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Abstract. Text-based and model-based process descriptions have their
own particular strengths and, as such, appeal to different stakeholders.
For this reason, it is not unusual to find within an organization descrip-
tions of the same business processes in both modes. When considering
that hundreds of such descriptions may be in use in a particular orga-
nization by dozens of people, using a variety of editors, there is a clear
risk that such models become misaligned. To reduce the time and effort
needed to repair such situations, this paper presents the first approach to
automatically identify inconsistencies between a process model and a cor-
responding textual description. Our approach leverages natural language
processing techniques to identify cases where the two process represen-
tations describe activities in different orders, as well as model activities
that are missing from the textual description. A quantitative evaluation
with 46 real-life model-text pairs demonstrates that our approach allows
users to quickly and effectively identify those descriptions in a process
repository that are inconsistent.

1 Introduction

Organizations use business process models for documenting and improving busi-
ness operations as well as for the specification of requirements for information
systems [18]. As a result, many companies maintain huge process model repos-
itories, often including several hundred or even thousand models [32]. While
process models turn out to be useful artifacts in numerous contexts, many orga-
nizations are also aware of their limitations. One major challenge is that process
models are not intuitive to every employee. Particularly business professionals,
those who actually conduct the various process tasks, often do not feel confident
in reading and interpreting process models [7,11]. For this reason, the value of
maintaining text-based business process descriptions alongside model-based ones
has been recognized [24]. A textual description uses natural language to outline
the steps of a business process. While such a description may not be suitable to
exactly represent all complex aspects of a process [3], it has the advantage that
it can be understood by virtually everyone. Companies can thus ensure that in-
formation about their processes is widely accessible by using textual descriptions
next to using process models for analytical and technical purposes [1].



Despite its merits, the existence of multiple representation formats describing
the same process can lead to considerable problems as well. When a text and a
process model both describe the same business process, it is crucial to prevent
inconsistencies in terms of contradicting information. Inconsistencies occur in
particular when documents are being developed or maintained independently
from each other [31]. Once conflicts start occurring over time, the effort that
is needed to identify and clear up the differences is considerable, even more so
when organizations have already built up huge process repositories.

To effectively deal with the problem of inconsistencies between process model
and text, we propose in this paper a technique that automatically detects differ-
ences between textual and model-based process descriptions. The technique can
be used to quickly identify those process models in a collection that are likely to
diverge from their accompanying textual descriptions. This allows organizations
to focus their efforts on those processes that can be expected to contain such
inconsistencies. Focusing on such key processes is crucial for organizations, since
few have the resources required to analyze all their processes in detail [11]. Our
quantitative evaluation demonstrates that the proposed technique is indeed able
to quickly identify the vast majority of problematic processes in a collection of
model-text pairs obtained from practice.

The remainder of this paper is structured as follows. Section 2 explains the
research problem using an illustrative example. Section 3 discusses related work
and identifies the research gap of interest. Section 4 describes the proposed
approach for inconsistency detection. In Section 5, we present a quantitative
evaluation of the approach. Finally, we conclude the paper and present directions
for future research in Section 6.

2 Problem Illustration

To illustrate the challenges that are associated with the endeavor to detect in-
consistencies between textual and model-based process descriptions, consider the
model-text pair shown in Figure 1. It includes a textual and a model-based de-
scription of a bicycle manufacturing process. On the left-hand side, we observe
a textual description, which comprises eleven sentences. On the right-hand side,
a corresponding model-based description can be seen, expressed in the Business
Process Model and Notation (BPMN). The model contains nine activities, which
are depicted using boxes with rounded edges. The diamond shapes that contain a
plus symbol indicate concurrent streams of action; the diamond shapes contain-
ing a cross represent decision points. The gray shades suggest correspondences
between the sentences and the activities of the process model.

A closer look at the example reveals that many connections between the two
artifacts are evident. For example, there is little doubt that sentence (7) describes
the activity “reserve part” or that sentence (8) describes the activity “back-order
part”. In some cases, however, there is clearly an inconsistency between the two
process representations. For instance, there is no sentence that is related to
the activity “ship bicycle to customer”, i.e. that activity is missing from the



(1) A small company manufactures customized
bicycles.

(2) Whenever the sales department receives an
order, a new process instance is created. Accept

order?

