Interactive Learning

Stefano Teso
Advanced Topics in Machine Learning & Optimization — 2023-24

Strategies

Extensions

Conclusion and Further Reading

“Imagine that you are the leader of a colonial expedition from Earth to an extrasolar planet. Luckily, this planet
is habitable and has a fair amount of vegetation suitable for feeding your group. Impor- tantly, the most
abundant source of food comes from a plant whose fruits are sometimes smooth and round, but sometimes

oas000e
280090040

Figure 1.1: Several alien fruits, which vary in shape from round to irregular.

bumpy and irregular.”

“The physicians assure you that the shape of a fruit is the only feature that seems related to its safety. The
problem, though, is that a wide variety of fruit shapes from these plants exist: almost a continuous range from
round to irregular. Since the colony has essential uses for both safe and noxious fruits, you want to be able to

classify them as accurately as possible. " Credits: (Settles, 2012).

B We know that smoother fruits are (monotonically) safer, but we don’t know where to set the threshold.

B We know that smoother fruits are (monotonically) safer, but we don’t know where to set the threshold.

M In other words, we want to learn a threshold function:

(%) 1 if x3 <0
o(x) =
—1 otherwise

where x are measurements of fruit features and x3 captures its shape “irregularity”.

Idea: use regular supervised learning

o Collect a large enough training set £ = {(x, y)}, fit threshold classifier fy on L

o If maximum % errors is € € (0,1), enough to collect ~ % examples (Shalev-Shwartz and Ben-David, 2014).
For instance, if max error is 1%, then we need to collect 100 examples. Considering how simple this prob-
lem is, this is a lot!

6*

v -o—O— & —O— OO+ O—O——O—
- 0000QQH A

Figure 1.2: Supervised learning for the alien fruits example. Given a set of (x, y) instance-label pairs,

we want to choose the threshold 6* that classifies them most accurately.

Idea: use regular supervised learning

o Collect a large enough training set £ = {(x, y)}, fit threshold classifier fy on L

o If maximum % errors is € € (0,1), enough to collect ~ % examples (Shalev-Shwartz and Ben-David, 2014).
For instance, if max error is 1%, then we need to collect 100 examples. Considering how simple this prob-
lem is, this is a lot!

6*

v -o—O— & —O— OO+ O—O——O—
- 0000QQH A

Figure 1.2: Supervised learning for the alien fruits example. Given a set of (x, y) instance-label pairs,

we want to choose the threshold 6* that classifies them most accurately.

B We want to find 6 as quickly and as economically as possible, by requiring fewer tests.

M Can we do better?

Key features:

o Fruits x are plentiful and easy to harvest and measure

o Obtaining y incurs a cost: person that eats the fruit may get sick

So we definitely want to minimize the number of needed labels.

Idea: gather large set of unlabeled fruits U = {x;} and arrange them by roughness.

?
1 =D @ o—
?
@ —@ D D D (S5 ® o—>
?
(B) —& D SP) D ©® @ o o—
0*
@ —@ D S, S¥ @ S} o—

N

S
e

Figure 1.3: A binary search through the set of ordered, untested alien fruits. By only testing this subset

of fruits, we can exponentially reduce costs while achieving the same result. The labels shown in light

blue can be inferred, and therefore do not need to be tested.

Use binary search to find the threshold 6 only takes ~ log, % tests! For e = 1%, this amounts to = 7.

Idea: gather large set of unlabeled fruits U = {x;} and arrange them by roughness, then use binary search:

1 1
€ . log, c

0.1 10 3.321

0.001 1000 9.966
0.00001 100000 16.610

B In this (cleverly designed illustrative) scenario, there is an exponential improvement in sample complexity

Active vs Passive

“The key hypothesis is that if the learner is allowed to choose the data from which it learns — to be active,
curious, or exploratory, if you will — it can perform better with less training.” (Settles, 2012)

Preconditions:

e Collecting unlabelled instances x is cheap

e Obtaining their labels y is expensive

Preconditions:

e Collecting unlabelled instances x is cheap

o Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what's in an
image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Preconditions:

e Collecting unlabelled instances x is cheap

o Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what's in an
image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Example: Recommendation

There are millions of products on online catalogues (think Amazon), but in order to discover what are the
tastes of a user, you have to actually convince them to score the items. This information is personalized, so

this is the only way to obtain supervision.

