439–458, 2010.

19. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Reasoning
about Contextual Requirements for Mobile Information Sys-
tems: a Goal-based Approach. Technical Report DISI-10-029,
University of Trento, April 2010.

20. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Goal-based
self-contextualization. InIn the Forum of the 21st International
Conference on Advanced Information Systems (CAiSE 09 - Fo-
rum), volume Vol-453, pages 37–42. CEUR-WS, 2009.

21. A. Lapouchnian, Y. Yu, and J.: Mylopoulos. Requirements-
driven design and configuration management of business pro-
cesses. InProceedings of the 5th International Conference
on Business Process Management (BPM 2007), volume LNCS
Vol. 4714, pages 246–261. Springer-Verlag, 2007.

22. Colette Rolland, Carine Souveyet, and Camille Ben Achour.
Guiding Goal Modeling using Scenarios.IEEE Transactions
on Software Engineering, 24(12):1055–1071, 1998.

23. Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and
John Mylopoulos. On Goal-based Variability Acquisition and
Analysis. InProc. of the 14th IEEE International Conference
on Requirements Engineering (RE’06), pages 76–85, 2006.

24. Karen Henricksen and Jadwiga Indulska. A Software Engineer-
ing Framework for Context-Aware Pervasive Computing. In
Proc. of the 2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom’04), pages 77–86,
2004.

25. Stephen S. Yau and Junwei Liu. Hierarchical Situation Mod-
eling and Reasoning for Pervasive Computing. InProc. of the
4th IEEE Workshop on Software Technologies for Future Em-
bedded and Ubiquitous Systems (SEUS’06), pages 5–10, 2006.

26. Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng
Pung. Ontology Based Context Modeling and Reasoning using
OWL. In Proc. of the 2nd IEEE Annual Conference on Perva-
sive Computing and Communications Workshops, pages 18–22,
2004.

27. Tarak Chaari, Dejene Ejigu, Frédérique Laforest, andVasile-
Marian Scuturici. A Comprehensive Approach to Model and
Use Context for Adapting Applications in Pervasive Environ-
ments. Journal of Systems and Software, 80(12):1973 – 1992,
2007.

28. Mohammed Salifu, Yijin Yu, and Bashar Nuseibeh. Specify-
ing Monitoring and Switching Problems in Context. InProc. of
the 15th International Conference on Requirements Engineer-
ing (RE’07), pages 211–220, 2007.

29. Mohammed Salifu, Bashar Nuseibeh, Lucia Rapanotti, and
Thein Than Tun. Using Problem Descriptions to Represent
Variabilities for Context-aware Applications. InProc. of the 1st

International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS 2007), pages 149–156, 2007.

30. Alexei Lapouchnian and John Mylopoulos. Modeling Do-
main Variability in Requirements Engineering with Contexts.
In Proc. of the 28th International Conference on Conceptual
Modeling (ER 2009), volume 5829 ofLNCS, pages 115–130.
Springer, 2009.

31. Betty Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A
Goal-Based Modeling Approach to Develop Requirements of
an Adaptive System with Environmental Uncertainty. InModel
Driven Engineering Languages and Systems, volume 5795 of
LNCS, pages 468–483. Springer, 2009.

32. Daniel Amyot, Hanane Becha, Rolv Braek, and Judith E. Y.
Rossebo. Next Generation Service Engineering. InProc. of the
1st ITU-T Kaleidoscope Academic Conference on Innovations
in NGN: Future Network and Services (K-INGN 2008), pages
195–202, 2008.

33. Klaus Pohl, Günther Böckle, and Frank van der Linden.Soft-
ware Product Line Engineering: Foundations, Principles, and
Techniques. Springer, 2005.

34. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob
Shin, and Moonhang Huh. FORM: A feature-oriented reuse
method with domain-specific reference architectures.Annals of
Software Engineering, 5:143–168, 1998.

35. Herman Hartmann and Tim Trew. Using Feature Diagrams with
Context Variability to Model Multiple Product Lines for Soft-
ware Supply Chains. InProc. of the 12th International Software
Product Line Conference (SPLC’08), pages 12–21. IEEE Com-
puter Society, 2008.

36. Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe
Lahire, Sabine Moisan, and Jean-Paul Rigault. Modeling Con-
text and Dynamic Adaptations with Feature Models. In4th In-
ternational Workshop Models@run.time (MRT’09), 2009.

37. Carlos Parra, Xavier Blanc, and Laurence Duchien. Context
Awareness for Dynamic Service-oriented Product Lines. In
Proc. of the 13th International Software Product Line Confer-
ence (SPLC’09), pages 131–140, 2009.

38. Yijin Yu, Julio C. S. do Prado Leite, Alexei Lapouchnian,
and John Mylopoulos. Configuring Features with Stakeholder
Goals. InProc. of the 2008 ACM symposium on Applied com-
puting (SAC’08), pages 645–649, 2008.

39. Muthu Ramachandran and Pat Allen. Commonality and Vari-
ability Analysis in Industrial Practice for Product Line Improve-
ment. Software Process: Improvement and Practice, 10(1):31–
40, 2005.

40. Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and
Dragan Gasevic. Configuring Software Product Line Feature
Models Based on Stakeholders’ Soft and Hard Requirements.
In Software Product Lines: Going Beyond, volume 6287 of
LNCS, pages 16–31. Springer, 2010.

41. Martin Feather, Steve Fickas, Axel Van Lamsweerde, and
Cristophe Ponsard. Reconciling System Requirements and
Runtime Behavior. InProc. of the 9th international workshop
on Software specification and design (IWSSD’98), 1998.

42. Don Cohen, Martin S. Feather, K. Narayanaswamy, and
Stephen S. Fickas. Automatic Monitoring of Software Require-
ments. InProc. of the 19th International Conference on Soft-
ware Engineering (ICSE’97), pages 602–603, 1997.

43. Yiqao Wang, Sheila McIlraith, Yijin Yu, and John Mylopoulos.
An Automated Approach to Monitoring and Diagnosing Re-
quirements. InProc. of the 22nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’07), pages
293–302, 2007.

Requirements-Driven Deployment 23

44. Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and
Roberto Sebastiani. Reasoning with Goal Models. InProc.
of the 21st International Conference on Conceptual Modeling
(ER’02), pages 167–181, 2002.

45. Michael Weiss and Daniel Amyot. Business process model-
ing with urn. International Journal of E-Business Research,
1(3):63–90, 2005.

46. Andreas Kronz. Managing of process key performance indica-
tors as part of the aris methodology.Corporate performance
management, pages 31–44, 2006.

47. Alireza Pourshahid, Gunter Mussbacher, Daniel Amyot, and
Michael Weiss. Toward an aspect-oriented framework for busi-
ness process improvement.International Journal of Electronic
Business, 8(3):233–259, 2010.

48. Suzanne Robertson and James Robertson. Reliable Require-
ments through the Quality Gateway. InProc. of the 10th Inter-
national Workshop on Database & Expert Systems Applications
(DEXA’99), pages 357–363, 1999.

49. Suzanne Robertson. An Early Start to Testing: How to Test
Requirements. InProc. of the EuroSTAR conference, 1996.

50. Nelly Bencomo, Jon Whittle, Peter Sawyer, Anthony Finkel-
stein, and Emmanuel Letier. Requirements Reflection: Require-
ments as Runtime Entities. InProc. of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering (ICSE 2010),
pages 199–202, 2010.