(3) Amember of the sales department can then
reject or accept the order for a customized bike.

(4) If the order is is accepted, the order details are
entered into the ERP system.

Enter detailg
into ERP
system

(5) Then, the storehouse and the engineering
department (S&E) are informed.
Any part left

(6) The storehouse immediately processes the part unchecked?

list of the order.
(7) If a part is available, it is reserved.
(8) If it is not available, it is back-ordered.

Backorder
part

Select
unchecked
part

(9) This procedure is repeated for each item on the
part list.

(10) In the meantime, the engineering department
prepares everything for the assembling of the
ordered bicycle.

(11) If the storehouse has successfully reserved or
back-ordered every item of the part list and the
preparation activity has finished, the engineering
department assembles the bicycle.

Prepare for

Assemble
assembling ¢

bicycle

Fig. 1. A textual and a model-based description of a bicycle manufacturing process

textual description. Likewise, we can observe that sentences (4) and (5) occur in
a different order than the corresponding activities in the model.

In other cases it is less straightforward to decide on the comnsistency — or
lack thereof — between the representations. For example, the text of sentence (9)
simply indicates that a part of the process must be repeated. By contrast, the
model includes an activity, “select unchecked part”, which associates an explicit
action with this repetition. Whether or not sentence (9) actually describes an
activity, and thus should be considered an inconsistency, seems to be open for
debate. Ambiguous cases that are already difficult to resolve for human readers
pose even greater problems when texts are analyzed in an automatic manner.

The brief illustration of the model-text pair from Figure 1 shows that an ap-
propriate technique for detecting inconsistencies (i) must consider several types
of inconsistencies and (ii) must deal with considerable challenges caused by the
ambiguous nature of natural language.

3 Related Work

The work presented in this paper relates to two major streams of research:
semantic matching and transformations between model and text.

Semantic matching refers to the task of identifying relations between con-
cepts [15]. Particularly in the field of schema and ontology matching it has
received considerable attention [10,13,30]. However, in recent years the potential
of matching was also recognized in the domain of process modeling [5]. So-called
process model matchers are capable of automatically identifying correspondences



between the activities of two process models. The application scenarios of these
matchers range from harmonization of process model variants [21] to the de-
tection of of process model clones [34]. To accomplish these goals, matchers
exploit different process model features, including natural language [12], model
structure [9], and behavior [20]. Nevertheless, due to the different nature of our
problem, these matchers cannot be applied in a straightforward fashion. Natural
language texts neither explicitly provide structural nor behavioral information.
Natural language information in texts also differs significantly from what we can
find in process model activities. The labels of model activities are shorter than
sentences; they also lack the background information and conditional sentences
that are provided by natural language texts [23].

The field of transformations between model and text can be further subdi-
vided into two groups. The first group relates to techniques that automatically
derive models from natural language text material. Such techniques have been
defined for UML class diagrams [4], entity-relationship models [16], and process
models [14]. The second group includes techniques that transform a given model
into a textual description. Such techniques have been defined for UML diagrams
[28], object models [22], and process models [24]. What both groups have in
common is that they provide insights on how to move from model to text and
vice versa. Among others, they address the problem of inferring structural and
behavioral information from textual descriptions. However, to achieve satisfac-
tory results, these techniques require human input. Hence, they are not suitable
for supporting the automatic identification of correspondences between a textual
and a model-based description.

In summary, we can state that existing techniques do not provide the means
to adequately compare textual and model-based process descriptions. In light of
this research gap, we define an approach that detects inconsistencies between
textual and model-based process descriptions in the subsequent section.

4 Approach

This section describes our approach to identify inconsistent model-text pairs in a
process model repository, which consists of various steps. It ultimately provides
a quantification of the likelihood that any particular model-text pair contains
inconsistencies. Section 4.1 presents an overview of the approach. Sections 4.2
through 4.5 subsequently describe the steps of the approach in detail.