Example: Scientific Discovery

B Adam, the “robot scientist” (King et al., 2009)

The Automation of Science

Ross D. King,** Jem Rowland,* Stephen G. Oliver,? Michael Young,> Wayne Aubrey,*
Emma Byrne," Maria Liakata,* Magdalena Markham,” Pinar Pir,? Larisa N. Soldatova,*
Andrew Sparkes, Kenneth E. Whelan,® Amanda Clare®

The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

B The learner obtains labels by operating an automated testing machine.

Example: Scientific Discovery

Fig. 1. The Robot Scien-
tist Adam. The advances
that distinguish Adam from
other complex. laboratory
systems are the individual
design of the experiments
t0 test hypotheses and the

harvesting of a defined
quantity of cell from each
well, inoculation of these
cels into wells containing
defined media (minimal

thetic dextrose medium plus
up to four added metal
olites from a choice of six),
and measurement of growth
curves on the specified me-
dia. To achieve this func-

tionality, Adam has the s
following components: a, scale : 1m
an automated —20°C feezer;

b, three liquid handlers (one

of which can separately control 96 fluid channels simultaneously); ¢, three
automated +30°C incubators; d, two automated plate readers; e, three robot
ams; f, wo automated plate sides; g, an automated plate centrifuge; h, an
automated plate washer; i, two high-efficency partculate air fiters; and §, a
tigid transparent plastic enclosure. There are also two bar code readers, seven
cameras, 20 environment sensors, and four personal computers, as well as the
software. Adam is capable of designing and initiating over a thousand new

strain and defi i i day (i
thousands of yeast strains), with each experiment lasting up to 5 days. The
design enables measurement of ODss,, for each experiment a least once
every 30 min (more often if running at less than full capacity), allowing ac-
curate growth curves o be recorded (typically we take over a hundred mea-
surements a day per well, plus associated metadata. See the supporting
online material for pictures and a video of Adam i action.

B Similar strategies used in chemical engineering, material engineering, etc.

Notation

A summary of frequently used terms:

o Instances x € R? are unlabelled d-dimensional vectors of observations
o Examples z = (x,y) are instances annotated by a label y € {0,1} or y € {1,...,¢}
o A classifier f : R? — {0,1} maps instances to labels (e.g., a neural networks, ...)

o F = {fp} is a family of classifiers parameterized by 6 (e.g., all neural networks with a specified architec-
ture)

B The meaning of 6 depends on the model class, e.g., for neural nets with a fixed architecture, 6 represents
their weights; for random forests, 6 represents the structure and leaves of all trees.

Assumptions

B We assume the data to be distributed according to a ground-truth
distribution p*(Y,X), which combines a distribution over inputs (“how
rare is this document/image?” and a distribution over labels given the
input (“how likely is this document to be labeled as funny?")

P (Y.X) = p*(Y | X) - p*(X) (1)

Assumptions

B We assume the data to be distributed according to a ground-truth
distribution p*(Y,X), which combines a distribution over inputs (“how
rare is this document/image?” and a distribution over labels given the
input (“how likely is this document to be labeled as funny?")

P (Y.X) = p*(Y | X) - p*(X) (1)

B We focus on learning a probabilistic classifier, written as:
po(Y =y |X=x) (2
We always predict the most likely label, that is:

fo(x) = arglmax po(Y =y | X=x) 3)
y=1,...,c

Possible models are anything from logistic regression to neural nets
with a softmax activation (illustrated on the right).

pg (0.02, 0.0001, 0.98)

5, (5.2, 0.4, 9.3)

[Iaye: L-1]

[Iay;r 2]

[Iay:er 1]
inpl:t X

Structure of your average feed-forward neural network. Notice
how the output consists of per-class probabilities. Here we

write the vector p this using the notation pg (Y | x).

Modeling the Annotator

B Annotator modelled as an “oracle” that returns the correct label:

annot(x) := argmax p*(Y =y | X =x) (4)
ye{0,1}

where p* is the true (but unobserved) label distribution. In other words, we assume the annotator always
answers correctly, i.e., they are knowledgeable and collaborative.

M Invoking the oracle comes at a cost, which is unknown, but usually non-negligible, instance- and
class-dependent.

