
Explaining Black-box Models

Stefano Teso

Advanced Topics in Machine Learning & Optimization − 2023-24

Preliminaries

As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

■ These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

■ Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

■ Misbehaving models running unchecked might cause all sorts of trouble.

■ (Although humans are not necessarily better and/or fairer than machines (Lin et al., 2020))

How can we check that models learned from data behave as expected?

1

https://en.wikipedia.org/wiki/Right_to_explanation

As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

■ These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

■ Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

■ Misbehaving models running unchecked might cause all sorts of trouble.

■ (Although humans are not necessarily better and/or fairer than machines (Lin et al., 2020))

How can we check that models learned from data behave as expected?

1

https://en.wikipedia.org/wiki/Right_to_explanation

As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

■ These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

■ Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

■ Misbehaving models running unchecked might cause all sorts of trouble.

■ (Although humans are not necessarily better and/or fairer than machines (Lin et al., 2020))

How can we check that models learned from data behave as expected?

1

https://en.wikipedia.org/wiki/Right_to_explanation

As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

■ These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

■ Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

■ Misbehaving models running unchecked might cause all sorts of trouble.

■ (Although humans are not necessarily better and/or fairer than machines (Lin et al., 2020))

How can we check that models learned from data behave as expected?

1

https://en.wikipedia.org/wiki/Right_to_explanation

As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

■ These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

■ Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

■ Misbehaving models running unchecked might cause all sorts of trouble.

■ (Although humans are not necessarily better and/or fairer than machines (Lin et al., 2020))

How can we check that models learned from data behave as expected?

1

https://en.wikipedia.org/wiki/Right_to_explanation

Quiz Time!

You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?

2

The “Clever Hans” Phenomenon

The models pick up (subtle) features of the

training data that happen to correlate with

the desired label, but are not causally re-

lated to it.

Confounders

If watermarks that correlate with the class

“horse” appear in the training set:

� The model learns to rely on them to

achieve low training loss

� Butits predictions are useless if the con-

founder is not present

If they also appear in the validation split,

evaluation does not spot them!

Credit (Lapuschkin et al., 2019)

3

Who is Clever Hans?

“Clever Hans was a horse that was claimed

to have performed arithmetic and other in-

tellectual tasks.”

“After a formal investigation in 1907, psy-

chologist Oskar Pfungst demonstrated that

the horse was not actually performing these

mental tasks, but was watching the reac-

tions of his trainer.”

Hans managed to picked up on confounders

(This is actually quite an impressive feat for

a horse!)

Credit: en.wikipedia.org/wiki/Clever_Hans

4

en.wikipedia.org/wiki/Clever_Hans

You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?

Presumably, you’ll want to know whether the model exhibits C-H behavior first ;-)

5

You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?

Presumably, you’ll want to know whether the model exhibits C-H behavior first ;-)

5

■ A black-box classifier f : Rd → [c] should look like this:1

Examples: neural networks, non-linear support vector machines, random forests, . . .

1Here and below, [c] is a shorthand for {1, . . . , c}.

6

■ This is not quite true. For instance, a CNN f : Rd → [c] looks like this:

■ Not quite a black box: its functional form and parameters are known. However, it is hard to (Lipton, 2018):

� Break down the computation into an interpretable sequence of simple steps.

� Allocate responsibility of decisions to individual weights, inputs, features, examples, . . .

This is necessary to answer “why” questions and spot C-H behavior.

7

Not all classifiers are black-box!

8

Example: Linear Model to Identify Ripe Papayas

■ Does a papaya x taste good? (Here 1(cond) is 1 if cond

is true and 0 otherwise.)

■ Consider a linear classifier:

f (x) = sign
(
1.3 · 1(x pulp is orange)+

0.7 · 1(x skin is yellow)+

0 · 1(x is round)+

−0.5 · 1(x skin is green)+

−2.3 · 1(x is moldy)
) Figure 1: A bunch of papaya fruits.

■ It is easy to read off what attributes are “for” and “against” x being tasty for the model. This is possible

because f implicitly encodes independence assumptions, e.g., that the shape of x is unrelated to its color.2

2When explaining a decision made by the model, it is irrelevant whether these assumptions match how reality works: we are explaining the

model’s reasoning process, or equivalently its interpretation of how reality works, not reality itself!

9

■ A linear model has the form:

f (x) = sign
(∑

i

wixi + w0︸ ︷︷ ︸
“score” of x

)

In a sparse linear model w ∈ Rd contains few non-zero entries (Tibshirani, 1996; Ustun and Rudin, 2016)

■ This model assumes conditional independence among inputs: changing one does not change the others. This

makes it “easy” to attribute responsibility to inputs by looking at their weights:3

� wi > 0 =⇒ xi correlates with, aka “votes for”, the positive class

� wi < 0 =⇒ xi anti-correlates with, aka “votes against”, the positive class

� wi ≈ 0 =⇒ xi is irrelevant: changing it does not affect the outcome

■ What matters is the weight of attribute i relative to all the other weights, so typically people normalize the

weights s.t. they range in [−1, 1].

3This is intuitively appealing but not “causal”. For instance, flipping a binary input xi with a positive weight wi > 0 is not guaranteed to change a

negative prediction into a positive one. So intuitively xi ought to be irrelevant. More on this later.

10

Example: Newsgroup Posts

Figure 2: Explaining individual predictions of competing classifiers trying to determine if a document is about “Christianity”

or “Atheism”. The bar chart represents the importance given to the most relevant words, also highlighted in the text. Color

indicates which class the word contributes to (green for “Christianity”, magenta for “Atheism”.) (Ribeiro et al., 2016)

11

Caveats

■ If many non-zero weights, it may be difficult to simulate the model’s reasoning in your head.

Example

What if your linear model includes 1000 different weights, 80% of which are non-zero?

■ The weights learned by the model depend on the available attributes. In other words, it’s best not to make

absolute judgments based on an arbitrary selection of attributes.

Example

The importance of the attribute 1(x skin is yellow) depends on what the other attributes are!

� If they include, e.g., ruggedness or softness, color may become less important.

� If they do not, then color may be the only important factor.

It is hard to tell how important color is in absolute terms.

12

■ Decision trees (DTs) encode sequences of conditions that partition the input space into geometrically simple

regions.

Example: a DT for the Titanic survivors dataset is shown on the left. The variables include age, sex, passenger

class (class), and number of siblings onboard (sibsp).

■ The decision surface of the DT is shown on the right for the two cases sex = female and sex = male.

Nodes are conditions that sequentially split the input space into halves. Leaves correspond to rectangular

regions of this space. (Training examples are represented as colored dots.)

13

■ Decision trees (DTs) that are shallow and rely on interpretable vari-

ables are transparent

Example

□ Given a prediction y = f (x), it is easy to understand why such

decision was taken by looking at which nodes were traversed during

the inference procedure.

For instance, did x = (age = 9, sex = male, sibsp = 4) die because it

had too few siblings on board (according to the model)?

□ The decision in each node only involves exactly one interpretable

variable (e.g., age) and is quite easy to understand.

Figure 3: A shallow decision tree.

Note: this kind of models are called simulatable because they is easy to simulate in your own head.

14

Caveats

What if the data is very complex?

This will lead to a DT that is:

� Wide: it has a million small, very local leaves.

� Deep: in high dimensions, each of these leaves will have a large

number of decision (i.e., sides) attached to it.

Figure 4: A shallow decision tree.

This makes the resulting tree much harder to simulate in your head & to understand in general

15

Caveats

What if a transparent model is really large?

16

Caveats

What if a transparent model relies on uninterpretable features?

What the heck is pp14? (Credits: (Lipinski et al., 2020))

17

Topics in XAI

■ Factual explanations answer the question “why did f output prediction y0 for input x0?” in terms of:

� in what inputs (e.g., pixels, words) are responsible.

� what high-level concepts (e.g., objects, nouns, adjectives, style factors) are responsible.

� what training examples are responsible.

■ Counterfactual (or contrastive) explanations answer the question “why did I get outcome y0 instead of (a

more desirable) outcome y1?”

� in terms of what inputs should be changed to achieve the alternative outcome.

■ Global & Regional explanations answer “why” questions for more than a single decision.

� often in terms of simple rules, e.g., “if a papaya (any papaya!) is red then it does not taste good”.

18

Topics in XAI

■ Factual explanations answer the question “why did f output prediction y0 for input x0?” in terms of:

� in what inputs (e.g., pixels, words) are responsible.

� what high-level concepts (e.g., objects, nouns, adjectives, style factors) are responsible.

� what training examples are responsible.

■ Counterfactual (or contrastive) explanations answer the question “why did I get outcome y0 instead of (a

more desirable) outcome y1?”

� in terms of what inputs should be changed to achieve the alternative outcome.

■ Global & Regional explanations answer “why” questions for more than a single decision.

� often in terms of simple rules, e.g., “if a papaya (any papaya!) is red then it does not taste good”.

18

Topics in XAI

■ Factual explanations answer the question “why did f output prediction y0 for input x0?” in terms of:

� in what inputs (e.g., pixels, words) are responsible.

� what high-level concepts (e.g., objects, nouns, adjectives, style factors) are responsible.

� what training examples are responsible.

■ Counterfactual (or contrastive) explanations answer the question “why did I get outcome y0 instead of (a

more desirable) outcome y1?”

� in terms of what inputs should be changed to achieve the alternative outcome.

■ Global & Regional explanations answer “why” questions for more than a single decision.

� often in terms of simple rules, e.g., “if a papaya (any papaya!) is red then it does not taste good”.

18

Take-away

■ White-box models are no silver bullet:

� Transparent ̸= easy to understand: its explanations might be too complex or rely on uninterpretable fea-

tures.

� White-box models do not achieve SotA performance in many important applications (such as document

classification!), while black-box models do.

Given their widespread use, it makes sense to develop techniques for explaining black-box models.

■ This is what the rest of the slides are about ;-)

Note: another option is to develop “gray-box” models that combine white-box and black-box elements in a way

that makes the model interpretable enough without giving up on performance even in demanding

applications (Rudin, 2019). This is still a few weeks away though.

19

Outline

Preliminaries

What is an explanation?

Attribute-level explanations

Example-level Explanations

Counterfactual Explanations

20

What is an explanation?

■ Explanations are studied in epistemology & philosophy of science. There are many incompatible but

complementary schools of though:

■ Biased towards explanations in science. Most work focus on “interventionist” accounts.

21

■ In the deductive-nomological account, the explanation for a fact in-

volves a combination of:

� Laws of nature

� Empirical observations

� A chain of deductive (aka logical) steps

Example

“Why is the shadow 2m long?”

“Because the sun is at this position, and nuclear fusion emits photons,

and photons get absorbed by the flagpole, and the geometry of space

is such and such. Hence the cast shadow is 2m long”

This is verbose but quite intuitive.

Figure 5: a flagpole and the Sun.

22

Example

“Why is the sun at such and such position?”

“Because the shadow is at this position, and nuclear fusion emits

photons, and photons get absorbed by the flagpole, and the geometry

of space is such and such. Hence the sun is at this position.”

■ This is a perfectly valid deductive-nomological explanation, but intu-

itively we cannot accept the shadow’s position to be a valid explanation

for the sun’s motion! Figure 6: a flagpole and the Sun.

23

Quiz Time!

■ What is missing in deductive-nomological explanations? What makes them so “oddly flexible”?

■ Answer: purely logical explanations do not take the direction of causation into account.

24

Quiz Time!

■ What is missing in deductive-nomological explanations? What makes them so “oddly flexible”?

■ Answer: purely logical explanations do not take the direction of causation into account.

24

Interventions (Pearl, 2009)

Consider a room with a thermostat. Normally, the room’s temperature and the value displayed by the

thermostat are the same: when the room is warmer, the thermostat displays a larger value and vice versa.

Which of the two “causes” the other?

To figure this out, we have to intervene on the system:

� Changing the room’s temperature (by, e.g., opening a window) does change the temperature displayed by

the thermostat.

� Changing the temperature displayed by the thermostat (by, e.g., rewiring the circuits) does not change

the temperature in the room!

■ Interventions help assessing the directionality of causation, and they are exactly what was missing in the

flagpole example.

■ This is what people do in science and debugging: knocking out genes in mices or fixing the value of some

variables in programs to compare the original and altered systems. Interventions are key to understand how a

mechanism works.

25

Interventions (Pearl, 2009)

Consider a room with a thermostat. Normally, the room’s temperature and the value displayed by the

thermostat are the same: when the room is warmer, the thermostat displays a larger value and vice versa.

Which of the two “causes” the other?

To figure this out, we have to intervene on the system:

� Changing the room’s temperature (by, e.g., opening a window) does change the temperature displayed by

the thermostat.

� Changing the temperature displayed by the thermostat (by, e.g., rewiring the circuits) does not change

the temperature in the room!

■ Interventions help assessing the directionality of causation, and they are exactly what was missing in the

flagpole example.

■ This is what people do in science and debugging: knocking out genes in mices or fixing the value of some

variables in programs to compare the original and altered systems. Interventions are key to understand how a

mechanism works.

25

Interventions (Pearl, 2009)

Consider a room with a thermostat. Normally, the room’s temperature and the value displayed by the

thermostat are the same: when the room is warmer, the thermostat displays a larger value and vice versa.

Which of the two “causes” the other?

To figure this out, we have to intervene on the system:

� Changing the room’s temperature (by, e.g., opening a window) does change the temperature displayed by

the thermostat.

