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Abstract. Modern information systems are large-sized and comprise multiple
heterogeneous and autonomous components. Autonomy enables decentralization,
but it also implies that components providers are free to change, retire, or intro-
duce new components. This is a threat to security, and calls for a continuous veri-
fication process to ensure compliance with security policies. Existing verification
frameworks either have limited expressiveness—thereby inhibiting the specifi-
cation of real-world requirements—, or rely on formal languages that are hardly
employable for modeling and verifying large systems. In this paper, we overcome
the limitations of existing approaches by proposing a framework that enables:
(1) specifying information systems in SecBPMN, a security-oriented extension
of BPMN; (2) expressing security policies through SecBPMN-Q, a query lan-
guage for representing security policies; and (3) verifying SecBPMN-Q against
SecBPMN specifications via an implemented query engine. We report on the ap-
plicability of our approach via a case study about air traffic management.
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1 Introduction

Information systems are becoming increasingly large, complex, and decentralized. Air
Traffic Management (ATM) systems, smart grids, and smart cities are not simple mono-
lithic systems, but rather they consist of a high number of autonomous, heterogeneous,
and mutually interdependent components. These systems require new design techniques,
in order to prevent crashes with effects on both organizations and society [33].

These systems manage a large amount of private and confidential information; as
such, their design shall ensure information assurance and security both in technical
terms and from an organizational perspective [26]. Business process models are an ad-
equate abstraction to do so, for they express an information system in terms of the
interactions between humans, organizations, and technical systems.

Several modeling languages have been proposed that extend BPMN (Business Pro-
cess Modelling and Notation) [23]—the de-facto standard notation for representing
business processes—with security annotations that individual BPMN elements shall
comply with [26,34]. For example, Rodriguez et al. [26] extended BPMN with a prede-
fined set of security annotations (e.g., attack/harm detection and privacy) that constrain
the execution of the annotated tasks of the business process.



However, the security annotations in [26] constrain individual elements in a business
process, and do not allow expressing security policies that specify the admissible be-
havior of the whole business process. Some extensions of BPMN employ a predefined
set of policies—BPMN patterns which specify the behavior of the business process—
but they do not allow the definition of custom security policies [6, 20]. This is the case,
for instance, of SecureBPMN [6], which introduces security elements for expressing,
e.g., separation and binding of duties.

Furthermore, business process modelers need to verify whether a process model
complies with the specified policies. This verification is required not only when de-
signing the process, but also whenever the participating components do change after
its deployment. For example, in an ATM system, a failure in the pilot to control tower
communication component requires a quick reconfiguration of the system, which shall
be checked for compliance with the security policies.

Existing approaches for compliance checking are inadequate: some focus on general-
purpose policies and do not provide support to security policies [3, 11, 17, 28], while
others use a too limited set of policies, mainly concerning access control [19, 20, 26].

In this paper, to overcome the limitations of existing approaches, we propose a
framework for modeling and verifying the compliance of a business process model
with a set of security policies. To do so, we take BPMN-Query (BPMN-Q) [3] as our
baseline; BPMN-Q is a query language that enables expressing and verifying generic
queries over a BPMN model. We extend BPMN-Q with a number of annotations for
expressing security policies. We make the following contributions:

1. The SecBPMN language, which extends BPMN with security annotations.
2. SecBPMN-Q, an extension of BPMN-Q for specifying security policies as queries.
3. An implemented framework for modeling in SecBPMN, specifying security poli-

cies in SecBPMN-Q, and running SecBPMN-Q queries against SecBPMN models.
4. We evaluate the applicability of our approach on a case study.

The rest of the paper is structured as follows. Section 2 describes our baseline. Sec-
tions 3 and 4 introduce SecBPMN and SecBPMN-Q, respectively. Section 5 discusses
related work and shows how we applied our approach on a case study. Finally, Section 6
presents our conclusions and outlines future directions.