4.1 Overview

As depicted in Figure 2, the first three steps in our approach set out to create
an activity-sentence correspondence relation between a process model’s activities
and the sentences of a textual process description. This aligns each process model
activity to the sentence that best describes it, if any. To obtain an optimal
correspondence relation, we first subject the textual process description and the
labels of the activities in the process model to a linguistic analysis. Second,



we compute similarity scores between individual activities and sentences, which
quantify how well a given sentence describes an activity. Third, we compute an
optimal activity-sentence correspondence relation. We do so by complementing
the similarity scores with a consideration of the ordering relations that exist
between the various process elements. In the fourth and final step, the approach
evaluates the quality of the obtained correspondence relation. The quality is
here assessed in terms of the similarity between activities and sentences included
in the optimal correspondence relation. If this quality is deemed sufficient, we
expect that the model-text pair does not contain any inconsistencies. If, however,
the correspondence relation has severe quality issues, we predict that the model-
text pair contains inconsistencies.

Creation of correspondence relation
model-text _ Linguistic Computation of Find optimal Inconsistency inconsistency
pair analysis Similarity scores corr di likelihood

Fig. 2. Outline of the approach

4.2 Linguistic Analysis

In order to create an accurate activity-sentence correspondence for a model-text
pair, we first subject the textual process description and the activity labels to
a linguistic analysis. In this step we make extensive use of the Stanford Parser,
a widely employed Natural Language Processing (NLP) tool [27]. It is used to
identify base forms of words (i.e. lemmatization), and for part-of-speech tagging.
The latter task assigns a category, i.e. the part of speech, to each word in a
text [17]. Common parts of speech include nouns, verbs, adjectives, and adverbs.
This step consists of three sub-steps: (i) anaphora resolution, (i) clause ex-
traction, and (iii) text sanitization. With these three sub-steps, we aim to obtain
a representation that accurately reflects the important parts of a sentence, while
abstracting from irrelevant details. To illustrate the sub-steps, we consider their
impact on sentence (8) from the running example. This sentence is initially rep-
resented by the following bag-of-words:
{if, it, is, not, available, it, is, back-ordered}.

Anaphora Resolution A problem that must be tackled when analyzing natu-
ral language texts is the resolution of anaphoric references or anaphors. Anaphors
are usually pronouns (“he”, “her”, “it”) or determiners (“this”, “that”) that re-
fer to a previously introduced unit. These references represent an important
challenge in the context of assessing the similarity between an activity and a
sentence. Anaphoric references must be properly resolved in order to correctly
determine the object that some action refers to. As an example, consider the



sentence “If it is not available, it is back-ordered”. Here, the approach has to
identify that “it” refers to the word “part”, which is contained in the preceding
sentence. To augment sentences with such important information, we introduce
an anaphora resolution technique.

The anaphora resolution technique in our approach sets out to identify the
objects contained in a sentence. We identify objects by considering Stanford De-
pendencies, which reflect grammatical relations between words [8]. To identify
objects in a sentence, the most important relations to consider include direct
objects and nominal subjects. For instance, in sentence (7) the Stanford Parser
identifies the relation nsubj(reserved, part), indicating that the business object
“part” (acting as the nominal subject in the sentence) is the object being re-
served. If all the objects in a sentence are anaphoric references, i.e. the sentence
includes only pronouns and determiners, we resolve the references by replacing
them with the objects contained in the previous sentence. For sentence (8), this
results in: {if, part, is, not, available, part, is, back—ordered}.

Relevant Clause Extraction Sentences in a textual description describe ac-
tions that are performed in a process, its flow, and additional information. To
accurately align process model activities, it is important to identify (parts of)
sentences related to actions, while excluding parts unrelated to these actions
from consideration. The most problematic cases are conditional sentences, in
which the dependent clause that specifies a condition, contains terms similar or
equal to those used in activity labels. Consider, for example, sentence (11): “If
the storehouse has successfully reserved or back-ordered every item of the part list
and the preparation activity has finished [...]” When considered naively, this sen-
tence has a high term similarity to the activities “reserve part” and “back-order
part”. However, it is clear that these activities are actually described elsewhere
in the description. By focusing only on the main clause of such sentences, we
therefore remove potential confusion caused by conditional expressions.

In order to differentiate between conditions and main clauses, we use the
parse trees generated by the Stanford Dependency Parser. In these trees, condi-
tional expressions are represented as subordinate clauses (SBAR), starting with
a conditional term, e.g. “if”, 7in case”, or “once”. The parse tree for sentence
(8) is shown in Figure 3. By extracting the main clause from this sentence, the
following bag-of-words remains: {part, is, back-ordered}.