� Changing the temperature displayed by the thermostat (by, e.g., rewiring the circuits) does not change

the temperature in the room!

■ Interventions help assessing the directionality of causation, and they are exactly what was missing in the

flagpole example.

■ This is what people do in science and debugging: knocking out genes in mices or fixing the value of some

variables in programs to compare the original and altered systems. Interventions are key to understand how a

mechanism works.

25

Take-away

■ No unique definition of explanation, even in philosophy

■ Explaining machine learning models is still an open research question

■ Non-causal accounts can be incompatible with our intuition of what makes a good explanation

■ We will stick to explanations that have a somewhat interventional flavour

Note: causality is a fascinating topic. If you are interested, a good non-technical intro-

duction is given by “The Book of Why” (Pearl and Mackenzie, 2018).

26

Attribute-level explanations

Attributions

■ Fix classifier f : Rd → [c] and a decision f (x0) = y0. What elements of x0 are responsible for this outcome?

Credit (Ribeiro et al., 2016)

27

■ Fix classifier f : Rd → [c] and a decision f (x0) = y0. What elements of x0 are responsible for this outcome?

■ Recall that it is easy to answer this question for white-box models.

Idea:

1. Convert f to a white-box model g .

2. Extract an attribution map from g .

■ Seems easy enough. Does it always make sense?

28

■ All classifiers, including black-box ones, can be viewed as decision surfaces:

■ This view abstracts away unimportant details.

29

Quiz Time!

■ Given a classifier f (x) (say, a CNN), how would you turn it into a simpler model f ′(x) (say, a decision tree)

that behave similarly?

30

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Translation can be viewed as a projection from F to G:

argmin
g∈G

d(f , g)

for an appropriate distance between functions d(·, ·).

Depending on the functional form of F and G, comput-

ing the projection may be hard.

31

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}, e.g., take random documents from the internet or replace

words and sentences in your target document

2. Obtain a prediction yi := f (xi) for i = 1, . . . ,m for each of your samples

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi) : i = 1, . . . ,m}

In other words, model translation can be implemented as learning using a synthetic dataset labeled using the

model to be translated.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.4

4This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

32

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

33

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

2. You train a black-box model on the training data.

33

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

2. You train a black-box model on the training data.

3. How to obtain a white-box model that mimics its predictions?

33

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

2. You train a black-box model on the training data.

3. How to obtain a white-box model that mimics its predictions?

4. Sample a large set of synthetic inputs - they have no label yet!

33

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

2. You train a black-box model on the training data.

3. How to obtain a white-box model that mimics its predictions?

4. Sample a large set of synthetic inputs - they have no label yet!

5. Use the black-box model’s prediction to label these synthetic inputs.

33

Model Translation Step by Step

1. You are given a handful of training points, e.g., labeled documents.

Color indicates the label.

2. You train a black-box model on the training data.

3. How to obtain a white-box model that mimics its predictions?

4. Sample a large set of synthetic inputs - they have no label yet!

5. Use the black-box model’s prediction to label these synthetic inputs.

6. Use the synthetic examples to train a white-box model - and voilà!

33

■ How large should the synthetic data set S be?

� Start with a small S

� Grow S and retrain until d(f , g) ≤ τ , with τ controllable threshold.

■ There may be multiple g ∈ G with the same distance to f / accuracy on S

� Example: two different decision trees g that both “look like” f .

� Troublesome if they have different structure and give different explanations!

� Sometimes it is enough to grow S so to remove alternatives.

■ How complex should g be allowed to be?

� If g is too simple, it may not capture f ’s decision surface faithfully enough

� Making g too complex may break interpretability (and require enormous amounts of synthetic data)

� There may be no middle ground!

34

■ How large should the synthetic data set S be?

� Start with a small S

� Grow S and retrain until d(f , g) ≤ τ , with τ controllable threshold.

■ There may be multiple g ∈ G with the same distance to f / accuracy on S

� Example: two different decision trees g that both “look like” f .

� Troublesome if they have different structure and give different explanations!

� Sometimes it is enough to grow S so to remove alternatives.

■ How complex should g be allowed to be?

� If g is too simple, it may not capture f ’s decision surface faithfully enough

� Making g too complex may break interpretability (and require enormous amounts of synthetic data)

� There may be no middle ground!

34

■ How large should the synthetic data set S be?

� Start with a small S

� Grow S and retrain until d(f , g) ≤ τ , with τ controllable threshold.

■ There may be multiple g ∈ G with the same distance to f / accuracy on S

� Example: two different decision trees g that both “look like” f .

� Troublesome if they have different structure and give different explanations!

� Sometimes it is enough to grow S so to remove alternatives.

■ How complex should g be allowed to be?

� If g is too simple, it may not capture f ’s decision surface faithfully enough

� Making g too complex may break interpretability (and require enormous amounts of synthetic data)

� There may be no middle ground!

34

Local Interpretable Model-agnostic Explanations (LIME)

Idea: rather than translating all of f , only translate the neighborhood of f (x0)

■ Those parts of the model that do not contribute to the decision surface around f (x0) are irrelevant and do

not influence the prediction nor the explanation.

■ Even if the model is extremely complex, locally it can be much simpler (it is almost linear in this example)

meaning that it will be much easier to fit it with an interpretable white-box model!

Credit (Ribeiro et al., 2016)

35

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(xi), yi)

� Each example (xi , yi) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi) = exp(−γ · ∥x0 − xi∥2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.

36

Credit: (Guidotti et al., 2019)

37

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

■ Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!

38

It depends on the type of variables:

� If xi is a categorical variable and all its values are known, then simply pick from a value uniformly at ran-

dom.

Example: xi ∈ {winter , autumn, summer , spring}, pick any choice at random.

� If xi is a continuous variable, sample from either a uniform distribution or a Gaussian.

The width of the distribution can be chosen by looking at the data.

Example: use empirical std. deviation to define the Gaussian.

Issue: the samples look distinctly “different” from regular points sampled from P∗(X). This makes it easy to

build attacks on the explanations computed by LIME, see (Slack et al., 2020).

39

It depends on the type of variables:

� If xi is a categorical variable and all its values are known, then simply pick from a value uniformly at ran-

dom.

Example: xi ∈ {winter , autumn, summer , spring}, pick any choice at random.

� If xi is a continuous variable, sample from either a uniform distribution or a Gaussian.

The width of the distribution can be chosen by looking at the data.

Example: use empirical std. deviation to define the Gaussian.

Issue: the samples look distinctly “different” from regular points sampled from P∗(X). This makes it easy to

build attacks on the explanations computed by LIME, see (Slack et al., 2020).

39

LIME requires to solve:

argmin
g∈G

1

m

∑
i∈[m]

k(x, xi)L(g0(xi), yi)︸ ︷︷ ︸
loss on (xi , yi)

One would expect L to be a loss for classification, right?

40

However, if the surrogate g is a linear model, then LIME uses an L2 loss:

L(ŷ , y) = (y − ŷ)2

This immediately gives:

argmin
g∈G

1

m

∑
i∈[m]

k(x, xi)(g0(xi)− f (xi))
2

This problem admits a closed-form solution and it can be computed in a numerically stable manner using least

squares.

41

However, if the surrogate g is a linear model, then LIME uses an L2 loss:

L(ŷ , y) = (y − ŷ)2

This immediately gives:

argmin
g∈G

1

m

∑
i∈[m]

k(x, xi)(g0(xi)− f (xi))
2

This problem admits a closed-form solution and it can be computed in a numerically stable manner using least

squares.

41

Let g0(x) be a linear model:

g0(x) = w⊤x+ b =
∑
j∈[d]

wjxj + b

Remark: the offset b can be ignored if we center the data.

Replacing g0 with the above in the LIME objective, we obtain:

1

m

∑
i∈[m]

k(x, xi)(g0(xi)− yi)
2 =

∑
i∈[m]

α2
i (w

⊤xi − yi)
2 αi :=

√
k(x, xi)

m

= ∥a⊙ (w⊤X − y)∥2 = ∥w⊤X ′ − y′∥2 X’, y’ absorbed a

where ⊙ is the Hadamard (element-wise) product and we used:

a := (α1, . . . , αm), X := [x1, . . . , xm], y = (y1, . . . , ym)

Hence fitting a linear g0 in LIME boils down to solving least squares:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥ ≤ 1

42

Let g0(x) be a linear model:

g0(x) = w⊤x+ b =
∑
j∈[d]

wjxj + b

Remark: the offset b can be ignored if we center the data.

Replacing g0 with the above in the LIME objective, we obtain:

1

m

∑
i∈[m]

k(x, xi)(g0(xi)− yi)
2 =

∑
i∈[m]

α2
i (w

⊤xi − yi)
2 αi :=

√
k(x, xi)

m

= ∥a⊙ (w⊤X − y)∥2 = ∥w⊤X ′ − y′∥2 X’, y’ absorbed a

where ⊙ is the Hadamard (element-wise) product and we used:

a := (α1, . . . , αm), X := [x1, . . . , xm], y = (y1, . . . , ym)

Hence fitting a linear g0 in LIME boils down to solving least squares:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥ ≤ 1

42

Let g0(x) be a linear model:

g0(x) = w⊤x+ b =
∑
j∈[d]

wjxj + b

Remark: the offset b can be ignored if we center the data.

Replacing g0 with the above in the LIME objective, we obtain:

1

m

∑
i∈[m]

k(x, xi)(g0(xi)− yi)
2 =

∑
i∈[m]

α2
i (w

⊤xi − yi)
2 αi :=

√
k(x, xi)

m

= ∥a⊙ (w⊤X − y)∥2 = ∥w⊤X ′ − y′∥2 X’, y’ absorbed a

where ⊙ is the Hadamard (element-wise) product and we used:

a := (α1, . . . , αm), X := [x1, . . . , xm], y = (y1, . . . , ym)

Hence fitting a linear g0 in LIME boils down to solving least squares:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥ ≤ 1

42

LIME has one more trick: learning a k-sparse weight vector w using a “modification” of least squares called

LASSO (Tibshirani, 1996).

This can be achieved by solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥0 ≤ b

where ∥w∥0 =
∑

j∈[d] 1
(
wj ̸= 0

)
is the L0 pseudo-norm.

■ Solving this is a hard (combinatorial) optimization problem.

■ Use LASSO instead (Tibshirani, 1996), which involves solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥+ λ · ∥w∥1, ∥w∥1 =
∑
j∈[d]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).

43

LIME has one more trick: learning a k-sparse weight vector w using a “modification” of least squares called

LASSO (Tibshirani, 1996).

This can be achieved by solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥0 ≤ b

where ∥w∥0 =
∑

j∈[d] 1
(
wj ̸= 0

)
is the L0 pseudo-norm.

■ Solving this is a hard (combinatorial) optimization problem.

■ Use LASSO instead (Tibshirani, 1996), which involves solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥+ λ · ∥w∥1, ∥w∥1 =
∑
j∈[d]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).

43

LIME has one more trick: learning a k-sparse weight vector w using a “modification” of least squares called

LASSO (Tibshirani, 1996).

This can be achieved by solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥0 ≤ b

where ∥w∥0 =
∑

j∈[d] 1
(
wj ̸= 0

)
is the L0 pseudo-norm.

■ Solving this is a hard (combinatorial) optimization problem.

■ Use LASSO instead (Tibshirani, 1996), which involves solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥+ λ · ∥w∥1, ∥w∥1 =
∑
j∈[d]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).

43

LIME has one more trick: learning a k-sparse weight vector w using a “modification” of least squares called

LASSO (Tibshirani, 1996).

This can be achieved by solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥ s.t. ∥w∥0 ≤ b

where ∥w∥0 =
∑

j∈[d] 1
(
wj ̸= 0

)
is the L0 pseudo-norm.

■ Solving this is a hard (combinatorial) optimization problem.

■ Use LASSO instead (Tibshirani, 1996), which involves solving:

argmin
w∈Rd

∥w⊤X ′ − y′∥+ λ · ∥w∥1, ∥w∥1 =
∑
j∈[d]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).

43

Illustration

Consider the task of discriminating between (images of) wolves and husky dogs.

44

Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

How does LIME construct an explanation for this decision?

45

Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

LIME samples points in the neighborhood of x0 and fits a sparse linear classifier g0 on them

46

Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

Roughly equivalent to randomly perturbing (aka “wiggling”) x0, checking where the output of f changes, and

then fitting a white-box model that mimics those changes.

47

■ What about the input variables xi are not interpretable?

■ Black-box models often rely on complex features of the inputs x = (x1, . . . , xn):

� Text: tagging documents by looking for sequences of words

� Images: classifying pictures by leveraging high-order correlations between pixels

Explanations extracted from white-box modes based on these features are not interpretable!

■ LIME assumes to be given a function ψ : Rd → {0, 1}q that maps inputs x to an interpretable representation

ψ(x):

� Text: ψ(x) represents document x in terms of presence/absence of individual words

� Images: ψ represents image x in terms of presence/absence of objects

48

■ What about the input variables xi are not interpretable?

■ Black-box models often rely on complex features of the inputs x = (x1, . . . , xn):

� Text: tagging documents by looking for sequences of words

� Images: classifying pictures by leveraging high-order correlations between pixels

Explanations extracted from white-box modes based on these features are not interpretable!

■ LIME assumes to be given a function ψ : Rd → {0, 1}q that maps inputs x to an interpretable representation

ψ(x):

� Text: ψ(x) represents document x in terms of presence/absence of individual words

� Images: ψ represents image x in terms of presence/absence of objects

48

■ What about the input variables xi are not interpretable?