2 Baseline

In this section we briefly introduce the baseline of our research: the BPMN-Q language
for querying business process models, and the RMIAS security reference model.

While BPMN is an effective means for expressing the interactions among the com-
ponents in a complex system, it does not offer the possibility to verify whether certain
critical properties of the model do hold. For example, when modeling the landing proce-
dure in air traffic management, one cannot automatically verify with BPMN that pilots
do confirm the landing trajectory of the plane.

Visual analysis of BPMN models works for small scenarios, but it is ineffective
when many models exist, or when they are as large as hundreds of nodes. Moreover,
when safety and security properties are concerned, relying on an informal analysis is not



an option, due to the harmful effects of adopting a model that violates them. BPMN-Q is
a diagrammatic query language which partially overcomes this limitation, by expressing
properties concerning business process models through graphical queries that can be
checked against a model [4]. These queries can be seen as patterns that a given BPMN
model should comply with. BPMN-Q introduces a set of relations that are functional to
define the queries, i.e. the concepts of path, negative path, negative flow as well as an
extension of the “data object” element that enable characterizing the state of the object.

Figure 1 shows an example of a BPMN-Q query (taken from our SWIM ATM case
study3). The query enables checking whether the flight plan (Reference Business Tra-
jectory or simply RBT) is approved and if the landing documents are checked at least
once. The query will match against all business processes where the first activity “Plane
RBT generation service” generates the data object “RBT [Proposed]” (between brack-
ets is indicated the state of the data object) and other two activities are executed: (i)
“Control Tower communication service” generates the data object “RBT [Accepted]”;
(ii) any activity (“@Y”) reads the data object “Landing documents [Approved]”.

Fig. 1. Exmple of a BPMN-Q query

BPMN-Q enables expressing generic properties over BPMN elements, but does not
support the specification of security properties. To overcome this limitation, the lan-
guages proposed in this paper extend BPMN and BPMN-Q with primitives for spec-
ifying and querying security properties, which we define based on a state-of-the-art
reference model for information security. A prominent family of reference models ex-
tends the Confidentiality Integrity Availability (CIA) triad [24]. However, their ade-
quacy has been questioned for they characterize a too limited set of properties of a
system [25]. Later, more complete reference models were proposed, for example Mc-
Cumber’s cube [18], which analyzes system security from three different perspectives:
information states, critical information characteristics and security measures. The Busi-
ness Model for Information Security (BMIS) [1] focuses on business environments,
and consists of four interconnected elements: organization design and strategy element,
people element, process element and technology element. In our work, we choose the
Reference Model on Information Assurance and Security (RMIAS) [7], as it is the re-
sult of an analysis and classification of security aspects proposed by the most known

3 The System Wide Information Management (SWIM) [2] is a next-generation communication
system which enables the secure interchange of information among ATM decision makers. We
use it to evaluate the languages in Section 5



reference models on information assurance and security. As far as our knowledge goes,
it proposes the most comprehensive set of security aspects, that are listed in Table 1.

Name Definition

Accountability An ability of a system to hold users responsible for their actions (e.g. misuse
of information).

Auditability An ability of a system to conduct persistent, non-by passable monitoring of
all actions performed by humans or machines within the system.

Authenticity An ability of a system to verify identity and establish trust in a third party and
in information it provides.

Availability A system should ensure that all system’s components are available and oper-
ational when they are required by authorised users.

Confidentiality A system should ensure that only authorised users access information.

Integrity A system should ensure completeness, accuracy and absence of unauthorised
modifications in all its components.

Non-Repudiation
The ability of a system to prove (with legal validity) occurrence/non-
occurrence of an event or participation/non-participation of a party in an
event.

Privacy A system should obey privacy legislation and it should enable individuals to
control, where feasible, their personal information (user-involvement).