Text Sanitization The final linguistic analysis sub-step involves text sanitiza-
tion on both (previously processed) sentences and activity labels. Text sanitiza-
tion sets out to create a similar and comparable representation of activity labels
and sentences, and of their individual terms. Sanitization comprises the removal
of stop words and word lemmatization.

First, we remove all stop words from each activity label and sentence. Stop
words are common words that are of little value when considering similarity be-
tween texts (i.e. labels and sentences) [26]. We remove closed class determiners,
prepositions, and conjunctions (e.g. “the”, “in”, “to”, “for”) from the activity
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Fig. 3. Simplified parse tree for sentence (8).

labels and sentences. This procedure is in line with many approaches from the
domain of process model matching (see e.g. [6,19,36]). Second, we lemmatize
the remaining words using the Stanford Parser. The resulting lemmas represent
grammatical base forms of words. By considering lemmas, it is straightforward
to determine whether two words have a similar root. E.g. “sing”, “sang”, and
“sung” are all mapped to the common lemma “sing” [17].

Text sanitization concludes the linguistic analysis. For sentence (8), this re-
sults in the final bag-of-words representation: {part, be, back-order}. The
next step takes the processed activity labels and sentences as input, to deter-
mine their similarity.

4.3 Computation of Similarity Scores

The ability to judge the similarity between a sentence and an activity is critical
to the performance of our approach. A sentence and an activity are considered
to be similar if they refer to the same stream of action. To accurately judge this,
the variability of natural language expressions contained in the sentences should
be taken into account [2]. To deal with this variability, we select a semantic
measure to assess the similarity of a sentence to an activity. Specifically, we
use a semantic similarity measure proposed by Mihalcea et al. [29] because it
combines word semantic similarity with word specificity scores. The similarity
between an activity a and a sentence s is formalized in Equation 1.

. > maxSim(t, s) x idf (t) > maxSim(t,a) x idf (t)
7(t€{a} i te{s} ) (1)

2 > idf(t) S idf(t)
te{s} te{s}

sim(a, s) =



Here, maxSim(t;,s) denotes the maximum semantic similarity between a
term t; and any term ¢, contained in s.

maxSim(t1,s) = max{Lin(t1,t2) | t2 € s} (2)

To compute the semantic similarity Lin(t1,t2) between two terms, we employ
a WordNet-based implementation of the similarity measure defined by Lin®. It
is a measure from the domain of information theory, which has been widely
adopted for computing semantic similarity. What is more, it has been shown to
correlate well with human judgments [25].

To determine the similarity between a sentence and an activity, it is not
only important to consider the similarity between individual terms. The rela-
tive importance of words or word specificity also plays an important role. Com-
mon terms have little discriminating power in determining similarity, while more
unique terms represent important similarity indicators. For this reason, Equa-
tion 1 incorporates the Inverse Document frequency (idf) of terms. The idf as-
signs a low score to terms that occur in a large number of activity labels or
sentences and, therefore, have lower discriminating power. The idf for a term ¢ is
given by Equation 3, where document collection D comprises all activity labels
and sentences.

D]

idf(t, D) = log |de D:ted

3)

The similarity between a sentence and an activity plays an important role in
the creation of a correspondence relation between a process model and a textual
description. To further improve the results, our approach also considers the order
in which activities and sentences appear, as detailed in the next section.

4.4 Optimal Correspondence Relation

This section describes how we obtain an optimal correspondence relation between
activity set A and sentence set S. To achieve this, we not only consider the
similarity of activities and sentences, but also the order in which activities are
described the textual description and contained in the process model. We refer
to a correspondence relation that respects these orders as coherent.

Textual process descriptions generally describe process steps in a chronolog-
ical order [33]. That means that if activity a precedes activity b in a process,
the text describes activity a prior to b. For a process model, these relations are
explicitly captured in a partial order relation <. The relation < defines for each
activity which other activities precede and succeed it. Such an order is only
partial (as opposed to a strict order), because processes may contain alternative
and concurrent execution paths. For instance, the process of Figure 1 executes
either of the alternative activities “reserve part” and “back-order part”, depend-
ing on the availability of a given part. To construct a partial order, we employ

3 https://code.google.com/p/wsdj/



the behavioral profile computation as defined in [37]. A correspondence relation
C between an activity set A and a sentence set S is considered to be coherent
if it adheres to the following constraint: Given process model activities a and b,
and the sentences s, and s, to which they are, respectively, aligned. If activity
a is a predecessor of activity b, i.e. @ < b, then sentence s, should not occur in
the text after sentence s;.