■ Black-box models often rely on complex features of the inputs x = (x1, . . . , xn):

� Text: tagging documents by looking for sequences of words

� Images: classifying pictures by leveraging high-order correlations between pixels

Explanations extracted from white-box modes based on these features are not interpretable!

■ LIME assumes to be given a function ψ : Rd → {0, 1}q that maps inputs x to an interpretable representation

ψ(x):

� Text: ψ(x) represents document x in terms of presence/absence of individual words

� Images: ψ represents image x in terms of presence/absence of objects

48

Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

For images, LIME builds an instance-specific map ψ0(x) by segmenting the target image x0. In this case, the

“wiggling” corresponds to filling individual segments with noise.

49

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi)L(g0(ψ(xi)), yi)

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.

50

■ Once g0 is obtained, LIME extracts an explanation for ŷ0 = g0(x0) – this is easy, because g0 is a white-box

model – and uses it as an explanation for y0 = f (x0).

■ If g0 is a sparse linear model:

g0(x) =
∑
j∈[d]

wjψj (x) + b

� wi > 0 =⇒ ψi (x) votes for” positive class

� wi < 0 =⇒ ψi (x) “votes against” positive

class

� wi ≈ 0 =⇒ ψ(x)i is irrelevant

Back to papayas

f (x) =
(
1.3 · 1(x pulp is orange)+

. . .

0 · 1(x is round)+

. . .

−2.3 · 1(x is moldy)
)

■ The interpretable features ψ(x) can be semantically meaningful image segments, words, high-level concepts,

etc.

51

■ Once g0 is obtained, LIME extracts an explanation for ŷ0 = g0(x0) – this is easy, because g0 is a white-box

model – and uses it as an explanation for y0 = f (x0).

■ If g0 is a sparse linear model:

g0(x) =
∑
j∈[d]

wjψj (x) + b

� wi > 0 =⇒ ψi (x) votes for” positive class

� wi < 0 =⇒ ψi (x) “votes against” positive

class

� wi ≈ 0 =⇒ ψ(x)i is irrelevant

Back to papayas

f (x) =
(
1.3 · 1(x pulp is orange)+

. . .

0 · 1(x is round)+

. . .

−2.3 · 1(x is moldy)
)

■ The interpretable features ψ(x) can be semantically meaningful image segments, words, high-level concepts,

etc.

51

Examples

Left: LIME explains document classification by highlighting relevant words.

Credit (Ribeiro et al., 2016)

52

Examples

Bonus: in the multi-class case (c > 2), learn a different g for each class y ∈ [c] using a one-vs-all setup.

Credit (Ribeiro et al., 2016)

53

Question

There are:

� A team T = {1, . . . , d}.

� A subset of players S ⊆ T .

� An evaluation function v(S) that tells you how well the subset of

players S performs as a whole, say, number of goals in a season.

How much does a set of players S ⊂ T contribute to the performance

of the whole team v(T)?

■ We can always assume that v(∅) = 0.

■ No other assumptions. E.g., adding a player can make the team

stronger or weaker, and v could be highly non-linear. Source: depositphotos.

54

Shapley values

■ Setup: T = {1, . . . , d}, S ⊆ T , v(S) ∈ R.

■ The contribution of player i depends on the order in which it is added to T ! Let S be the players already

there before i is added:

� If the players in S are strong, the contribution of i will be minimal, so v(S ∪ {i}) ≈ v(S).

� Vice versa, if they are weak, the contribution of i will be higher, so v(S ∪ {i}) ̸≈ v(S).

■ The marginal contribution ∆ of adding i ∈ T \ S to S ⊆ T is the value generated by adding i to S :

∆(i , S) := v(S ∪ {i})− v(S)

What if we don’t know the order in which players are added to the team?

■ The Shapley value ϕ of i is the average marginal contribution w.r.t all possible subsets of players coming

before i :

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π), Si,π := {j : π(j) < π(i)}

where π is any possible permutation of T and Si,π are the players coming before i according to π. The Shapley

value of i expresses the average impact of player i on the output of v(T).

55

Shapley values

■ Setup: T = {1, . . . , d}, S ⊆ T , v(S) ∈ R.

■ The contribution of player i depends on the order in which it is added to T ! Let S be the players already

there before i is added:

� If the players in S are strong, the contribution of i will be minimal, so v(S ∪ {i}) ≈ v(S).

� Vice versa, if they are weak, the contribution of i will be higher, so v(S ∪ {i}) ̸≈ v(S).

■ The marginal contribution ∆ of adding i ∈ T \ S to S ⊆ T is the value generated by adding i to S :

∆(i , S) := v(S ∪ {i})− v(S)

What if we don’t know the order in which players are added to the team?

■ The Shapley value ϕ of i is the average marginal contribution w.r.t all possible subsets of players coming

before i :

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π), Si,π := {j : π(j) < π(i)}

where π is any possible permutation of T and Si,π are the players coming before i according to π. The Shapley

value of i expresses the average impact of player i on the output of v(T).

55

Shapley values

■ Setup: T = {1, . . . , d}, S ⊆ T , v(S) ∈ R.

■ The contribution of player i depends on the order in which it is added to T ! Let S be the players already

there before i is added:

� If the players in S are strong, the contribution of i will be minimal, so v(S ∪ {i}) ≈ v(S).

� Vice versa, if they are weak, the contribution of i will be higher, so v(S ∪ {i}) ̸≈ v(S).

■ The marginal contribution ∆ of adding i ∈ T \ S to S ⊆ T is the value generated by adding i to S :

∆(i , S) := v(S ∪ {i})− v(S)

What if we don’t know the order in which players are added to the team?

■ The Shapley value ϕ of i is the average marginal contribution w.r.t all possible subsets of players coming

before i :

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π), Si,π := {j : π(j) < π(i)}

where π is any possible permutation of T and Si,π are the players coming before i according to π. The Shapley

value of i expresses the average impact of player i on the output of v(T).

55

■ The Shapley value of ϕ(i) is:

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π)

■ The value of ∆(i , S) is the same regardless of the order of the elements in S and in T \ (S ∪ {i}).

■ Hence, we can rewrite the Shapley value using factorials (n! = n · (n − 1) · . . . · 2 · 1):

ϕ(i) =
∑
S⊆T

|S |!(d − |S| − 1)!

d!
∆(i , S)

The coefficients simply count how many ways the element in S and T \ (S ∪ {i}) can be reordered. The new

formula iterates over subsets of T (which are 2d) rather than over permutations of T (which are d!), and

2d ≪ d! for large enough d . This reduces the computational cost by an exponential factor.

d 1 2 3 4 5 6 7 8 9 10

2d 1 2 4 8 16 32 64 128 256 512

d! 1 1 2 6 24 120 720 5040 40320 362880

■ The number of summands is still exponential in d though.

56

■ The Shapley value of ϕ(i) is:

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π)

■ The value of ∆(i , S) is the same regardless of the order of the elements in S and in T \ (S ∪ {i}).

■ Hence, we can rewrite the Shapley value using factorials (n! = n · (n − 1) · . . . · 2 · 1):

ϕ(i) =
∑
S⊆T

|S |!(d − |S| − 1)!

d!
∆(i , S)

The coefficients simply count how many ways the element in S and T \ (S ∪ {i}) can be reordered.

The new

formula iterates over subsets of T (which are 2d) rather than over permutations of T (which are d!), and

2d ≪ d! for large enough d . This reduces the computational cost by an exponential factor.

d 1 2 3 4 5 6 7 8 9 10

2d 1 2 4 8 16 32 64 128 256 512

d! 1 1 2 6 24 120 720 5040 40320 362880

■ The number of summands is still exponential in d though.

56

■ The Shapley value of ϕ(i) is:

ϕ(i) :=
1

d!

∑
π

∆(i , Si,π)

■ The value of ∆(i , S) is the same regardless of the order of the elements in S and in T \ (S ∪ {i}).

■ Hence, we can rewrite the Shapley value using factorials (n! = n · (n − 1) · . . . · 2 · 1):

ϕ(i) =
∑
S⊆T

|S |!(d − |S| − 1)!

d!
∆(i , S)

The coefficients simply count how many ways the element in S and T \ (S ∪ {i}) can be reordered. The new

formula iterates over subsets of T (which are 2d) rather than over permutations of T (which are d!), and

2d ≪ d! for large enough d . This reduces the computational cost by an exponential factor.

d 1 2 3 4 5 6 7 8 9 10

2d 1 2 4 8 16 32 64 128 256 512

d! 1 1 2 6 24 120 720 5040 40320 362880

■ The number of summands is still exponential in d though.

56

Properties of Shapley values

■ Shapley values have a number of useful properties:

Symmetry For any two players i , j , if ∆(i ,S) = ∆(j , S) for any S ⊆ T , then ϕ(i) = ϕ(j).

Dummy For any player i , if ∆(i , S) = 0 for all S, then ϕ(i) = 0.

Additivity For any player i and value functions v , w , ϕ(i ; v) = ϕ(i ;w) = ϕ(i ; v + w).

All of them make intuitive sense!

57

Shapley values for Input Relevance

■ Use Shapley values to estimate relevance of ith input variable Xi on the score of class y . Idea:

� Fix a classifier f and a decision (x, y).

� Let score(x, y) ∈ R be the score associated by f to that prediction (e.g., the network’s logit).

� Team T are the input variables in x.

■ The value v(S) of S ⊆ T is the average score obtained by fixing those inputs to the values in x and

marginializing over the remaining variables (Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017):

v(S) = EXS̄
[score(x) | XS = xS] =

∫
score(xS , xS̄) p(xS̄)︸ ︷︷ ︸

prior

dxS̄

Here S̄ = T \ S and XS , xS are the corresponding variables and their values in x. This is equivalent to fixing

Xs = xs and looking at average impact of randomizing the remaining input variables.

58

Shapley values for Input Relevance

■ Use Shapley values to estimate relevance of ith input variable Xi on the score of class y . Idea:

� Fix a classifier f and a decision (x, y).

� Let score(x, y) ∈ R be the score associated by f to that prediction (e.g., the network’s logit).

� Team T are the input variables in x.

■ The value v(S) of S ⊆ T is the average score obtained by fixing those inputs to the values in x and

marginializing over the remaining variables (Štrumbelj and Kononenko, 2014; Lundberg and Lee, 2017):

v(S) = EXS̄
[score(x) | XS = xS] =

∫
score(xS , xS̄) p(xS̄)︸ ︷︷ ︸

prior

dxS̄

Here S̄ = T \ S and XS , xS are the corresponding variables and their values in x. This is equivalent to fixing

Xs = xs and looking at average impact of randomizing the remaining input variables.

58

■ The contribution of the ith input variable to a decision (x, y) according to f is the SHAP value, given by:

ϕ(i) =
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!
∆(i , S) (1)

=
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
v(S∪{i})− v(S)

)
(2)

=
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | XS∪{i} = xS∪{i}]− EXS̄

[score(x) | XS = xS]
)

(3)

� Eq. (1) is the definition of Shapley value ϕ.

� Eq. (2) replaces the marginal improvement ∆ with its definition.

� Eq. (3) replaces the value function v with the definition given in the previous slide.

■ Computing SHAP values is non-trivial:5

� The sum runs over 2d subsets of variables.

� For each subset, must solve an expectation.

� Each expectation requires to integrate over the model.

5Exact computation of SHAP values is intractable even for simple models (Van den Broeck et al., 2021).

59

■ The contribution of the ith input variable to a decision (x, y) according to f is the SHAP value, given by:

ϕ(i) =
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!
∆(i , S) (1)

=
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
v(S∪{i})− v(S)

)
(2)

=
∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | XS∪{i} = xS∪{i}]− EXS̄

[score(x) | XS = xS]
)

(3)

� Eq. (1) is the definition of Shapley value ϕ.

� Eq. (2) replaces the marginal improvement ∆ with its definition.

� Eq. (3) replaces the value function v with the definition given in the previous slide.

■ Computing SHAP values is non-trivial:5

� The sum runs over 2d subsets of variables.

� For each subset, must solve an expectation.

� Each expectation requires to integrate over the model.
5Exact computation of SHAP values is intractable even for simple models (Van den Broeck et al., 2021).

59

Computing SHAP

■ Consider the SHAP equation (shortened for convenience):

∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | xS∪{i}]︸ ︷︷ ︸
expectation

−EXS̄
[score(x) | xS]︸ ︷︷ ︸
expectation

)

The tricky bit is to evaluate the two conditional expectations. Once we have them all, the SHAP value is

simply their (weighted) sum.

■ Recall that EXS̄
[score(x)xS] is: ∫

score(xS , xS̄)p(xS̄ | xS)dxS̄

We can approximate this via sampling! In practice, take the input x and repeatedly randomize XS̄ obtaining k

random vectors {x(1)
S̄
, . . . , x

(k)

S̄
}. Then approximate the integral with a sum:

1

k

k∑
j=1

score(xS , x
(j)

S̄
)

■ The sampling step is similar to that of LIME, but SHAP values have a sound game theoretic interpretation.

60

Computing SHAP

■ Consider the SHAP equation (shortened for convenience):

∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | xS∪{i}]︸ ︷︷ ︸
expectation

−EXS̄
[score(x) | xS]︸ ︷︷ ︸
expectation

)

The tricky bit is to evaluate the two conditional expectations. Once we have them all, the SHAP value is

simply their (weighted) sum.