Table 1. Security aspects in RMIAS [7]

3 SecBPMN: a modeling language for secure business processes

We extend BPMN with security annotations covering each of the security aspects in
the RMIAS reference model (see Table 1). Every annotation has a graphical syntax
and is linked with an existing element of a BPMN model: an activity, a data object, or
message flow. Moreover, annotations have attributes that security designers can use to
specify detailed information on the security mechanisms4 that enforce the policy. All
attributes are optional but one: the BPMN element linked with the annotation.

Specifically, our language extends the subset of BPMN—that is supported by BPMN-
Q—for specifying orchestrations, which enables expressing interactions among infor-
mation system components: activities, gateways and data objects. Each security anno-
tation is formalized in terms of one or more predicates, one for every type of BPMN
element the annotation can be linked with.

Our graphical syntax was carefully designed according with Moody’s guidelines for
increasing the usability and comprehensibility of modeling languages [21]. The anno-
tations share three common visual variables: they all have an orange fill color, a solid
texture, and a circular shape; they differ in the icon in the middle of the circle. Every
security annotation has a visual distance of three from non-security annotations, and a

4 They define the low level (software and hardware) functions that implement the controls im-
posed by the policy [31]



visual distance of one from other security annotations. We decide to use icons instead of
abstract symbols because icons are easy to remember and faster to recognize [21]. Leit-
ner et al. [14–16] conducted empirical studies to propose guidelines for representing a
set of security aspects. We did not apply such suggestions because they conflict with the
recommendation by the security experts that helped us define the security annotations
and, moreover, the set of security aspects Leitner et al. took into account covers only
partially the security aspects proposed in RMIAS.

Figure 2 shows an example of BPMN extended with security annotations, which
shows part of a service composition, offered by different service providers, intended
to enable flight tickets booking. There, the security annotations specify the security
aspects that the implemented services will comply with. The annotations are defined in
Table 2 and explained below.

Fig. 2. Example of a SecBPMN business process model

Accountability. It applies only to activities, and expresses the need of monitoring a set
of users when executing the activity. Thus, there is only one corresponding predicate
named AccountabilityAct. It has three parameters: a is the activity whose execution has
to satisfy the security aspect corresponding to this type of annotation, enfBy is a set of
security mechanisms used to enforce accountability for the activity, monitored is the set
of users which are monitored.

If the activity is executed by a user that is not in monitored, the security aspect
is satisfied without using the enforcement mechanism. This situation would typically
occur with trusted users that do not need be monitored. Security designers can specify
they keyword ALL in monitored, to indicate that all users are held for their actions.

Consider, for example, the predicate AccountabilityAct(“Web interface service - in-
putData”, {RBAC}, {customer}), which details one of the accountability security an-
notations in Figure 2. The first attribute contains the activity linked with the security
annotation, the second one indicates that RBAC (Role-Based Access Control) [9] will
be used to enforce accountability, while the third attribute specifies that only customers
have to be monitored while executing that activity.



AccountabilityAct (a: Activity, enfBy: {SecMechanisms},
monitored: {Users})

AuditabilityAct (a: Activity, enfBy: {SecMechanisms}, frequency: Time)
AuditabilityDO (do: DataObject, enfBy: {SecMechanisms}, frequency: Time)
AuditabilityMF (mf: MessageFlow, enfBy: {SecMechanisms},

frequency: Time)
AuthenticityAct (a: Activity, enfBy: {SecMechanisms}, ident: Bool, auth: Bool,

trustValue: Float)
AuthenticityDO (do: DataObject, enfBy: {SecMechanisms})
AvailabilityAct (a: Activity, enfBy: {SecMechanisms}, level: Float)
AvailabilityDO (do: DataObject, enfBy: {SecMechanisms}, authUsers:

{Users}, level: Float)
AvailabilityMF (mf: MessageFlow, enfBy: {SecMechanisms}, level: Float)
ConfidentialityDO (do: DataObject, enfBy: {SecMechanisms},

readers: {Users}, writers: {Users})
ConfidentialityMF (mf: MessageFlow, enfBy: {SecMechanisms},

readers: {Users}, writers: {Users})
IntegrityAct (a: Activity, enfBy: {SecMechanisms}, personnel: Bool,

hardware: Bool, software: Bool)
IntegrityDO (do: DataObject, enfBy: {SecMechanisms})
IntegrityMF (mf: MessageFlow, enfBy: {SecMechanisms})
NonRepudAct (a: Activity, enfBy: {SecMechanisms}, execution: Bool)
NonRepudMF (mf: MessageFlow, enfBy: {SecMechanisms},

execution: Bool)
PrivacyAct (a: Activity, enfBy: {SecMechanisms}, sensitiveInfo: {Info})
PrivacyDO (do: DataObject, enfBy: {SecMechanisms},

sensitiveInfo: {Info)
Table 2. Security annotations of SecBPMN: predicates and graphical syntax

Auditability. It introduces three variants of security annotation, which are used to ex-
press that it should be possible to verify different aspects of the business process: (i) Au-
ditabilityAct indicates that it should be possible to keep track of all the actions performed
by the executor of the activity a when trying to execute that activity; (ii) AuditabilityDO
indicates that it should be possible to keep track of all the actions that manage (e.g.
write, read, store) the data object do; (iii) AuditabilityMF indicates that it should be pos-
sible to keep track of all the actions executed to handle the communication (send and
receive actions) within the message flow mf.

The three predicates share two parameters: enfBy to express a specific set of security
mechanisms to be used, and frequency to specify how frequently the security checks are
performed. If frequency is set to zero, the continuous verification is required.

For instance, consider the predicate AuditabilityAct(“Background check service”, {},
10d), which formalizes one of the auditability annotations in Figure 2. It applies to
activity Background check service, it does not require a specific technology for checking
auditability, and it requires audits to be performed every 10 days.

Authenticity. It comes in two versions, depending on which BPMN elements the an-
notation applies to. AuthenticityAct imposes that identity and/or authenticity of users of



activity a are verified. The attribute enfBy is the set of security mechanisms to be used
while trustValue is the minimum level of trust [12] the executor of activity a must have.
If attribute ident is true, anonymous users should not take part in the execution of the ac-
tivity, while if auth is set to true, the identity of users should be verified. AuthenticityDo
indicates that it should be possible to prove the data object do is genuine, i.e. it should
be possible to prove that it was not modified by unauthorized parties, and to prove the
identity of the entity who generated and/or modified it.

For example, consider the predicate AuthenticityDO (“Visa”, {TLS, X.509}), which
formalizes an authenticity security annotation in Figure 2. The predicate specifies that
the integrity of Visa data object should be guaranteed using TLS (Transport Security
Layer) and X.509 security mechanisms.

Availability. It applies to three BPMN elements, hence we defined three different ver-
sions: (i) AvailabilityAct specifies that the activity a should be executed every time it’s
specified in the business process; (ii) AvailabilityDO specifies that the data object do
should be available when required by the authorized users specified in authUsers at-
tribute; (iii) AvaliabilityMF specifies that it is always possible to communicate through
the message flow mf.

The predicates share two parameters: enfBy, described above, and level, i.e., the
minimum time percentage that the resource (i.e., activity, data object or message flow,
depending on the variant of availability annotation) should be available. In Availabil-
ityDO, security designers can specify that all users are authorized to request the data
object, simply specifying the keyword ALL in the attribute authUsers.

For instance, the predicate AvailabilityAct( “Web interface service - ShowFlights”, {
SAVE }, 99.5) specifies that Web interface service - ShowFlights has to process at least
99.5% of the total requests, using the SAVE (Source Address Validity Enforcement)
protocol to prevent denial of service attacks.