The optimal correspondence relation C' is then the coherent correspondence
relation C' with the highest total similarity score between the activities and
sentences. This is defined in Equation 4.

(a,s)eC
C = argmax sim(a, s 4
e > (a,s) (4)

Because the majority of process models are not purely sequential, finding Cis
not straightforward. Each ordering in which the activities of a process model can
be executed must be considered as a possible ordering in which the activities are
contained in the textual process description. Given that each of these orderings
has a potentially huge set of possible correspondence relations to the sentence
set .S, this problem calls for an efficient solving approach.

We adopt a best-first search algorithm similar to those used in machine trans-
lation problems [17]. Instead of aligning one language to another, we here align
the activities of A with sentences of S. Intuitively, the best-first search algo-
rithm traverses a search space of partial hypotheses, which consist of activity-
sentence alignments between A and S. The algorithm explores the search space
by expanding the partial hypothesis with the highest possible score, while it ex-
empts unpromising hypotheses from expansion. Because this approach exempts
unpromising hypotheses from expansion, the explored search space is greatly
reduced. Since the algorithm merely affects computational efficiency — not the
resulting optimal correspondence relation C — we abstract from further details
for reasons of brevity.* Section 4.5 describes how we assess the optimal corre-
spondence relation to quantify the likelihood that it contains inconsistencies.

4.5 Inconsistency Assessment

The optimal correspondence relation C represents the best coherent alignment
possible between activity set A and sentence set S. If this alignment is of in-
sufficient quality, it can be expected that the model-text pair contains incon-
sistencies. An inconsistency exists if an activity cannot be coherently aligned
to a sentence that refers to the same action. The semantic similarity measure
sim(a, s) quantifies this. An optimal correspondence C that contains an activity-
sentence pair with a low similarity score thus implies that an activity exists that
cannot be aligned to a sentence with a similar meaning. This means that the
textual and model-based descriptions likely contain one or more inconsistencies.
As a quantification of this likelihood we define a likelihood indicator p as the

* The interested reader is referred to e.g. [17,35] for a detailed description.



lowest similarity value found in the optimal correspondence relation. Equation 5
formalizes this concept.

p = min{sim(a,s) | (a,s) € C} (5)

Section 5 demonstrates the usefulness of the likelihood indicator p and, ac-
cordingly, the ability of our approach to identify inconsistent processes in a
process model repository.

5 Evaluation

This section presents a quantitative evaluation that demonstrates how well the
proposed approach is able to identify inconsistent model-text pairs in a collection.
We have manually annotated the inconsistencies in a collection of 46 model-text
pairs obtained from practice. This annotation is referred to as the gold standard
against which we compare the results of our approach. Subsequently, we present
the set-up of the evaluation, its results, and a discussion of the strengths and
weaknesses of our approach.

5.1 Test Collection

To evaluate our approach, we use an existing collection of pairs of process models
and manually created textual descriptions from [14]. The collection contains
46 model-text pairs that originate from different sources including academia,
industry, textbooks, and public sector models.® The included process models are
heterogeneous with regard to several dimensions, such as size and complexity.
Also, the corresponding textual descriptions vary in several regards. For instance,
they describe the processes from different perspectives (first and third person)
and differ in terms of how explicitly and unambiguously they refer to the process
model content. Hence, we believe that the collection is well-suited for achieving a
high external validity of the results. Table 1 summarizes the main characteristics
of the collection and the contained model-text pairs.

We involved three researchers in the creation of the gold standard. Two
of them independently identified activity-to-sentence mappings for each model.
This yielded an inter-annotator agreement of 92.9%. The biggest cause for dis-
cussion was the implicitness of some activity descriptions, such as seen for the
“select unchecked part” activity in the bicycle manufacturing example. The 27
differences were discussed, involving a third researcher to settle ties.