■ Recall that EXS̄
[score(x)xS] is: ∫

score(xS , xS̄)p(xS̄ | xS)dxS̄

We can approximate this via sampling! In practice, take the input x and repeatedly randomize XS̄ obtaining k

random vectors {x(1)
S̄
, . . . , x

(k)

S̄
}. Then approximate the integral with a sum:

1

k

k∑
j=1

score(xS , x
(j)

S̄
)

■ The sampling step is similar to that of LIME, but SHAP values have a sound game theoretic interpretation.

60

Computing SHAP

■ Consider the SHAP equation (shortened for convenience):

∑
S⊆[d]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | xS∪{i}]︸ ︷︷ ︸
expectation

−EXS̄
[score(x) | xS]︸ ︷︷ ︸
expectation

)

The tricky bit is to evaluate the two conditional expectations. Once we have them all, the SHAP value is

simply their (weighted) sum.

■ Recall that EXS̄
[score(x)xS] is: ∫

score(xS , xS̄)p(xS̄ | xS)dxS̄

We can approximate this via sampling! In practice, take the input x and repeatedly randomize XS̄ obtaining k

random vectors {x(1)
S̄
, . . . , x

(k)

S̄
}. Then approximate the integral with a sum:

1

k

k∑
j=1

score(xS , x
(j)

S̄
)

■ The sampling step is similar to that of LIME, but SHAP values have a sound game theoretic interpretation.

60

Approximating SHAP

■ Trick #1: Assume that input variables are independent. This yields:

EXS̄
[score(x) | XS = xS] ≈ EXS̄

[score(x)]

Brutal approximation, but makes expectation independent of xS , meaning that it has the same value for all

inputs and as such it admits caching.

■ Trick #2: Assume that score is linear (or approximate it using a linear model):

EXS̄
[score(x)] ≈ score(EXS̄

[x])

We can factor the score out of the expectation because the expectation is itself a linear operation.

This approximation yields an enormous speed-up, because it replaces the expectation (i.e., an integral over all

possible values xS̄) with the the score of the average element E[x]. This is trivial to do.

■ Trick #3: use model-specific approximations, e.g., for random forests. Notice that the linear approximation

above is also exact for linear models.

61

Approximating SHAP

■ Trick #1: Assume that input variables are independent. This yields:

EXS̄
[score(x) | XS = xS] ≈ EXS̄

[score(x)]

Brutal approximation, but makes expectation independent of xS , meaning that it has the same value for all

inputs and as such it admits caching.

■ Trick #2: Assume that score is linear (or approximate it using a linear model):

EXS̄
[score(x)] ≈ score(EXS̄

[x])

We can factor the score out of the expectation because the expectation is itself a linear operation.

This approximation yields an enormous speed-up, because it replaces the expectation (i.e., an integral over all

possible values xS̄) with the the score of the average element E[x]. This is trivial to do.

■ Trick #3: use model-specific approximations, e.g., for random forests. Notice that the linear approximation

above is also exact for linear models.

61

Approximating SHAP

■ Trick #1: Assume that input variables are independent. This yields:

EXS̄
[score(x) | XS = xS] ≈ EXS̄

[score(x)]

Brutal approximation, but makes expectation independent of xS , meaning that it has the same value for all

inputs and as such it admits caching.

■ Trick #2: Assume that score is linear (or approximate it using a linear model):

EXS̄
[score(x)] ≈ score(EXS̄

[x])

We can factor the score out of the expectation because the expectation is itself a linear operation.

This approximation yields an enormous speed-up, because it replaces the expectation (i.e., an integral over all

possible values xS̄) with the the score of the average element E[x]. This is trivial to do.

■ Trick #3: use model-specific approximations, e.g., for random forests. Notice that the linear approximation

above is also exact for linear models.

61

Take-away

■ LIME and SHAP are model-agnostic:

� Only require access to the predictions of the model

� Leverage this to probe f ’s decision surface near at selected points

■ Computing an explanation can be slow and high-variance:

� Large number of samples must be predicted

� Explaining requires to fit a white-box model

� Result depends statistically on choice of samples (& how well the kernel is tuned)

■ Are there more efficient alternatives?

62

Take-away

■ LIME and SHAP are model-agnostic:

� Only require access to the predictions of the model

� Leverage this to probe f ’s decision surface near at selected points

■ Computing an explanation can be slow and high-variance:

� Large number of samples must be predicted

� Explaining requires to fit a white-box model

� Result depends statistically on choice of samples (& how well the kernel is tuned)

■ Are there more efficient alternatives?

62

Take-away

■ LIME and SHAP are model-agnostic:

� Only require access to the predictions of the model

� Leverage this to probe f ’s decision surface near at selected points

■ Computing an explanation can be slow and high-variance:

� Large number of samples must be predicted

� Explaining requires to fit a white-box model

� Result depends statistically on choice of samples (& how well the kernel is tuned)

■ Are there more efficient alternatives?

62

■ Typically the architecture can be accessed!a Not literally a black-box.

■ For instance, a neural net looks like this:

f (x) = argmax
y∈[c]

pθ(y | x)

where pθ(y | x) is a conditional distribution defined by a softmax activa-

tion layer on top of a dense “scoring” layer s(x; θ) ∈ Rc , i.e.

pθ(y | x) = softmax(s(x; θ))y softmax(s)y =
exp sy (x; θ)∑
j∈[c] exp sj (x; θ)

In addition to the predictions, we also have access to the network’s

gradients. Is this useful?

aIf this is not the case, for instace when querying a website, then it all depends on what queries

can be asked to the model.

63

■ Typically the architecture can be accessed!a Not literally a black-box.

■ For instance, a neural net looks like this:

f (x) = argmax
y∈[c]

pθ(y | x)

where pθ(y | x) is a conditional distribution defined by a softmax activa-

tion layer on top of a dense “scoring” layer s(x; θ) ∈ Rc , i.e.

pθ(y | x) = softmax(s(x; θ))y softmax(s)y =
exp sy (x; θ)∑
j∈[c] exp sj (x; θ)

In addition to the predictions, we also have access to the network’s

gradients. Is this useful?

aIf this is not the case, for instace when querying a website, then it all depends on what queries

can be asked to the model.

63

Gradients ≈ Wiggling

Derivative as “Wiggling”

Let f : R→ R. The derivative of f w.r.t. x evaluated at x0 ∈ R is:

f ′(x0) =
(d

dx
f (x)

)∣∣∣
x=x0

:= lim
ϵ→0

f (x + ϵ)− f (x)

ϵ

It measures how much perturbing the input x by an infinitesimal amount ϵ affects the output of f at x0

Gradient as “Wiggling”

For f : Rd → R, the gradient w.r.t. x is the vector of partial

derivatives:

∇xf (x0) =
(
∇xf (x)

)∣∣∣
x=x0

=
(∂f
∂x1

, . . . ,
∂f

∂xd

)
It captures the effect of perturbing each input xi on the output.

The length ∥∇xf (x0)∥ the gradient measures the sensitivity of the

output of f if we “wiggle” x0.

64

Gradients ≈ Wiggling

Derivative as “Wiggling”

Let f : R→ R. The derivative of f w.r.t. x evaluated at x0 ∈ R is:

f ′(x0) =
(d

dx
f (x)

)∣∣∣
x=x0

:= lim
ϵ→0

f (x + ϵ)− f (x)

ϵ

It measures how much perturbing the input x by an infinitesimal amount ϵ affects the output of f at x0

Gradient as “Wiggling”

For f : Rd → R, the gradient w.r.t. x is the vector of partial

derivatives:

∇xf (x0) =
(
∇xf (x)

)∣∣∣
x=x0

=
(∂f
∂x1

, . . . ,
∂f

∂xd

)
It captures the effect of perturbing each input xi on the output.

The length ∥∇xf (x0)∥ the gradient measures the sensitivity of the

output of f if we “wiggle” x0.

64

Input Gradients

■ The absolute value of the partial derivative of pθ w.r.t. xi :

wi :=
∂

∂xi
pθ(x0) ∈ R

This conveys information about how much perturbing (wiggling) the ith input xi from its current value in x0,

while leaving all other inputs untouched, affects the score of class y .

■ Just like for linear models:

� ui > 0 =⇒ xi correlates with, aka “votes for”, class y

� ui < 0 =⇒ xi anti-correlates with, aka “votes against”, class y

� |ui | ≈ 0 =⇒ xi is irrelevant: changing it does not affect the probability of class y

References: (Baehrens et al., 2010; Simonyan et al., 2013)

65

Input Gradients

■ The absolute value of the partial derivative of pθ w.r.t. xi :

wi :=
∂

∂xi
pθ(x0) ∈ R

This conveys information about how much perturbing (wiggling) the ith input xi from its current value in x0,

while leaving all other inputs untouched, affects the score of class y .

■ Just like for linear models:

� ui > 0 =⇒ xi correlates with, aka “votes for”, class y

� ui < 0 =⇒ xi anti-correlates with, aka “votes against”, class y

� |ui | ≈ 0 =⇒ xi is irrelevant: changing it does not affect the probability of class y

References: (Baehrens et al., 2010; Simonyan et al., 2013)

65

Input Gradients: Algorithm

� Given x0 ∈ Rd and neural network f (x) with conditional class distribution pθ(Y | X)

� Compute model’s prediction ŷ .

� Compute the all partial derivatives:

wi :=

∣∣∣∣ ∂∂xi pθ(ŷ | x0)
∣∣∣∣ i ∈ [d]

This is easy to do using automatic differentiation packages (Tensorflow, Pytorch, JAX, . . .).

� This gives you an Rd vector w = (w1, . . . ,wd) that, just like the weights of linear models, captures rele-

vance information.

� Transform this vector into an image → saliency map.

66

Input Gradients: Algorithm

� Given x0 ∈ Rd and neural network f (x) with conditional class distribution pθ(Y | X)

� Compute model’s prediction ŷ .

� Compute the all partial derivatives:

wi :=

∣∣∣∣ ∂∂xi pθ(ŷ | x0)
∣∣∣∣ i ∈ [d]

This is easy to do using automatic differentiation packages (Tensorflow, Pytorch, JAX, . . .).

� This gives you an Rd vector w = (w1, . . . ,wd) that, just like the weights of linear models, captures rele-

vance information.

� Transform this vector into an image → saliency map.

66

Examples

Example images with predictions and saliency maps computed with (variants of) input gradients.

67

Gradient w.r.t. Input or Parameters?

■ Input gradients:

∇xpθ(ŷ | x0)

This conveys information about sensitivity of the output to perturbations of the input.

■ This is different from the gradients used for training via SGD:

∇θℓ(pθ, (xi , ŷi))

This measures sensitivity of the loss to perturbations of the parameters (or weights)

� The first gradients are w.r.t. the model’s output pθ, the second ones are w.r.t. the loss function ℓ – they

are not the same.

� Both methods identify relevant elements: relevant inputs (which have responsibility for a particular deci-

sion) vs relevant weights (which are responsible for how badly pθ behaves on a particular training example

(xi , yi))

68

Gradient w.r.t. Input or Parameters?

■ Input gradients:

∇xpθ(ŷ | x0)

This conveys information about sensitivity of the output to perturbations of the input.

■ This is different from the gradients used for training via SGD:

∇θℓ(pθ, (xi , ŷi))

This measures sensitivity of the loss to perturbations of the parameters (or weights)

� The first gradients are w.r.t. the model’s output pθ, the second ones are w.r.t. the loss function ℓ – they

are not the same.

� Both methods identify relevant elements: relevant inputs (which have responsibility for a particular deci-

sion) vs relevant weights (which are responsible for how badly pθ behaves on a particular training example

(xi , yi))

68

Desideraturm: Sensitivity

Sensitivity

An attribution method satisfies the sensitivity axiom if, for every two inputs x and x′ that differ in one feature

(e.g., xi) and have different predictions pθ(x) ̸= pθ(x
′), then the differing feature has non-zero responsibility.

■ Violating sensitivity means that relevant features may not be picked up by the explanation.

■ Unfortunately, input gradients violate sensitivity.

69

Desideraturm: Sensitivity

Sensitivity

An attribution method satisfies the sensitivity axiom if, for every two inputs x and x′ that differ in one feature

(e.g., xi) and have different predictions pθ(x) ̸= pθ(x
′), then the differing feature has non-zero responsibility.

■ Violating sensitivity means that relevant features may not be picked up by the explanation.

■ Unfortunately, input gradients violate sensitivity.

69

Input Gradients Violate Sensitivity (Sundararajan et al., 2017)

■ Consider a predictor:

f (x) = 1− ReLU(1− x) = 1−max{0, 1− x}

and x = 0 and x ′ = 2. Then f (0) = 1− 1 = 0 and f (2) = 1− 0 = 1, hence the output at the two points is

different. However, since f is “flat” at x = 1, the gradient gives attribution 0 to x :

f ′(0) = 1 f ′(1) = 0

■ IGs violate sensitivity because the predictor may be flat at both x and x′, and thus IG is zero for both.

70

Integrated Gradients

Idea: instead of looking only at x, consider a baseline x′ and how the gradients change across the two.

■ This gives integrated gradients:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

Integrated gradients are the path intergral of the input gradients along the straightline path from the baseline

x′ to the target point x

■ The baseline x′ can be either an all-zero image/embedding, a random input/embedding, or the average

input/embedding.

■ IntGs capture features that account for the change in output between the baseline x′ and the target point x.