Confidentiality. It has two variants: ConfidentialityDO which specifies the data object
do can be accessed only by authorized users, and ConfidentialityMF which specifies that
only authorized users can use (i.e send or receive) the message flow mf. Both predicates
share three parameters: enfBy, already described; readers i.e. the set of users that are
authorized to read the data object (or receive from the message flow); writers i.e. the
set of users that are authorized to write the data object do (or send through the message
flow). The attributes readers and writers allow the usage of the keyword ALL to specify
that all the users are authorized.

For instance, consider the predicate ConfidentialityMF ( mf( “Web interface ser-
vice - inputData”,“Visa check service”), {TLS, RBAC}, {controlAuthority, VisaOwner},
{VisaOwner}), which details one of the confidentiality annotations in Figure 2. It spec-
ifies that only the users controlAuthority and VisaOwner can receive from the mes-
sage flow between Web interface service - inputData and Visa check service, and only
VisaOwner can send data objects through that channel. This security annotation must
be enforced using both TLS and RBAC security mechanisms.

Integrity. It comes in three variants: (i) IntegrityAct specifies that the functionalities of
activity a should be protected from intentional corruption. Attributes personnel, hard-
ware and software determine if respectively the personnel, hardware or software, in-



volved in the execution of the a, are protected from intentional corruption [10]; (ii)
IntegrityDO specifies that the data object do should be protected from intentional cor-
ruption [10]; (iii) IntegrityMF specifies that every message exchanged through mf should
be protected from intentional corruption. All the predicates share the attribute enfBy.

For instance, the predicate IntegrityAct(“Visa check service”, {} , false, true, true)
specifies one of the integrity annotations in Figure 2. It indicates that software and hard-
ware used to execute Visa check service will be protected from intentional corruption,
e.g. unauthorized modifications of the software or hardware robbery.

Non-Repudiation. It is defined as: NonRepudiationAct and NonRepudiationMF. The
former indicates that the execution (or non-execution) of activity a should be provable,
while the latter specifies that the usage (or non-usage) of the message flow mf should be
verifiable. Both the predicates have in common two attributes: enfBy, already described
before, and execution, which specifies if it’s required a proof of execution (when it is
set to true) or non-execution (when it is set to false) of activity a or message flow mf, in
the latter case is required a proof of usage of the communication channel.

For example, the predicate NonRepudiationAct(“Blacklist check service”, {}, false)
defines one of the non-repudiation annotations in Figure 2. It specifies that it should
be possible to prove that Blacklist check service has never been executed. There are
no constraints on the security mechanisms that have to be implemented because the
parameter is an empty set.

Privacy. It has two variants: (i) privacyACT specifies that activity a should be compliant
with privacy legislation, and it should let users to control their own data; (ii) privacyDO
is similar to the former one, but is targeted to a specific data object, specified in do. Both
predicates share two parameters: enfBy, already described before, and sensitiveInfo, i.e.
the set of sensitive information that must be protected.

For example, consider the predicate PrivacyDO(“Personal Info”, {} , {name, sur-
name, dateOfBirth, passportID}), which refines one of the privacy annotations in Fig-
ure 2. It specifies that the owner of name, surname, date of birth and passport id infor-
mation contained in the data object Personal Info should be able to delete the data and,
if the information are published, they should be anonymized as required by law, e.g.
publish only partial information.

4 Modeling and verifying security policies

We propose the SecBPMN-Q language, an extension of BPMN-Q query language, to
model security policies using the security annotations in Table 2. Our query language
permits to graphically model security policies, which is a useful feature to support the
communication of the specified policies with other stakeholders.

Consider, for example, a textual policy such as “The visa document must be authen-
ticated and it must be sent through a secure channel which assures the information will
not be sniffed or modified by third parties, implementing TLS and X.509 security mech-
anisms”. Figure 3 models this policy in SecBPMN-Q. Beside the two generic tasks and
the path, that are elements of BPMN-Q, the BPMN-Q query is enriched with a mes-
sage flow (represented as a dashed arrow) which exchange a data object called “Visa”.