For simplicity, we assume the cost to be unitary: all questions cost the same.

select the best
instance
in the pool

label & add to
training set

oracle query

(b) pool-based sampling

Active Learning (Pool-based). Given:

e a family of classifiers F,
o a set of unlabelled instances U = {x1,.

o a (costly) labeling oracle label : RY — {0,1},

.., Xm} C R? sampled i.i.d. from p*(X),

Find a classifier f € F that achieves low risk on p*(X, Y) while keeping annot. cost low

generate
instance
\‘ de novo

label & add to \
training set input
space

(x,7) -

query

oracle

(8) query synthesis

Active Learning (Query Synthesis). Given:

e a family of classifiers F,

o a generator of instances synthesize(region) — x,

o a (costly) labeling oracle label : R — {0,1},

Find a classifier f € F that achieves low risk on p*(X, Y) while keeping annot. cost low

observe

an instance
label & add to
training set

L input
+
(z,7)
decide to query ﬁ
or discard

oracle

+ -0
+ -
0 ©

(@) selective sampling

Active Learning (Selective Sampling). Given:

e a family of classifiers F,
e a sequence of unlabelled instances x1,x2,x3,...,

o a (costly) labeling oracle label : RY — {0,1}

Find a classifier 1/‘; € F that achieves low risk on future data x;41,X¢42,. ..

while keeping annot. cost low

Query Sampling vs. Query Synthesis

B Left to right:

e Pool-based: moderate control over queries, requires memory to store U

e Query synthesis: maximum control over queries, can generate uninterpretable queries (Baum and Lang,
1992), although deep generative models can help somehow (Nguyen et al., 2016).

e Selective sampling: little control over the distribution of queries, often solved under tight memory con-

straints (online learning)

B We will focus on pool-based AL.

Strategies

Quiz Time!

B Out of the many unlabeled points (in gray), which ones would you pick for a human annotator to label?

Template

Input: models F, examples L, pool U, query budget T >1
Output: selected model f € F

1 f <+ fit(F, L) > initialize the model
2. fort=1,2,..., T do > until the budget is exhausted
3: X = argmax, ¢y, acq(f,x) > select a query instance
4 obtain label y of x from annotator

5 U+—U\{x} > remove unlabeled instance from pool
6: L+ LU{(x,y)} > update training set
7 f <« fit(F, L) > update the model

return f

M it performs training (e.g., trains for a fixed # of epochs)
B acq scores instances based on their “informativeness”

B What instance x € U should be selected so to convey as much information as possible to f?

20

Uncertainty Sampling

What's the point of asking the label of instances on which the classifier is already certain?!

3 3 3
2 2 2
1 1F 1F
or or ol-
4 At At
2 2| 2f
sl . \ . . 3 3
4 2 0 2 4
(a) a 2D toy data set (b) random sampling (¢) uncertainty sampling

B Left: two Gaussians (40 points each)
B Middle: picking points completely at random (ignoring the class label!)

B Right: picking points based on uncertainty

LThere is a point to doing so, as we will see later.

21

Uncertainty Sampling

M Idea: pick x € U on which the classifier is most uncertain.

22

Uncertainty Sampling

M Idea: pick x € U on which the classifier is most uncertain.

oM ?
(1) =D o—
' 92| 2
@ —D &5 o—
931 ?
B3 —h @ ® o—>
| 0*
) —b ® D o—

I
e
S
Figure 2.1: The binary search from Figure 1.3, re-interpreted as an uncertainty sampling approach. The

best instance to query is deemed to be the one closest to the threshold 6.

22

Uncertainty Sampling

M Idea: pick x € U on which the classifier is most uncertain.

oM ?
(1) =D o—
' 92| 2
@ —D &5 o—
931 ?
B3 —h @ ® o—>
| 0*
) —b ® D o—

I
e
S
Figure 2.1: The binary search from Figure 1.3, re-interpreted as an uncertainty sampling approach. The
best instance to query is deemed to be the one closest to the threshold 6.

B How should uncertainty be defined?

22

Uncertainty Sampling

B Define uncertainty using the confidence, i.e., distance from certainty:

acq(0,x) == 1—py(y | x)

where y is the predicted label:
¥ = fo(x) = argmax py(y | x)
y

©)

(6)

23

Uncertainty Sampling

M Define uncertainty using the margin, i.e., difference in (conditional) likelihood:

acq(6,x) == pe(9' | x) — po(y | %)
where § is the predicted label and §’ is the 2nd best label:

™
y = argmax py(y | x) (8)
y
y' := argmax pg(y | x)
y#£y

9

24

Uncertainty Sampling

B Define uncertainty using the Shannon entropy of the label:
acq(0,x) == Hyp(Y | X =x)

where Hy is defined as:

Ho(Y | X =x):=— " py(y | x)logs po(y | %)
y€ld]

Remark: conventionally, 0 x log, 0 = 0.
o It achieves a minimum on dead certain distributions:
po(Y | x) =(0,1,0,...,0)
e and a maximum on the uniform distribution:

po(Y %) = (5o 2)