This intuitively matches what we do with counterfactual reasoning.

71

Integrated Gradients

Idea: instead of looking only at x, consider a baseline x′ and how the gradients change across the two.

■ This gives integrated gradients:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

Integrated gradients are the path intergral of the input gradients along the straightline path from the baseline

x′ to the target point x

■ The baseline x′ can be either an all-zero image/embedding, a random input/embedding, or the average

input/embedding.

■ IntGs capture features that account for the change in output between the baseline x′ and the target point x.

This intuitively matches what we do with counterfactual reasoning.

71

Integrated Gradients

Idea: instead of looking only at x, consider a baseline x′ and how the gradients change across the two.

■ This gives integrated gradients:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

Integrated gradients are the path intergral of the input gradients along the straightline path from the baseline

x′ to the target point x

■ The baseline x′ can be either an all-zero image/embedding, a random input/embedding, or the average

input/embedding.

■ IntGs capture features that account for the change in output between the baseline x′ and the target point x.

This intuitively matches what we do with counterfactual reasoning.

71

Desideratum: Completeness

Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

■ Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d]

intgi (x) = pθ(x)− pθ(x
′)

i.e., that integrating the derivative gives the original function.

■ Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution! =⇒ IntGs satisfy sensitivity!

72

Desideratum: Completeness

Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

■ Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d]

intgi (x) = pθ(x)− pθ(x
′)

i.e., that integrating the derivative gives the original function.

■ Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution! =⇒ IntGs satisfy sensitivity!

72

Desideratum: Completeness

Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

■ Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d]

intgi (x) = pθ(x)− pθ(x
′)

i.e., that integrating the derivative gives the original function.

■ Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution! =⇒ IntGs satisfy sensitivity!

72

Desideratum: Implementation Invariance

Two models f and f ′ are functionally equivalent if pθ(x) = pω(x) for all inputs x ∈ Rd .

Implementation Invariance

An attribution method satisfies the implementation invariance axiom if, for every pair of functionally

equivalent models f and f ′ and every input x, it outputs the same attributions for both models.

■ Integrated gradients satisfy implementation invariance!

Because they are defined on top of input gradients, which are implementation invariant.

73

Desideratum: Implementation Invariance

Two models f and f ′ are functionally equivalent if pθ(x) = pω(x) for all inputs x ∈ Rd .

Implementation Invariance

An attribution method satisfies the implementation invariance axiom if, for every pair of functionally

equivalent models f and f ′ and every input x, it outputs the same attributions for both models.

■ Integrated gradients satisfy implementation invariance!

Because they are defined on top of input gradients, which are implementation invariant.

73

Other Nice Properties

■ Other properties satisfied by integrated gradients (and path integrals in general) are:

Dummy

If the output of f does not depend on a particular input variable xi , then the attribution to that variable is zero.

Linearity

Take the linear combination of two networks pθ and pω , i.e., p(x) = apθ + bpω . Then the attributions of any

input xi for p are the linear combination of the attributions in pθ and pω .

Symmetry Preserving

If the output of f is invariant to swapping the value of two input variables xi and xj , then an attribution

method is symmetry preserving if it assignes the same attribution to both xi and xj .

74

Computing Integrated Gradients

■ Computing integrated gradients is not straightforward:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

This requires integration.

■ Replace integral with finite summation:

(xi − x ′i) ·
∑
k∈[n]

1

n
·
∂

∂xi
pθ(x

′ +
k

n
· (x− x′))

This involves calling the autodiff package once for every step.

Trick: use a Jacobian operation to compute the input gradient at all steps of the computation jointly. If the

autodiff package is smart enough, it will parallelize/batch-ize the computation.

75

Computing Integrated Gradients

■ Computing integrated gradients is not straightforward:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

This requires integration.

■ Replace integral with finite summation:

(xi − x ′i) ·
∑
k∈[n]

1

n
·
∂

∂xi
pθ(x

′ +
k

n
· (x− x′))

This involves calling the autodiff package once for every step.

Trick: use a Jacobian operation to compute the input gradient at all steps of the computation jointly. If the

autodiff package is smart enough, it will parallelize/batch-ize the computation.

75

Computing Integrated Gradients

■ Computing integrated gradients is not straightforward:

intgi (x) := (xi − x ′i) ·
∫ 1

0

∂

∂xi
pθ(x

′ + α · (x− x′))dα

This requires integration.

■ Replace integral with finite summation:

(xi − x ′i) ·
∑
k∈[n]

1

n
·
∂

∂xi
pθ(x

′ +
k

n
· (x− x′))

This involves calling the autodiff package once for every step.

Trick: use a Jacobian operation to compute the input gradient at all steps of the computation jointly. If the

autodiff package is smart enough, it will parallelize/batch-ize the computation.

75

Input Gradient-like Approaches

Method Definition

Input Gradients ∂
∂xi

pθ(x)

Integrated Gradients Integrate IF over a path from x′ to x

Gradient × Input x⊙ ∂
∂xi

pθ(x)

SmoothGrad 1
n

∑
k∈[n]

∂
∂xi

pθ(x+ uk) with uk ∼ N (0, σI)

Guided Backprop IG except that negative gradients are suppressed at all steps of the chain rule

Guided GradCAM Similar but for GradCAM

76

Issue: Edge Detection?

■ Saliency methods really look like edge detectors (Adebayo et al., 2018)

Question: do these methods provide extra insight into the model or do they just find edges (which do not

depend on the model?)

77

■ This is what happens if we randomize the weights of different layers:

■ Highlights the risks of judging explanation quality only visually.

78

Aside: Gradients vs LIME

Both input gradients and LIME estimate the sensibility of the output pθ(x) to perturbations. Are they related

somehow?

■ Yes! Intuitively, if the kernel k(x0, xi) is “pointy” enough, then LIME essentially becomes a 0-th order

approximation of the input gradient6

■ Does this mean that LIME also fails to satisfy sensitivity? Not exactly, precisely because it looks at synthetic

points different from x0 – so in a sense these points play the role of baselines x′.

6Formally studied in (Garreau and Luxburg, 2020).

79

Aside: Gradients vs LIME

Both input gradients and LIME estimate the sensibility of the output pθ(x) to perturbations. Are they related

somehow?

■ Yes! Intuitively, if the kernel k(x0, xi) is “pointy” enough, then LIME essentially becomes a 0-th order

approximation of the input gradient6

■ Does this mean that LIME also fails to satisfy sensitivity? Not exactly, precisely because it looks at synthetic

points different from x0 – so in a sense these points play the role of baselines x′.

6Formally studied in (Garreau and Luxburg, 2020).

79

Aside: Gradients vs LIME

Both input gradients and LIME estimate the sensibility of the output pθ(x) to perturbations. Are they related

somehow?

■ Yes! Intuitively, if the kernel k(x0, xi) is “pointy” enough, then LIME essentially becomes a 0-th order

approximation of the input gradient6

■ Does this mean that LIME also fails to satisfy sensitivity? Not exactly, precisely because it looks at synthetic

points different from x0 – so in a sense these points play the role of baselines x′.

6Formally studied in (Garreau and Luxburg, 2020).

79

Aside: Adversarial Attacks

80

Intuition: build adversarial example xadv by “searching” in the neighborhood of x, so that the difference is not

perceptible to a human eye, while changing the output probability as much as possible. (Can be done by

following the gradient.)

Image credit: IBM

81

Attribution approaches can be fooled by adversarial attacks too!

82

Algorithm:

� Given a target adversarial attribution map aadv and a target input x with attribution a

� Find a new input xadv such that:

� xadv is perceptually similar to x

� Output of the network stays the same: pθ(xadv) ≈ pθ(x)

� Attribution is as close as possible to the adversarial map: attr(xadv) ≈ aadv

■ Simply apply gradient descent to optimize:

min
xadv
∥attr(xadv)− aadv∥+ γ · ∥pθ(Y | xadv)− pθ(Y | x)∥

In practice, do a small step of gradient descent, then project xadv back close to x.

83

Algorithm:

� Given a target adversarial attribution map aadv and a target input x with attribution a

� Find a new input xadv such that:

� xadv is perceptually similar to x

� Output of the network stays the same: pθ(xadv) ≈ pθ(x)

� Attribution is as close as possible to the adversarial map: attr(xadv) ≈ aadv

■ Simply apply gradient descent to optimize:

min
xadv
∥attr(xadv)− aadv∥+ γ · ∥pθ(Y | xadv)− pθ(Y | x)∥

In practice, do a small step of gradient descent, then project xadv back close to x.

83

84

Take-away

■ Perturbation-based techniques (LIME, SHAP):

� Model-agnostic: can be applied even to non-smooth black-box models (e.g., ensembles)

� Supports mapping complex objects to interpretable high-level features

� Requires sampling & training on a large number of points, which is slow

� The estimated white-box model can have a large variance; depends strongly on hyper-parameters (# of

samples, kernel, . . .) → can have poor faithfulness

■ Gradient-based techniques:

� Does not require sampling or retraining, which is much faster

� Gradient can be computed cheaply using automatic differentiation packages

� Since no translation takes place, the explanation is usually stable & “faithful”

� Model-specific: can only be applied to models for which the gradient w.r.t. x exists almost everywhere,

requires continuous inputs x

85

Example-level Explanations

■ Input attributions tell you what input variables or high-level concepts

are responsible for a particular prediction y0 = f (x0).

This explanation assumes that the model f is given and fixed, however

this is not the case: f is learned from data, which may or may not be

trustworthy.

■ Example attributions tell you what training examples are responsible

for a particular prediction.

This is useful to figure out if the data that underlies a prediction is high-

quality or not.
We are interested in answering the question: what training

images, documents, etc. did determine the prediction that the

model gave me?

86

■ Is this easy for general neural nets? No.

■ Your “usual” feed-forward network consists of several steps:

� The input x in some latent (or embedding) space z = h(x),

� A prediction is made by performing logistic regression on z, that is, p(Y = 1 | x) = σ
(∑

i ziwi + b
)
.

Note that none of these steps says anything useful about what training examples determined the prediction:

training examples are used for learning the parameters of the network, then completely forgotten. Moreover,

they cannot be retrieved easily from the parameters themselves.

87

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: k nearest neighbors (kNN)

■ So long as k is sufficiently small, is white-box: the prediction is due to few examples that are close to x0 in

terms of the distance function (e.g., Euclidean distance)

88

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: k nearest neighbors (kNN)

■ So long as k is sufficiently small, is white-box: the prediction is due to few examples that are close to x0 in

terms of the distance function (e.g., Euclidean distance)

88

Kernel Methods

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: kernel methods, e.g., support vector machines.

■ An SVM is simply a linear model built on top of a feature function φ : Rd → Rk :

score(x) =
∑
j∈[k]

wjφj (x) + b

What makes it special is that (w, b) are the max-margin solution, obtained by solving a very special, convex

learning problem.

■ The Representer Theorem implies that this specific choice of parameters (w, b) admits a dual representation

in terms of a kernel k(x, x′) := ⟨φ(x), φ(x′)⟩, namely:

score(x) =
∑
i∈[m]

αik(x, xi)

where S = {(xi , yi) : i ∈ [m]} is the training set.

■ This is the analogue of linear models in the dual!

89

Kernel Methods

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: kernel methods, e.g., support vector machines.

■ An SVM is simply a linear model built on top of a feature function φ : Rd → Rk :

score(x) =
∑
j∈[k]

wjφj (x) + b

What makes it special is that (w, b) are the max-margin solution, obtained by solving a very special, convex

learning problem.

■ The Representer Theorem implies that this specific choice of parameters (w, b) admits a dual representation

in terms of a kernel k(x, x′) := ⟨φ(x), φ(x′)⟩, namely:

score(x) =
∑
i∈[m]

αik(x, xi)

where S = {(xi , yi) : i ∈ [m]} is the training set.

■ This is the analogue of linear models in the dual!

89

Kernel Methods

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: kernel methods, e.g., support vector machines.

■ An SVM is simply a linear model built on top of a feature function φ : Rd → Rk :

score(x) =
∑
j∈[k]

wjφj (x) + b

What makes it special is that (w, b) are the max-margin solution, obtained by solving a very special, convex

learning problem.

■ The Representer Theorem implies that this specific choice of parameters (w, b) admits a dual representation

in terms of a kernel k(x, x′) := ⟨φ(x), φ(x′)⟩, namely:

score(x) =
∑
i∈[m]

αik(x, xi)

where S = {(xi , yi) : i ∈ [m]} is the training set.

■ This is the analogue of linear models in the dual!

89

Kernel Methods

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: kernel methods, e.g., support vector machines.

■ An SVM is simply a linear model built on top of a feature function φ : Rd → Rk :

score(x) =
∑
j∈[k]

wjφj (x) + b

What makes it special is that (w, b) are the max-margin solution, obtained by solving a very special, convex

learning problem.

■ The Representer Theorem implies that this specific choice of parameters (w, b) admits a dual representation

in terms of a kernel k(x, x′) := ⟨φ(x), φ(x′)⟩, namely:

score(x) =
∑
i∈[m]

αik(x, xi)

where S = {(xi , yi) : i ∈ [m]} is the training set.

■ This is the analogue of linear models in the dual!

89

Training examples (xi , yi) with αi > 0 are called support vectors (SV)

Intuitively, removing or perturbing an SV changes f , while changing a non-SV has no effect.