When executed, this query will match any message flow between two activities which
exchange the “Visa” data object. The confidentiality annotation linked to the message
flow requires the communication channel to assure the data object will be received only
by “Visa owners” and “Control authority”. Moreover, the “Visa” data object has to be
protected by unauthorized modifications, implementing the “MD5” security mechanism
specified by integrity annotation, and its originality has to be provable using “TLS” and
“X.509” security mechanisms, specified in the authenticity annotation. Some optional
attributes are not specified, meaning that the security designer is imposing fewer con-
straints on the specific security mechanism. For example, in Figure 3, enfBy and writers
parameters of ConfidentialityMF are not defined (see the underscore placeholder), hence
the predicate will be satisfied, regardless the security mechanisms implemented or the
set of users authorized to send data objects through the channel.

Fig. 3. Example of a security policy and predicates expressed with SecBPMN-Q

In order to verify if the security policies modeled with SecBPMN-Q are satisfied by
a SecBPMN-Q business process, we extended the BPMN-Q engine with the implemen-
tation of Algorithm 1. The algorithm takes in input a SecBPMN business process and a
SecBPMN-Q security policy, and it verifies if there exists a path in the business process
that satisfies the security policy. For each path, the algorithm verifies if the security an-
notations of the business process are of the same type of those in security policy and
if they are linked to the same SecBPMN element. If so, the security annotations of the
security policy are verified against the security annotations in the business process.

A security annotation of a business process satisfies a security annotation of a se-
curity policy if all the attributes of the former are more restrictive of the attributes of
the latter. The function satisfies, Algorithm 2, checks this property. As first step, Al-
gorithm 2 checks if the security mechanisms specified in the security annotation of the
policy are all specified in the security annotation of the business process; if not, it re-
turns false, meaning that the security policy specifies at least a security mechanism that
is not implemented in the business process. After that, depending on the type of anno-
tation, the algorithm checks:
- accountability, if the monitored users specified in the policy are all monitored by the
business process;
- auditability, if the frequency of the checks specified in the policy is less or equal than
the one specified in the business process;



Algorithm 1 Compliance check of a security policy
COMPLIANCE(SecBPMN bp, SecBPMN-Q secPolicy)

1 paths← FINDPATH(bp, secPolicy)
2 if paths = ∅ then
3 return false
4 for each path ∈ paths do
5 satisfied← true
6 for each secAnnPolicy ∈ GETSECURITYANNOTATIONS(secPolicy) do
7 for each secAnnPath ∈ GETSECURITYANNOTATIONS(path) do
8 if secAnnPolicy.type = secAnnPath.type then
9 if CHECKTARGET(secAnnPath, secAnnPolicy) then

10 satisfied← SATISFIES(secAnnPath, secAnnPolicy) ∧ satisfied
11 if satisfied then
12 return true
13 return false

Algorithm 2 Pseudo-code of function “satisfies”
SATISFIES(SecurityAnnotation SecAnnPath, SecurityAnnotation SecAnnPolicy)

1 if (secAnnPolicy.enfBy 6⊆ secAnnPath.enfBy) then
2 return false
3 switch (SecAnnPolicy.type)
4 case AccountabilityAct :
5 return (SecAnnPolicy.monitored ⊆ SecAnnPath.monitored)
6 case AuditabilityAct ∨ AuditabilityDO ∨ AuditabilityMF :
7 return (SecAnnPolicy.frequency ≤ SecAnnPath.frequency)
8 case AuthenticityAct :
9 return ((SecAnnPolicy.ident→ SecAnnPath.ident)∧