Out of the 378 activities contained in the process models, five activities are
described in the wrong place, whereas 26 activities can be considered to be
missing. These lead to a gold standard that consists of 24 correct processes and
22 that contain between one and three erroneously described activities.

® For more details about the sources of the collection, please refer to [14].



Table 1. Overview of the test collection

ID Source P P; Type A G S
1 HU Berlin 4 1 Academic 9.0 6.5 10.3
2 TU Berlin 2 2 Academic 22.5 10.5 34.0
3  QUT 8 0 Academic 6.1 20 7.1
4  TU Eindhoven 1 1 Academic 18.0 8.0 40.0
5  Vendor Tutorials 3 2 Industry 53 13 7.0
6  inubit AG 4 3 Industry 9.0 38 115
7  BPM Practitioners 1 0 Industry 40 10 7.0
8  BPMN Practice Handbook 3 3  Textbook 5.0 2.0 4.7
9  BPMN Guide 6 5 Textbook 70 32 70
10 Federal Network Agency 14 5 Public Sector 8.0 3.1 6.4
Total 46 23 - 81 3.5 9.0

Legend: P = Model-text pairs per source, P; = Inconsistent pairs per source,
A = Activities per model, G = Gateways per model, S = Sentences per Text,

5.2 Setup

To demonstrate the applicability of the approach presented in this paper, we
test the following, different configurations:

— Baseline: As a baseline configuration, we aligned every activity a to the
sentence s with the highest value for sim(a, s). Prior to the computation of
the similarity scores, we sanitize all sentences and activity labels.

— Linguistic analysis: For this configuration, prior to the computation of
similarity scores, we applied all linguistic analysis activities described in
Section 4.2. We thus subjected the textual description to text sanitization,
resolved anaphoric references, and extracted relevant clauses.

— Full configuration: For the full configuration, we performed all linguistic
analysis activities and included the ordering constraint described in Sec-
tion 4.4. This configuration computes a correspondence relation between
activity set A and sentence set S that achieves a maximal similarity score,
while respecting the ordering constraints implied by the partial ordering of
the process model.

We assess the performance of each of these configurations with standard in-
formation retrieval metrics. More specifically, we calculate precision and recall
by comparing the computed results against a manually created gold standard.
For a process collection P, we define a set P, as the set of processes with an
assigned likelihood indicator p in the range [0.0,7]. Ps is the set of 22 processes
that are inconsistent according to the gold standard. Each process in P; con-
tains at least one activity that is not included in the textual description or has
activities that are described in a different order.



For a given P;, precision describes the fraction of processes a configuration
classified as inconsistent that are also contained in Pj. Recall represents the
fraction of all inconsistent processes from the gold standard which our approach
successfully identified. Formally, the metrics are defined as shown by Equations
6 and 7.

|P[ n PT|
| Pr |

|P[ﬂPT|

6 recall =

(7)

precision =

5.3 Results

We computed precision and recall scores for different values of threshold 7 for
each of the three configurations. When the value of 7 increases, more model-text
pairs are predicted to contain inconsistencies and thus included in P;.
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Fig. 4. Precision-recall graph for the performance of the three configurations

The precision-recall graph of Figure 4 shows that the full configuration con-
sistently outperforms the baseline. The curves for the linguistic analysis and full
configurations are always equal to or higher than the curve for the baseline con-
figuration. This means that there are numerous cases for which the inclusion of
these additional steps improves the results, it furthermore indicates that these
steps mever negatively impact the performance of the approach.



The improved results for the full approach also become apparent when con-
sidering the F-measures of the configurations. The F-measure represents the
harmonic mean between precision and recall. For the baseline configuration, the
maximum achieved F-measure equals 0.70. This performance is already promis-
ing, signaling that the semantic similarity measure we have selected is able to
correctly identify a considerable number of inconsistencies. At this point, the
baseline yields a recall of 0.91 against a precision of 0.57. The performance of
the approach is further improved by including a linguistic analysis. This config-
uration achieves a maximum F-measure of 0.74, simultaneously improving both
recall (0.96) and precision (0.60) in comparison to the baseline. The full con-
figuration achieves an even higher F-measure of 0.77. It reaches a recall of 0.91
with a precision of 0.68. The full approach thus outperforms the precision of the
baseline configuration by 11 percentage points.