90

■ kNN and SVMs do not quite answer the same question:

� kNN identifies those training examples that affect a particular prediction f (x0) = y0

� αi identifies those training examples on which all of f relies on

In order to obtain this information, one has to compute αi · k(xi , x0) for all i ’s: this takes x0 into consideration!

91

■ kNN and SVMs do not quite answer the same question:

� kNN identifies those training examples that affect a particular prediction f (x0) = y0

� αi identifies those training examples on which all of f relies on

In order to obtain this information, one has to compute αi · k(xi , x0) for all i ’s: this takes x0 into consideration!

91

What about general models?

■ How to generalize this to general models, including neural networks?

92

Quiz Time

■ Question: Assume you have a predictor pθ(Y | x). You’d like to to figure out what training examples

zi = (xi , yi) are “most responsible” for a particular decision z = (x, y).

Can you use kNN to do that?

■ The kNN of x in the training set are likely to be points very similar (in input space) to x, but they are not

necessarily the ones that drove the model to predict x as y :

� The model “reasons” in embedding space, not input space! Similar inputs may correspond to very differ-

ent embeddings.

� During training, the choice of model parameters might have been influenced very little by some training

examples, for instance by those whose loss is low from the very first epoch.

This can happen in, e.g., class-unbalanced data sets.

93

Quiz Time

■ Question: Assume you have a predictor pθ(Y | x). You’d like to to figure out what training examples

zi = (xi , yi) are “most responsible” for a particular decision z = (x, y).

Can you use kNN to do that?

■ The kNN of x in the training set are likely to be points very similar (in input space) to x, but they are not

necessarily the ones that drove the model to predict x as y :

� The model “reasons” in embedding space, not input space! Similar inputs may correspond to very differ-

ent embeddings.

� During training, the choice of model parameters might have been influenced very little by some training

examples, for instance by those whose loss is low from the very first epoch.

This can happen in, e.g., class-unbalanced data sets.

93

Quiz Time

■ Consider an SVM f (x). What happens to it if we remove a training example (xi , yi) and retrain?

■ For SVMs, an example (xi , yi) is either:

� A support vector: removing it and retraining changes the decision surface of f .

� Any other example: removing it and retraining makes no difference!

■ Let’s reuse this idea.

94

Quiz Time

■ Consider an SVM f (x). What happens to it if we remove a training example (xi , yi) and retrain?

■ For SVMs, an example (xi , yi) is either:

� A support vector: removing it and retraining changes the decision surface of f .

� Any other example: removing it and retraining makes no difference!

■ Let’s reuse this idea.

94

Quiz Time

■ Consider an SVM f (x). What happens to it if we remove a training example (xi , yi) and retrain?

■ For SVMs, an example (xi , yi) is either:

� A support vector: removing it and retraining changes the decision surface of f .

� Any other example: removing it and retraining makes no difference!

■ Let’s reuse this idea.

94

Remove & Retrain

■ For general models, we say that an example is relevant for a decision y0 = f (x0) if removing it from the

training set and retraining changes f (x0), or in a more relaxed form, just pθ(Y | x0).

Algorithm: Remove & Retrain (aka “deletion metric”)

� Given:

� A training set S = {(xi , yi) : i ∈ [m]}
� A classifier f trained on it

� A target prediction f (x0) = y0

� For each (xi , yi), remove it from the S , obtaining S−i , learn f−1 on it

� The relevance of (xi , yi) is the difference between pθ(y0 | x0) and pθ−1
(y0 | x0)

95

Remove & Retrain

■ For general models, we say that an example is relevant for a decision y0 = f (x0) if removing it from the

training set and retraining changes f (x0), or in a more relaxed form, just pθ(Y | x0).

Algorithm: Remove & Retrain (aka “deletion metric”)

� Given:

� A training set S = {(xi , yi) : i ∈ [m]}
� A classifier f trained on it

� A target prediction f (x0) = y0

� For each (xi , yi), remove it from the S , obtaining S−i , learn f−1 on it

� The relevance of (xi , yi) is the difference between pθ(y0 | x0) and pθ−1
(y0 | x0)

95

■ Example: if for a prediction f (x) = dog we have:

pθ(Y | x0) = {dog : 0.9, cat : 0.1} pθ−i
(Y | x0) = {dog : 0.4, cat : 0.5}

after removing xi , then the deletion metric is |0.9− 0.4| = 0.5. This example is quite influential!

Algorithm: Remove & Retrain

� Given:

� A training set S = {(xi , yi) : i ∈ [m]}
� A classifier f trained on it

� A target prediction f (x0) = y0

� For each (xi , yi), remove it from the S , obtaining S−i , learn f−1 on it

� The relevance of (xi , yi) is the difference between pθ(y0 | x0) and pθ−1
(y0 | x0)

■ Quite challenging if S is very large and/or f is a complex model (large nets can take hours/days to retrain)

■ Especially because one must retrain once for each i!

96

■ Example: if for a prediction f (x) = dog we have:

pθ(Y | x0) = {dog : 0.9, cat : 0.1} pθ−i
(Y | x0) = {dog : 0.4, cat : 0.5}

after removing xi , then the deletion metric is |0.9− 0.4| = 0.5. This example is quite influential!

Algorithm: Remove & Retrain

� Given:

� A training set S = {(xi , yi) : i ∈ [m]}
� A classifier f trained on it

� A target prediction f (x0) = y0

� For each (xi , yi), remove it from the S , obtaining S−i , learn f−1 on it

� The relevance of (xi , yi) is the difference between pθ(y0 | x0) and pθ−1
(y0 | x0)

■ Quite challenging if S is very large and/or f is a complex model (large nets can take hours/days to retrain)

■ Especially because one must retrain once for each i!

96

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining (Koh and Liang, 2017).

� Fix a loss function ℓ (say, the cross-entropy loss) and a data set S = {zi = (xi , yi) : i = 1, . . . ,m}

� Let the classifier f be parameterized by θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

ℓ(θ, zk)

� Let θm(z, ϵ) be the parameters of the empirical risk minimizer after example z is upscaled by ϵ:

θm(z, ϵ)← argmin
θ

(1

m

∑
k

ℓ(θ, zk)
)
+ ϵℓ(θ, z)

� Notice that θm = θm(z, 0).

■ Setting ϵ = 1
t
is equivalent to deleting example z!

97

■ Take a first-order Taylor expansion:

θm(z, ϵ)− θm(z, 0) ≈ ϵ ·
(

d

dϵ
θm(z, ϵ)

∣∣∣∣
ϵ=0

)
︸ ︷︷ ︸
influence function I(z)

(4)

� The effect on θm of adding an example z to S is:

≈
1

t
· I(z)

� The effect on θm of removing an example z from S is:

≈ −
1

t
· I(z)

■ No retraining required! But. . . how do we compute I(z)?

98

■ Take a first-order Taylor expansion:

θm(z, ϵ)− θm(z, 0) ≈ ϵ ·
(

d

dϵ
θm(z, ϵ)

∣∣∣∣
ϵ=0

)
︸ ︷︷ ︸
influence function I(z)

(4)

� The effect on θm of adding an example z to S is:

≈
1

t
· I(z)

� The effect on θm of removing an example z from S is:

≈ −
1

t
· I(z)

■ No retraining required! But. . . how do we compute I(z)?

98

■ Take a first-order Taylor expansion:

θm(z, ϵ)− θm(z, 0) ≈ ϵ ·
(

d

dϵ
θm(z, ϵ)

∣∣∣∣
ϵ=0

)
︸ ︷︷ ︸
influence function I(z)

(4)

� The effect on θm of adding an example z to S is:

≈
1

t
· I(z)

� The effect on θm of removing an example z from S is:

≈ −
1

t
· I(z)

■ No retraining required! But. . . how do we compute I(z)?

98

Idea: if the loss function ℓ(θ, z) is strongly convex and twice differentiable, then (Koh and Liang, 2017):

I(z) = −H(θm)
−1∇θℓ(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θℓ(zk , θm), ∇2

θℓ(zk , θm) =
[∂

∂θs∂θt
ℓ(zk , θ)

∣∣∣
θ=θm

]
st

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

■ The Hessian can be computed using Pytorch!

99

Idea: if the loss function ℓ(θ, z) is strongly convex and twice differentiable, then (Koh and Liang, 2017):

I(z) = −H(θm)
−1∇θℓ(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θℓ(zk , θm), ∇2

θℓ(zk , θm) =
[∂

∂θs∂θt
ℓ(zk , θ)

∣∣∣
θ=θm

]
st

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

■ The Hessian can be computed using Pytorch!

99

Idea: if the loss function ℓ(θ, z) is strongly convex and twice differentiable, then (Koh and Liang, 2017):

I(z) = −H(θm)
−1∇θℓ(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θℓ(zk , θm), ∇2

θℓ(zk , θm) =
[∂

∂θs∂θt
ℓ(zk , θ)

∣∣∣
θ=θm

]
st

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

■ The Hessian can be computed using Pytorch!

99

Recall that:

I(z) = −H(θm)
−1∇θℓ(z, θm)

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

■ What about the influence of removing z on the likelihood of z∗?

Using the chain rule, we get:

d

dϵ
P(y∗ | x∗; θm(zk , ϵ))

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤
d

dϵ
θm(zk , ϵ)

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤I(zk)

= −∇θP(y∗ | x∗; θm)⊤H(θm)
−1∇θℓ(z, θm)︸ ︷︷ ︸

this is what we care about!

This is a scalar, it approximates the change in likelihood at z∗ by upscaling z by ϵ.

■ Computing the quantity in blue is tricky. Doing so by näıvely computing the Hessian matrix and inverting it

is far too slow, because the Hessian can be very large (it has size square in the number of parameters θ).

Thankfully, there are very clever fast approximations (Koh and Liang, 2017).

100

Recall that:

I(z) = −H(θm)
−1∇θℓ(z, θm)

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

■ What about the influence of removing z on the likelihood of z∗?

Using the chain rule, we get:

d

dϵ
P(y∗ | x∗; θm(zk , ϵ))

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤
d

dϵ
θm(zk , ϵ)

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤I(zk)

= −∇θP(y∗ | x∗; θm)⊤H(θm)
−1∇θℓ(z, θm)︸ ︷︷ ︸

this is what we care about!

This is a scalar, it approximates the change in likelihood at z∗ by upscaling z by ϵ.

■ Computing the quantity in blue is tricky. Doing so by näıvely computing the Hessian matrix and inverting it

is far too slow, because the Hessian can be very large (it has size square in the number of parameters θ).

Thankfully, there are very clever fast approximations (Koh and Liang, 2017).

100

Recall that:

I(z) = −H(θm)
−1∇θℓ(z, θm)

■ The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ∥H(θm)−1∇θℓ(z, θm)∥.

■ What about the influence of removing z on the likelihood of z∗?

Using the chain rule, we get:

d

dϵ
P(y∗ | x∗; θm(zk , ϵ))

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤
d

dϵ
θm(zk , ϵ)

∣∣∣∣
ϵ=0

= ∇θP(y∗ | x∗; θm)⊤I(zk)

= −∇θP(y∗ | x∗; θm)⊤H(θm)
−1∇θℓ(z, θm)︸ ︷︷ ︸

this is what we care about!

This is a scalar, it approximates the change in likelihood at z∗ by upscaling z by ϵ.

■ Computing the quantity in blue is tricky. Doing so by näıvely computing the Hessian matrix and inverting it

is far too slow, because the Hessian can be very large (it has size square in the number of parameters θ).

Thankfully, there are very clever fast approximations (Koh and Liang, 2017).

100

The change in likelihood is approximated as:

−∇θP(y∗ | x∗; θm)⊤H(θm)
−1∇θℓ(z, θm)

with:

H(θm) :=
1

t

t∑
k=1

∇2
θℓ(zk , θm), ∇2

θℓ(zk , θm) =
[∂

∂θs∂θt
ℓ(zk , θ)

∣∣∣
θ=θm

]
st

■ Cool but houses a heap of numerical and computational issues:

� Requires computing H: a bunch of second-order derivatives for every k

� H is |θ| × |θ|: quadratic in the # of parameters, huge for even moderately sized networks

� Requires computing H−1: time cubic in |θ|, may not be unique, may not be numerically stable, . . .

� Often must be computed once for every training point

101

The change in likelihood is approximated as:

−∇θP(y∗ | x∗; θm)⊤H(θm)
−1∇θℓ(z, θm)

with:

H(θm) :=
1

t

t∑
k=1

∇2
θℓ(zk , θm), ∇2

θℓ(zk , θm) =
[∂

∂θs∂θt
ℓ(zk , θ)

∣∣∣
θ=θm

]
st

■ Cool but houses a heap of numerical and computational issues:

� Requires computing H: a bunch of second-order derivatives for every k

� H is |θ| × |θ|: quadratic in the # of parameters, huge for even moderately sized networks

� Requires computing H−1: time cubic in |θ|, may not be unique, may not be numerically stable, . . .