10 (SecAnnPolicy.auth→ SecAnnPath.auth)∧
11 (SecAnnPolicy.trustValue ≤ SecAnnPath.trustValue))
12 case AvailabilityAct ∨ AvailabilityDO ∨ AvailabilityMF :
13 return (SecAnnPolicy.value ≤ SecAnnPath.value)
14 case ConfidentialityDO ∨ ConfidentialityMF :
15 return ((SecAnnPolicy.readers ⊆ SecAnnPath.readers)∧
16 (SecAnnPolicy.writers ⊆ SecAnnPath.writers))
17 case IntegrityAct :
18 return ((SecAnnPolicy.personnel→ SecAnnPath.personnel)∧
19 (SecAnnPolicy.hardware→ SecAnnPath.hardware)∧
20 (SecAnnPolicy.software→ SecAnnPath.software))
21 case NonRepudiationAct ∨ NonRepudiationMF :
22 return (SecAnnPolicy.exeution↔ SecAnnPath.exeution)
23 case privacyAct ∨ privacyMF :
24 return (SecAnnPolicy.sensitiveInfo ⊆ SecAnnPath.sensitiveInfo)

- authenticity, if ident attribute is true in the security annotation specified in the security
policy (every user has to be identified) then the same attribute specified in the business
process is true. The same criteria is used also for auth. The trustValue defined in the



security annotation of the security policy has to be less or equal that the value defined
in the one specified in the business process, since the security aspects corespondent to
the security annotation is satisfied when the trust required is less than the trust offered
by the executor of the activity;
- availability, if the value specified in the security annotation is less than the value spec-
ified in the business process;
- confidentiality, if the set of authorized users specified in the security annotation of the
security policy is a subset of the authorized users specified in the business process;
- integrity, if the personnel attribute (for what concerns IntegrityAct) is true in the secu-
rity policy then is true in the business process; the same criteria applies for hardware
and software. The other two variants of integrity do not need special criteria because
they are characterized only be the attribute enfBy, that is already checked in the first
two lines of the algorithm;
- non-repudiation, if the attribute execution is the same in both the security annotations,
since it specifies two different constraints;
- privacy, if the set of sensitive information specified in the security policy is included
in the set specified in the business process.

The SecBPMN engine fixes a number of bugged functionalities and comes with a
manual which explains the installation of all the required software packages 5.

When a SecBPMN-Q security policy is checked, the interface of SecBPMN-Q en-
gine presents to the users all the business processes in the repository that have at least
one path (graphically highlighted in the business process) that satisfies the security pol-
icy specified. Figure 4 shows the result of the SecBPMN-Q query shown in Figure 3
with the SecBPMN-Q process shown in Figure 2. The path highlighted in Figure 4 sat-
isfies the security policy in Figure 3: (i) the first activity of the path, i.e. “Web interface
service - inputData”, is linked with a message flow to the last activity of the path, i.e.,
“Visa check service”; (ii) the message flow is used to exchange the data object “Visa”
and it assures confidentiality of the transferred data object; (iii) integrity and authen-
ticity of the “Visa” data object are preserved. Assuming the predicates that details the
security annotations of the security policy are less restrictive of the predicates of the
business process, the path, and consequently the business process, satisfies the security
policy.

5 Discussion

The literature offers a number of graphical modeling languages for expressing security
aspects in business process models. These languages support a predefined set of secu-
rity policies that a designer can use; examples are SecureBPMN [6], other extensions
of BPMN e.g. [19, 26, 29, 34], or UML profiles, such as UMLsec [13]. The advantage
of these languages is that they are easy to learn and to use [21], thereby requiring a
moderately low effort for security designers to specify a secure business process. The
price to pay for using these modeling languages is in their limited expressiveness: these
graphical modeling languages do not permit to define custom security policies, thereby

5 The extended version of the engine and the manual can be found at
http://www.secbpmn.disi.unitn.it



Fig. 4. Result of the query based on SecBPMN-Q policy in Figure 3 against the SecBPMN model
in Figure 2

preventing the creation of domain-specific variants. As such, existing verification en-
gines (e.g., [28, 30, 32, 34, 35]) that enable the automated verification of these models
do also support a fixed set of hard-coded security policies.