(10)

(11)

25

Confidence vs. Margin vs. Entropy

(d) least confident — ternary (c) margin — ternary (f) entropy — ternary

Bl Left: confidence considers prob. of top class only
B Middle: margin considers prob. of top & runner up classes
B Right: entropy considers prob. of all classes

If ¢ = 2, they are equivalent. If ¢ > 2, no obvious best
choice, it really depends on the task and loss (e.g., cross-
entropy vs.accuracy)

26

Confidence vs. Margin vs. Entropy

(d) least confident — ternary (c) margin — ternary

(f) entropy — ternary

Bl Left: confidence considers prob. of top class only
B Middle: margin considers prob. of top & runner up classes
B Right: entropy considers prob. of all classes

If ¢ = 2, they are equivalent. If ¢ > 2, no obvious best
choice, it really depends on the task and loss (e.g., cross-
entropy vs.accuracy)

Example: for classifiers with a sigmoid
top layer:

uncertainty depends on distance from
separating hyperplane of predicted vs.
top two vs. all classes

26

Example: Uncertainty Sampling

In a binary classification task (red vs. blue), when paired with a sigmoid-based classifier, uncertainty is inversely
proportional to the distance from the separator between classes:

o

most
uncertain

M Left: gray points indicate unlabelled points, and their distance from the separation surface is indicated by an
arrow. Uncertainty sampling picks the closest unlabelled point.

B Right: that label of that point happens to be red, and the classifier is updated accordingly. Naturally, the
distance of all other points from the separator (and hence their uncertainty) changes too.

27

Uncertainty Sampling

M Uncertainty sampling is very easy to implement.
B Margin & Confidence can be defined even in terms of unnormalized scores.

W Usually performs reasonably well (though not optimally) in practice: a useful baseline/starting point.

28

Example: Structured Output

Consider an LSTM that takes a sequence of MNIST images X = [x1,...,Xn]| that composes a word and
outputs the word itself y = (y1,...,yn).
o Computing the most likely output § can be done efficiently.
e Computing the entropy amounts to:
Ho(Y | X=x):=— > py(y|X)logs po(y | X) (12)
y€{l,...,26}"

This involves summing over 26" possible outputs, which takes time exponential in n.

B Computing the most likely output can be NP-hard. For instance, if y is molecular structure that mast satisfy
specific hard constraints (chemical validity), then finding the best structure amounts to solving a hard
combinatorial problem.

Hence, the confidence and margin can also be very hard.

29

Uncertainty in Regression

B When considering regression models with Y € R, uncertainty at x can be implemented as differential entropy:

Ho(Y | X = x) := E[—logs po(y | x) | x] (13)

- —/Rpe(y | x) logz po(y | %) (14)

30

Uncertainty in Regression

B When considering regression models with Y € R, uncertainty at x can be implemented as differential entropy:

Ho(Y | X = x) := E[—logs po(y | x) | x]

:—/Pe(y | x) logs po(y |)
R

M As an alternative heuristic, use the variance:

Varg(Y | x) :=E[(Y — E[Y | x])? | ¥]
N’

1o (¥x)=

- /R (v — o (Y | %))2pa(y | x)dy

w(v\x):/Ry po(y | x)dy

(13)

(14)

(15)

(16)

(17)

30

Uncertainty in Regression

B When considering regression models with Y € R, uncertainty at x can be implemented as differential entropy:

Ho(Y | X = x) := E[—logs po(y | x) | x]

:—/Pe(y | x) logs po(y |)
R

M As an alternative heuristic, use the variance:

Varg(Y | x) :=E[(Y — E[Y | x])? | ¥]
N’

1o (¥x)=

- /R (v — o (Y | %))2pa(y | x)dy

w(v\x):/Ry po(y | x)dy

M How to compute them?

(13)

(14)

(15)

(16)

(17)

30

Uncertainty in Regression

M Differential entropy and variance:

HQ(Y|x:x)=—4pa(y|x)log2p9(y\x) Vare(v|x)=A(p9(y\x)—u9(Y|x))dy (18)

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression
M Differential entropy and variance:

HQ(Y|x:x)=—/Rpa(y|x)log2pe(y\x) Vargmx):A(pg(y\x)—ue(Y|x))dy (18)

M Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form
solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression

M Differential entropy and variance:

He(Y|X=X)=—/RP9(Y|X)|°g2P9(}’|X) Vare(Y|X)=/R(Pe()/|x)—u9(y|x))dy (18)

M Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form
solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: 1-dimensional Gaussian Output

Consider one-dimensional output y € R and a neural net:
nn:ix e (po), y~N(p,o) (19)
In this case, it is well known? that:
2 1 2 1
Varg(Y | x) =0, Ho(Y | x) = 5|0g(271'0')+§ (20)

Notice that Varg(Y | x) o< exp Hg(Y | x), so they change monotonically.