The performance of the full approach is also demonstrated when we consider
the point at which the approach has successfully identified all 22 inconsistent
model-text pairs, i.e. the point when recall equals 1.0. The baseline configuration
only reaches this point after considering 43 model-text pairs. It therefore hardly
yields any benefits in comparison to a random selection as it makes 21 incorrect
predictions. By contrast, the full configuration identifies all inconsistent processes
after considering just 36 model-text pairs. Due to our linguistic analysis and the
consideration of order, we thereby reduce the number of incorrect predictions by
more than 33%.

5.4 Discussion

The evaluation shows that the full approach successfully identifies inconsistent
model-text pairs from a collection while limiting the number of false positives. A
post-hoc analysis reveals that the approach faces two main types of challenges.
First, the approach sometimes fails to recognize that an activity is contained
in a textual description. These cases mainly occur when the description of activ-
ities is highly implicit or context-dependent. Consider, for example, an activity
labeled “use other sources”, as present in a process related to the procurement
of information through various channels. The sentence fragment that describes
this activity is “[..] and sometimes you just happen to know somebody”. Due
to its implicit description, aligning that activity to the appropriate sentence is
difficult using natural language processing techniques. Similar problems occur
when a textual description describes actions using references to earlier parts of
the text. Most notably due to the anaphora resolution, the linguistic analysis
successfully mitigates the impact of such problematic cases. Consequently, the
full configuration of our approach detects inconsistencies more precisely.
Second, the approach, especially the baseline configuration, can return false
negatives when it fails to detect inconsistencies in a model-text pair. In these
cases, an activity is aligned with a sentence even though the activity is actually
missing in the textual description. This happens when a strong semantic similar-
ity between certain terms in an activity label and terms in the sentence exists,



although neither this, nor any other sentence in the textual description, is re-
lated to the activity. The evaluation results demonstrate that the introduction of
ordering constraints successfully avoids a number of such cases. For this configu-
ration, it is no longer sufficient that a sentence just contains words semantically
similar to those used in an activity label. Rather, the sentence must also occur
in a proper location in the textual description. Hence, the approach including
these constraints achieves higher recall values than the baseline configuration.

6 Conclusions

In this paper, we presented the first approach to automatically detect incon-
sistencies between textual and model-based process descriptions. The approach
combines linguistic analysis, semantic similarity measures, and ordering relations
to obtain a correspondence relation between the activities of a process model and
the sentences of a textual process description. The approach subsequently as-
sesses the quality of the obtained correspondence relation to predict whether or
not a model-text pair contains inconsistencies. A quantitative evaluation shows
that this approach successfully identifies the majority of incorrect process mod-
els, while yielding a low number of false positives. These insights result from a
comparison of the predictions made by the approach against a manually con-
structed gold standard for a collection of real-life process descriptions. The eval-
uation furthermore reveals that the quality of the results is greatly improved
due to the inclusion of tailored natural language processing techniques. By us-
ing our approach, organizations can thus quickly gain insights into the processes
for which conflicts between the textual and model-based process descriptions
are most likely. The effort that is needed to identify differences in large pro-
cess model repositories is thereby greatly reduced. As such, organizations can
focus their redesign efforts on the analysis and improvement of only their most
problematic process descriptions.

In future work we set out to further develop approaches aimed at processes
described using both models and text. The current approach can be extended
by considering information beyond the control-flow dimension of a process. For
instance, by deriving “who does what, to whom, and where” from sentences, or
by comparing a model’s conditional branches to the discourse in a textual de-
scription. The approach can also be broadened by performing a completeness
check, i.e. by verifying whether all described activities are contained in the pro-
cess model. Furthermore, the activity-sentence correspondence relation we obtain
can be used for other purposes. Instead of using them to identify inconsistencies
ex post facto, correspondence relations can form a basis to directly propagate
one-sided process updates. In this way, the consistency between multiple pro-
cess representations can be ensured, rather than corrected. Finally, we recognize
that organizations also capture process information in formats other than the
textual and model-based descriptions considered in this paper. Common exam-
ples include checklists, rules and regulations, and spreadsheets. In the future, we



therefore aim to apply the techniques developed here on a broader spectrum of
process representation formats.
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