Other graphical languages have been proposed to check the compliance of a process
with a query. For example, the Business Process – Query Language (BP-QL) [5] permits
to create graphical queries that are checked against processes modeled using the Web
Services Business Process Execution Language (WSBPEL) [22]. BP-QL permits to
search paths that are compliant with patterns that are defined through the query language
proposed; however, BPMN is not used as a basis for the query language. Similarly,
the Business Process Query Language (BPQL) [8] permits to graphically define both
queries and business process models using the same language. Unfortunately, BPQL is
not based on BPMN, hence the learning process is likely to be less quick than that with
by BPMN-Q, for this latter language is based on the well-known standard.

Other approaches build on formal languages (e.g., first-order logic, temporal logic,
etc.). This trend of work is characterized by high expressiveness. For example, Liu et
al. [17] propose a language and a framework which statically verifies a business process
against a formally expressed regulatory requirements, while Rushby [27] proposes a
language and a framework which checks if the code of a software system diverges from
specified behaviors (i.e., policies). The main drawback of these approaches is their low
usability, for they require a substantial effort for formalizing business processes and
security policies. Moreover, they can hardly be used at runtime, for their verification
requires more time, due to the use of a more expressive logics.

We applied SecBPMN and SecBPMN-Q on a case study about a SWIM [2] ATM
system, that is part of the Aniketos6 European project. The ATM system consists of a
large number of autonomous and heterogeneous components, which interact with each
other to enable air traffic management operations: pilots, airports personnel, national
airspace managers, meteo services, radars, etc. In such a complex information system,

6 www.aniketos.eu



ensuring security is critical, for security leaks may result in severe consequences on
safety and confidentiality. Experts from the Aniketos project analyzed the security re-
quirement document provided with the case study, and identified 27 active entities and
more that 60 security policies. We studied these security policies and modeled them
using SecBPMN-Q. After that, we examined the documentation about the case study
and we defined four business processes, each containing a number of nodes (activities
and gateways) between 28 and 58.

Being based on BPMN, we did not experience particular issues in modeling the
processes described in the documentation using SecBPMN. SecBPMN-Q enabled us
model all the security policies elicited by the experts but two cases:

– security policies concerning redundancy, which we could represent only at a high-
level of abstraction, without managing to express if the fallback activities have to
be performed by the same or a different executor. This limitation was inherited by
BPMN-Q, which does not support BPMN swim-lanes and pools. To overcome of
this limitation, we plan to introduce swim-lanes and pool elements in an extension
of SecBPMN/SecBPMN-Q;

– security policies about the non-delegation of an activity, i.e., preventing that third
parties execute one activity or parts of it. Even in this case, our future work includes
introducing additional elements to the meta-model to support this type of policy.

This preliminary evaluation shows the applicability of the proposed languages for
modeling security policies and security-annotated business processes in a non-trivial
scenario. However, more extensive evaluation is required for our approach, includ-
ing experimentation on other domains, assessing the scalability of our algorithms, and
checking how well novices and business process experts learn our languages.

6 Conclusions and future work

This paper has introduced SecBPMN and SecBPMN-Q, a modeling language for mod-
eling security-annotated business processes, and a query language for expressing secu-
rity policies, respectively. Our languages are supported by a toolset that supports both
modeling and the execution of queries. Moreover, we have applied our approach on a
complex information system for air traffic management.

Our approach overcomes the deficiencies of existing approaches, which either suf-
fer from a limited expressiveness—being graphical languages that support only a pre-
defined set of security annotations—or from limited scalability—begin reliant on ex-
pressive temporal logics, thereby inhibiting efficient runtime verification.

Our approach is not yet complete, and opens the doors to several future directions:
(1) apply the languages to different domains; (2) assess the learnability and usability of
our languages; (3) create a catalogue of patterns representing common security policies;
(4) determine the scalability of our automated reasoning mechanisms; (5) include our
engine in a workflow system to support security policy-compliant runtime reconfigura-
tion.
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