� Often must be computed once for every training point

101

Idea: use implicit Hessian-vector product (HVPs)

Algorithm:

� Approximate s∗ := H(θm)−1∇θP(y∗ | x∗; θm) using an efficient HVP technique (see below)

� Compute −s∗ · ∇θℓ(z, θm)

■ If we manage to do this, we also solve the second problem: s∗ depends on test point z∗ but it is independent

from training point z, so we can cache it

102

Idea: use implicit Hessian-vector product (HVPs)

Algorithm:

� Approximate s∗ := H(θm)−1∇θP(y∗ | x∗; θm) using an efficient HVP technique (see below)

� Compute −s∗ · ∇θℓ(z, θm)

■ If we manage to do this, we also solve the second problem: s∗ depends on test point z∗ but it is independent

from training point z, so we can cache it

102

Idea: use implicit Hessian-vector product (HVPs)

Algorithm:

� Approximate s∗ := H(θm)−1∇θP(y∗ | x∗; θm) using an efficient HVP technique (see below)

� Compute −s∗ · ∇θℓ(z, θm)

■ If we manage to do this, we also solve the second problem: s∗ depends on test point z∗ but it is independent

from training point z, so we can cache it

102

LISSA

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

■ Fix j ∈ N0 and define:

H−1
j =

j∑
i=0

(I − H)i

This is first j terms of the Taylor expansion of H−1,, hence H−1
j → H−1 as j →∞.7

7More precisely, this is a Neumann series: https://en.wikipedia.org/wiki/Neumann_series

103

https://en.wikipedia.org/wiki/Neumann_series

LISSA

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

■ Fix j ∈ N0 and define:

H−1
j =

j∑
i=0

(I − H)i

This is first j terms of the Taylor expansion of H−1,, hence H−1
j → H−1 as j →∞.7

7More precisely, this is a Neumann series: https://en.wikipedia.org/wiki/Neumann_series

103

https://en.wikipedia.org/wiki/Neumann_series

LISSA

■ This can be rewritten using a recursion as:

H−1
j = I + (I − H)H−1

j−1

This works because of the following identity:

H−1
j =

j∑
i=0

(I − H)i

= (I − H)0 +

j∑
i=1

(I − H)i

= I +

j∑
i=1

(I − H)i

= I + (I − H)

j−1∑
i=0

(I − H)i︸ ︷︷ ︸
H−1
j−1

This means that by iterating the recursion, we obtain H−1

104

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

Idea: Let zs be a random training point. Then ∇2
θℓ(θ, zs) is an unbiased estimator of H! In other words,

Es [∇2
θℓ(θ, zs)] = H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeatedly apply the recursion (right-multiplied by v):

H̃−1
j v← Iv + (I −∇2

θℓ(θ, zs))H̃
−1
j−1v

where zs ∼ S is a single, random training set example.

■ In the long run, this computes Es [H
−1
j v], which converges to H−1v as j →∞ (= sample many points)

■ Computing ∇2
θℓ(θ, z) is relatively cheap if the model does not have too many parameters

105

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

Idea: Let zs be a random training point. Then ∇2
θℓ(θ, zs) is an unbiased estimator of H! In other words,

Es [∇2
θℓ(θ, zs)] = H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeatedly apply the recursion (right-multiplied by v):

H̃−1
j v← Iv + (I −∇2

θℓ(θ, zs))H̃
−1
j−1v

where zs ∼ S is a single, random training set example.

■ In the long run, this computes Es [H
−1
j v], which converges to H−1v as j →∞ (= sample many points)

■ Computing ∇2
θℓ(θ, z) is relatively cheap if the model does not have too many parameters

105

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

Idea: Let zs be a random training point. Then ∇2
θℓ(θ, zs) is an unbiased estimator of H! In other words,

Es [∇2
θℓ(θ, zs)] = H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeatedly apply the recursion (right-multiplied by v):

H̃−1
j v← Iv + (I −∇2

θℓ(θ, zs))H̃
−1
j−1v

where zs ∼ S is a single, random training set example.

■ In the long run, this computes Es [H
−1
j v], which converges to H−1v as j →∞ (= sample many points)

■ Computing ∇2
θℓ(θ, z) is relatively cheap if the model does not have too many parameters

105

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

Idea: Let zs be a random training point. Then ∇2
θℓ(θ, zs) is an unbiased estimator of H! In other words,

Es [∇2
θℓ(θ, zs)] = H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeatedly apply the recursion (right-multiplied by v):

H̃−1
j v← Iv + (I −∇2

θℓ(θ, zs))H̃
−1
j−1v

where zs ∼ S is a single, random training set example.

■ In the long run, this computes Es [H
−1
j v], which converges to H−1v as j →∞ (= sample many points)

■ Computing ∇2
θℓ(θ, z) is relatively cheap if the model does not have too many parameters

105

■ HVP via stochastic estimation (LISSA) (Agarwal et al., 2017)

Idea: Let zs be a random training point. Then ∇2
θℓ(θ, zs) is an unbiased estimator of H! In other words,

Es [∇2
θℓ(θ, zs)] = H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeatedly apply the recursion (right-multiplied by v):

H̃−1
j v← Iv + (I −∇2

θℓ(θ, zs))H̃
−1
j−1v

where zs ∼ S is a single, random training set example.

■ In the long run, this computes Es [H
−1
j v], which converges to H−1v as j →∞ (= sample many points)

■ Computing ∇2
θℓ(θ, z) is relatively cheap if the model does not have too many parameters

105

■ Can we approximate the impact of removing (xi , yi) without retraining? Yes, using influence functions (IFs),

a technique born in robust statistics that helps us to estimate the impact of a training examples without

retraining (Koh and Liang, 2017). They are quite advanced, but look them up if you are interested! ;-)

■ How do IFs compare to leave-one-out retraining?

■ Looks pretty good!

106

Problem: H is seldom positive definite in practice:

� The model may be highly non-convex

� The loss may be non-convex

� Training often stopped early, before local optimum is reached

� Noisy data messes with the curvature of the decision surface

This means that H−1 does not technically exist and can be hard to “approximate”

This means that computation of IFs to be unreliable (Basu et al., 2020): the recursion can diverge!

Solutions: standard remedies include:

� Fine-tuning θ using a second-order method like L-BFGS (Koh and Liang, 2017) → this is “cheating”,

second-order methods are quite slow (sometimes comparably to retraining)

� Implicitly preconditioning H−1 → this smooths out the curvature, may be insufficient

� Weight decay (Basu et al., 2020) keeps ∥θ∥ small, only indirectly affects 2nd order derivatives, may be

insufficient

107

Problem: H is seldom positive definite in practice:

� The model may be highly non-convex

� The loss may be non-convex

� Training often stopped early, before local optimum is reached

� Noisy data messes with the curvature of the decision surface

This means that H−1 does not technically exist and can be hard to “approximate”

This means that computation of IFs to be unreliable (Basu et al., 2020): the recursion can diverge!

Solutions: standard remedies include:

� Fine-tuning θ using a second-order method like L-BFGS (Koh and Liang, 2017) → this is “cheating”,

second-order methods are quite slow (sometimes comparably to retraining)

� Implicitly preconditioning H−1 → this smooths out the curvature, may be insufficient

� Weight decay (Basu et al., 2020) keeps ∥θ∥ small, only indirectly affects 2nd order derivatives, may be

insufficient

107

Problem: H is seldom positive definite in practice:

� The model may be highly non-convex

� The loss may be non-convex

� Training often stopped early, before local optimum is reached

� Noisy data messes with the curvature of the decision surface

This means that H−1 does not technically exist and can be hard to “approximate”

This means that computation of IFs to be unreliable (Basu et al., 2020): the recursion can diverge!

Solutions: standard remedies include:

� Fine-tuning θ using a second-order method like L-BFGS (Koh and Liang, 2017) → this is “cheating”,

second-order methods are quite slow (sometimes comparably to retraining)

� Implicitly preconditioning H−1 → this smooths out the curvature, may be insufficient

� Weight decay (Basu et al., 2020) keeps ∥θ∥ small, only indirectly affects 2nd order derivatives, may be

insufficient

107

Idea: replace Hessian with Fisher information matrix F (θ) (Teso et al., 2021):

F (θ) :=
1

t − 1

t−1∑
k=1

Ey∼P(Y | xk ,θ)

[
∇θ logP(y | xk , θ)∇θ logP(y | xk , θ)⊤

]

■ The FIM is useful because:

� Positive semi-definite, so inverse always “almost exists” & numerically stabler to approximate

� It the model approximates the data distribution, then F (θ) ≈ H(θ)

� Even if this does not hold, F (θ) still captures useful curvature information (Bae et al., 2022).

Problem: both H and F are |θ| × |θ|, this can be too much → restrict to the θ’s appearing in the top layer(s)

of the network.

108

Idea: replace Hessian with Fisher information matrix F (θ) (Teso et al., 2021):

F (θ) :=
1

t − 1

t−1∑
k=1

Ey∼P(Y | xk ,θ)

[
∇θ logP(y | xk , θ)∇θ logP(y | xk , θ)⊤

]

■ The FIM is useful because:

� Positive semi-definite, so inverse always “almost exists” & numerically stabler to approximate

� It the model approximates the data distribution, then F (θ) ≈ H(θ)

� Even if this does not hold, F (θ) still captures useful curvature information (Bae et al., 2022).

Problem: both H and F are |θ| × |θ|, this can be too much → restrict to the θ’s appearing in the top layer(s)

of the network.

108

Idea: replace Hessian with Fisher information matrix F (θ) (Teso et al., 2021):

F (θ) :=
1

t − 1

t−1∑
k=1

Ey∼P(Y | xk ,θ)

[
∇θ logP(y | xk , θ)∇θ logP(y | xk , θ)⊤

]

■ The FIM is useful because:

� Positive semi-definite, so inverse always “almost exists” & numerically stabler to approximate

� It the model approximates the data distribution, then F (θ) ≈ H(θ)

� Even if this does not hold, F (θ) still captures useful curvature information (Bae et al., 2022).

Problem: both H and F are |θ| × |θ|, this can be too much → restrict to the θ’s appearing in the top layer(s)

of the network.

108

109

One simple technique to speed up computation:

This also avoids identifying far-away outliers that say little about (are very different from) the test point

110

Take-away

■ Some approaches are white-box when it comes to example-based why questions

■ Other – like neural nets – are black-box, but we can use influence functions to understand what examples

they rely on for making predictions.

� IFs are sound for convex models & can be meaningful for non-convex models too

� IFs are not cheap to compute, but there are fast approximations.

� IFs can be brittle, especially with noisy data

� Influential examples tend to be outliers, restrict search to neighbors

111

Counterfactual Explanations

Limits of Factual Explanations

Example

You file a loan request at your bank. Unfortunately, the loan is refused. Your bank gives you a factual

explanation that clarifies how the decision was based on your education level and work history. Which of these

variables should you work on to increase the chance of getting a loan? For instance, in order to get the loan,

should you i) obtain an additional master degree, or ii) look for a more stable or well-payed job?

■ Factual explanations explain why a particular decision y0 = f (x0) was made. However, they say nothing about

how to change x0 to obtain a different, more desirable outcome y1. In other words, they are not actionable.

■ Counterfactual explanations tell you exactly that!

112

■ A counterfactual (or contrastive) explanation tells you why a partic-

ular outcome (prediction) y0 was obtained instead of a (more desirable)

alternative y1, e.g., “loan rejected” rather than “loan approved” (Karimi

et al., 2020).

Intuition:

1. Given x0, look for an alternative input x1 ∈ Rd such that:

f (x1) = y1

where y1 is either a specific, more desirable outcome, or simply any

other outcome y1 ̸= y0, depending on your needs.

2. x1 should differ in few attributes from x0, so that it is easier for

the user to understand the difference and possibly act upon it.

3. Summarize the difference between x0 and x1 by, for instance, iden-

tifying the variables that differ between them:

{i ∈ [d] : x0i ̸= x1i}

■ There is plenty of research on how we use counterfactuals (and what

counterfactuals work best) in psychology, see (Dai et al., 2022).

Illustration of a counterfactual example x1 for a target

example x0. Notice that the two examples differ in few

attributes – or rather, just one, income – and therefore are

“close” in this sense, but have different labels. Here, red

means “reject” while blue means “accept”.

113

■ A counterfactual (or contrastive) explanation tells you why a partic-

ular outcome (prediction) y0 was obtained instead of a (more desirable)

alternative y1, e.g., “loan rejected” rather than “loan approved” (Karimi

et al., 2020).

Intuition:

1. Given x0, look for an alternative input x1 ∈ Rd such that:

f (x1) = y1

where y1 is either a specific, more desirable outcome, or simply any

other outcome y1 ̸= y0, depending on your needs.

2. x1 should differ in few attributes from x0, so that it is easier for

the user to understand the difference and possibly act upon it.

3. Summarize the difference between x0 and x1 by, for instance, iden-

tifying the variables that differ between them:

{i ∈ [d] : x0i ̸= x1i}

■ There is plenty of research on how we use counterfactuals (and what

counterfactuals work best) in psychology, see (Dai et al., 2022).

Illustration of a counterfactual example x1 for a target

example x0. What is the best counterfactual?

113

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ The norm ∥·∥ is usually chosen to be one of the following:

∥x0 − x1∥2 =

√∑
i

(x0,i − x1,i)2, ∥x0 − x1∥1 =
∑
i

|x0,i − x1,i |

The left one is the usual Euclidean norm (i.e., the normal distance between points). The right one is the L1
norm, and tends to give counterfactuals that have fewer differences from the original.

114

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ The norm ∥·∥ is usually chosen to be one of the following:

∥x0 − x1∥2 =

√∑
i

(x0,i − x1,i)2, ∥x0 − x1∥1 =
∑
i

|x0,i − x1,i |

The left one is the usual Euclidean norm (i.e., the normal distance between points). The right one is the L1
norm, and tends to give counterfactuals that have fewer differences from the original.

114

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ How can we solve this? Three common options:

� Use gradient descent (or, “if you have a hammer, every problem looks like a nail”)

� Use model-specific procedures.

� Use mathematical programming.

115

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ How can we solve this? Three common options:

� Use gradient descent (or, “if you have a hammer, every problem looks like a nail”)

� Use model-specific procedures.

� Use mathematical programming.

115

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ How can we solve this? Three common options:

� Use gradient descent (or, “if you have a hammer, every problem looks like a nail”)

� Use model-specific procedures.

� Use mathematical programming.

115

Finding a Counterfactual

Given original input x0 predicted as y0, find counterfactual input x1 with alternative label y0 by solving:

x1 ← argmin
x∈Rd

∥x0 − x1∥

s.t. f (x1) = y1 (or f (x1) ̸= f (x0))

In other words, find x1 that is as close as possible to x0 but has a different label.

■ How can we solve this? Three common options:

� Use gradient descent (or, “if you have a hammer, every problem looks like a nail”)

� Use model-specific procedures.

� Use mathematical programming.

115

Counterfactuals with Gradient Ascent

■ Assume that the model outputs a score or probability for each class

y0 (red) and y1 (blue), say:

f (x) = (0.92, 0.08)

and that it is smooth in the input x.

Algorithm

� Initialize candidate x to x0.

� Compute gradient of probability of the counterfactual class, in our

case (∇xf)1.

� Slightly move x in the direction of the gradient.

� Repeat until x has the desired label y1.

■ Issue: x1 is necessarily the closest counterfactual to x0.

■ Issue: algorightm may fail in some situationsm, e.g., local optima in

the red region.

Using gradient ascent to find a counterfactual

example.

116

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Counterfactuals for Decision Trees

Consider a decision tree f :

� Decision surface can be decomposed into leaves {ℓ}
� Each leaf identifies a region ϕℓ of input space that is described as the conjunction of logical conditions, for

instance:

ϕℓ = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label yℓ ∈ [c]

Algorithm

Given f (x0) = y0 and y1 ̸= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ℓ to which x0 belongs [easy]

2. Iterate over all other leaves ℓ′ ̸= ℓ and keep those that have label yℓ′ = y1.

3. For each such ℓ′, compute minx′|=ϕℓ′
∥x0 − x′∥1

4. Pick the closest such ℓ′ and use the corresponding x′ as x1.

■ Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)

117

Alternative: simply encode the whole problem using, e.g., mixed-integer linear programming (MILP)

Mixed-integer Linear Program

An optimization program is a MILP if it can be written as:

min
x

c⊤x (5)

s.t. Ax ≤ b (equiv. ∀j a⊤j x ≤ bj) (6)

∀i ∈ IC xi ∈ R (7)

∀i ∈ II xi ∈ Z (8)

IC ∪ II = [d] (9)

IC ∩ II = ∅ (10)

In other words, (i) the cost is a linear function of the input x, (ii) the feasible space is a conjunction of

hyperplanes (i.e., a convex polytope)

Notice that some of the variables are continuous while the others are integral.

■ Can be solved with excellent off-the-shelf solver like Gurobi, CPLEX, SCIP, . . .

■ Can we encode the counterfactual search problem as MILP?

118

Alternative: simply encode the whole problem using, e.g., mixed-integer linear programming (MILP)

Mixed-integer Linear Program

An optimization program is a MILP if it can be written as:

min
x

c⊤x (5)

s.t. Ax ≤ b (equiv. ∀j a⊤j x ≤ bj) (6)

∀i ∈ IC xi ∈ R (7)

∀i ∈ II xi ∈ Z (8)

IC ∪ II = [d] (9)

IC ∩ II = ∅ (10)

In other words, (i) the cost is a linear function of the input x, (ii) the feasible space is a conjunction of

hyperplanes (i.e., a convex polytope)

Notice that some of the variables are continuous while the others are integral.

■ Can be solved with excellent off-the-shelf solver like Gurobi, CPLEX, SCIP, . . .

■ Can we encode the counterfactual search problem as MILP?

118

Alternative: simply encode the whole problem using, e.g., mixed-integer linear programming (MILP)

Mixed-integer Linear Program

An optimization program is a MILP if it can be written as:

min
x

c⊤x (5)

s.t. Ax ≤ b (equiv. ∀j a⊤j x ≤ bj) (6)

∀i ∈ IC xi ∈ R (7)

∀i ∈ II xi ∈ Z (8)

IC ∪ II = [d] (9)

IC ∩ II = ∅ (10)

In other words, (i) the cost is a linear function of the input x, (ii) the feasible space is a conjunction of

hyperplanes (i.e., a convex polytope)

Notice that some of the variables are continuous while the others are integral.

■ Can be solved with excellent off-the-shelf solver like Gurobi, CPLEX, SCIP, . . .

■ Can we encode the counterfactual search problem as MILP?

118

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (11)

s.t. a⊤ℓ,f x− bℓ,f ≤ 0 ∀ℓ : yℓ = y1, face f (12)

■ Wait, what?

■ This is wrong!

■ Whoops!

119

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (11)

s.t. a⊤ℓ,f x− bℓ,f ≤ 0 ∀ℓ : yℓ = y1, face f (12)

■ Wait, what?

■ This is wrong!

■ Whoops!

119

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (11)

s.t. a⊤ℓ,f x− bℓ,f ≤ 0 ∀ℓ : yℓ = y1, face f (12)

■ Wait, what?

■ This is wrong!

■ Whoops!

119

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (11)

s.t. a⊤ℓ,f x− bℓ,f ≤ 0 ∀ℓ : yℓ = y1, face f (12)

■ Wait, what?

■ This is wrong!

■ Whoops!

119

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (13)

s.t. a⊤ℓ,f x− bℓ,f ≤ ϵℓ ∀ℓ : yℓ = y1, face f (14)

ϵ ≤ ϵℓ ∀ℓ : yℓ = y1 (15)

ϵ ≤ 0 (16)

This strategy:

+ works for all models with a piecewise-linear decision surface. This includes: DTs, random forest classifiers

and regressors, kernel machines with piecewise-linear kernels, neural nets with ReLU activations, . . .

- the encoding can be non-trivial and lead to a practically hard optimization problem

120

Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d]

|x0j − x1j | (13)

s.t. a⊤ℓ,f x− bℓ,f ≤ ϵℓ ∀ℓ : yℓ = y1, face f (14)

ϵ ≤ ϵℓ ∀ℓ : yℓ = y1 (15)

ϵ ≤ 0 (16)

This strategy:

+ works for all models with a piecewise-linear decision surface. This includes: DTs, random forest classifiers

and regressors, kernel machines with piecewise-linear kernels, neural nets with ReLU activations, . . .

- the encoding can be non-trivial and lead to a practically hard optimization problem

120

Additional Properties

� Actionability: a counterfactual should never ask the user to change an immutable feature (e.g., ethnicity,

age) but only features that the user has control over (e.g., amount of income, degree of education)

� Causal Actionability: features are rarely independent, e.g., in order to increase the degree of education one

has to age a bit. Counterfactuals should take this into account.

� Validity: if x is structured – i.e., if it must obey structure constraints, for instance because of molecule

(chemical validity) or a solution to a Sudoku problem (Sudoku rules) – then these constraints must be

taken into consideration when computing counterfactual instances x′.

� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)

121

Additional Properties

� Actionability: a counterfactual should never ask the user to change an immutable feature (e.g., ethnicity,

age) but only features that the user has control over (e.g., amount of income, degree of education)

� Causal Actionability: features are rarely independent, e.g., in order to increase the degree of education one

has to age a bit. Counterfactuals should take this into account.

� Validity: if x is structured – i.e., if it must obey structure constraints, for instance because of molecule

(chemical validity) or a solution to a Sudoku problem (Sudoku rules) – then these constraints must be

taken into consideration when computing counterfactual instances x′.

� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)

121

Additional Properties

� Actionability: a counterfactual should never ask the user to change an immutable feature (e.g., ethnicity,

age) but only features that the user has control over (e.g., amount of income, degree of education)

� Causal Actionability: features are rarely independent, e.g., in order to increase the degree of education one

has to age a bit. Counterfactuals should take this into account.

� Validity: if x is structured – i.e., if it must obey structure constraints, for instance because of molecule

(chemical validity) or a solution to a Sudoku problem (Sudoku rules) – then these constraints must be

taken into consideration when computing counterfactual instances x′.

� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)

121

Additional Properties

� Actionability: a counterfactual should never ask the user to change an immutable feature (e.g., ethnicity,

age) but only features that the user has control over (e.g., amount of income, degree of education)

� Causal Actionability: features are rarely independent, e.g., in order to increase the degree of education one

has to age a bit. Counterfactuals should take this into account.

� Validity: if x is structured – i.e., if it must obey structure constraints, for instance because of molecule

(chemical validity) or a solution to a Sudoku problem (Sudoku rules) – then these constraints must be

taken into consideration when computing counterfactual instances x′.

� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)

121

Take-away 1/2

■ Counterfactuals are human-friendly: we use them all the time (Byrne, 2019)

■ Counterfactuals support actionable recourse, i.e., stakeholders can decide what to change for the outcome to

change

■ Counterfactuals can be computed by solving constrained optimization problem

■ Solving it can be computationally challenging for general models

■ Cheap approximations based on gradient descent give few guarantees, make interpretation tricky

122

Take-away 2/2

■ Many different types of explanations with different properties:

� See (Guidotti et al., 2018)

■ Many different implementations, for instance:

� captum for Pytorch: github.com/pytorch/captum

� innvestigate for Tensorflow: github.com/albermax/innvestigate

� CARLA for counterfactuals: https://github.com/carla-recourse/CARLA

� Can be used right away to find bugs & quirks in your models

■ Still very much being worked out – we just scratched the surface

123

github.com/pytorch/captum
github.com/albermax/innvestigate
https://github.com/carla-recourse/CARLA

Further Readings

124

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. (2018). Sanity checks for saliency

maps. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages

9525–9536.

Agarwal, N., Bullins, B., and Hazan, E. (2017). Second-order stochastic optimization for machine learning in

linear time. The Journal of Machine Learning Research, 18(1):4148–4187.

Bae, J., Ng, N., Lo, A., Ghassemi, M., and Grosse, R. B. (2022). If influence functions are the answer, then

what is the question? Advances in Neural Information Processing Systems, 35:17953–17967.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Müller, K.-R. (2010). How to

explain individual classification decisions. The Journal of Machine Learning Research, 11:1803–1831.

Basu, S., Pope, P., and Feizi, S. (2020). Influence functions in deep learning are fragile. arXiv preprint

arXiv:2006.14651.

Byrne, R. M. (2019). Counterfactuals in explainable artificial intelligence (xai): Evidence from human reasoning.

In IJCAI, pages 6276–6282.

Dai, X., Keane, M. T., Shalloo, L., Ruelle, E., and Byrne, R. M. (2022). Counterfactual explanations for

prediction and diagnosis in xai. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and

Society, pages 215–226.

Garreau, D. and Luxburg, U. (2020). Explaining the explainer: A first theoretical analysis of lime. In

International Conference on Artificial Intelligence and Statistics, pages 1287–1296. PMLR.

Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., and Turini, F. (2019). Factual and

counterfactual explanations for black box decision making. IEEE Intelligent Systems, 34(6):14–23.

124

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of

methods for explaining black box models. ACM computing surveys (CSUR), 51(5):1–42.

Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. (2020). A survey of algorithmic recourse: definitions,

formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050.

Koh, P. W. and Liang, P. (2017). Understanding black-box predictions via influence functions. In Proceedings

of the 34th International Conference on Machine Learning, pages 1885–1894.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., and Müller, K.-R. (2019). Unmasking

clever hans predictors and assessing what machines really learn. Nature communications, 10(1):1–8.

Lin, Jung, J., Goel, S., and Skeem, J. (2020). The limits of human predictions of recidivism. Science advances,

6(7):eaaz0652.

Lipinski, P., Brzychczy, E., and Zimroz, R. (2020). Decision tree-based classification for planetary gearboxes’

condition monitoring with the use of vibration data in multidimensional symptom space. Sensors, 20(21):5979.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability

is both important and slippery. Queue, 16(3):31–57.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Proceedings of

the 31st international conference on neural information processing systems, pages 4768–4777.

Pearl, J. (2009). Causality. Cambridge university press.

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic books.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and

data mining, pages 1135–1144.

124

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead. Nature Machine Intelligence, 1(5):206–215.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualising image

classification models and saliency maps. arXiv preprint arXiv:1312.6034.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and shap: Adversarial attacks

on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,

pages 180–186.

Štrumbelj, E. and Kononenko, I. (2014). Explaining prediction models and individual predictions with feature

contributions. Knowledge and information systems, 41(3):647–665.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks. In International

Conference on Machine Learning, pages 3319–3328. PMLR.

Teso, S., Bontempelli, A., Giunchiglia, F., and Passerini, A. (2021). Interactive label cleaning with

example-based explanations. In NeurIPS’21.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:

Series B (Methodological), 58(1):267–288.

Ustun, B. and Rudin, C. (2016). Supersparse linear integer models for optimized medical scoring systems.

Machine Learning, 102(3):349–391.

Van den Broeck, G., Lykov, A., Schleich, M., and Suciu, D. (2021). On the tractability of shap explanations. In

Proceedings of AAAI.

124

	Preliminaries
	What is an explanation?
	Attribute-level explanations
	Example-level Explanations
	Counterfactual Explanations
	References