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression

M Differential entropy and variance:

Ho(Y | X = x) = —/Rpa(y | x)logy po(y |x) Varg(Y |x) = /R(pe(y %) = o(Y |)y (21)

B Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form
solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: k-dimensional Gaussian Output

Consider one-dimensional output y € R and a neural net:
nn:x— (w,S), Y« SST, y~NuI) (22)
with ¥ PSD by construction. In this case, it is well known3 that:
Varg(Y | x) o trX Hg(Y | x) logdet X (23)

where the trace is cheap to compute but the determinant is more challenging.

3See https://en.wikipedia.org/wiki/Multivariate_normal_distribution.

32

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Illustration

N AVIVAN

Figure 2.6: Variance-based uncertainty sampling for a toy 1D regression task. Each column represents

an iteration of active learning. In the top row, solid lines show the target function to be learned, while
dashed lines show a neural network approximation based on available training data (black dots). The
bottom row plots the network’s output variance across the input range, which is used to select the query
for the next iteration.

33

B Synthetic dataset: 25 clusters of red points arranged in a 5 x 5 grid, surrounded by a sea of blue points

34

W After 10 iterations of uncertainty sampling.

35

. oL o " O
R TIOR B IRA ;-,.".- ML

M After 70 iterations of uncertainty sampling.

M After 140 iterations of uncertainty sampling. Not nice!

37

Over-confidence

B Discriminative models are over-confident:

Uncertainty does not decrease with distance from

the training set.

B Bayesian generative models not so much:

output, f(x)

Uncertainty does decrease with distance from the

training set.

0
input, x

(a), posterior

38

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 2
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

39

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

39

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be
decreased. (left)

B Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects
on uncertainty on the choice of 6. It decreases by acquiring more data. (right)

39

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be
decreased. (left)

B Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects
on uncertainty on the choice of 6. It decreases by acquiring more data. (right)

B There isn't much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

39

Uncertainty Sampling for Streaming Data

Input: models F, bootstrap training set £, threshold 7
Output: selected model f € F

1 f «+ fit(F, L) > initialize the model
2. fort =1,2,3,..., do

3: receive instance x

4 if unc(f,x) > 7 then > if f is uncertain about x
5: obtain label y of x from annotator

6 L+ LU{(x,y)} > update training set
7 f « fit(F, L) > update the model

return f

B The tricky bit is setting 7. Many algorithms update it dynamically by, e.g, starting from a large 7 and
lowering it as new data is received and the model improves

40

(a) target function (b) random (c) uncertainty-based selective sampling over time

Figure 2.7: Stream-based uncertainty sampling for a simple toy classification task. (a) Positive instances
lie inside the black box in 2D. (b) After 100 random samples, the function learned by a neural network
is still somewhat amorphous. (¢) Uncertainty-based selective sampling at 20, 60, and 100 queries. The
highlighted areas represent the region of uncertainty, which gradually shrinks and becomes more focused
as the network grows more confident. The output of the resulting network after 100 queries is much more
square-like than (b).

M For some problems, US converges to the right thing — because it is uncertain enough

41

(a) target function (b) initial sample (c) uncerrainty-based selective sampling over time

Figure 2.8: An example of uncertainty sampling failure. (a) Positive instances lie inside the two black
triangles. (b) An initial random sample fails to draw many training instances from the negative space in

between the triangles. (c) The trained network becomes overly confident that instances in the center are

positive. As a result, it avoids that region and begins to learn a different, more square-like shape.

M If you are unluckly, US becomes over-confident: in this example, the model becomes confident that the
regions inside the black blob cannot be white, so it does not sample them and converges to the wrong shape.

42

The Story So Far

M In active learning the machine is allowed to ask questions to an

oracle — and it should do so intelligently, so as to minimize the # Input: models 7, examples £, pool U, query budget T > 1
Output: selected model f € F

of questions for obtaining a good model. 1: f « fit(F, £)
2:fort=1,2,...,Tdo

B The most common query selection strategy is uncertainty sam- 3 x o argmaxeeyq nealf,)
4 obtain label y of x from annotator

pling: the machine asks the oracle to label those (unlabelled) in- 5 U« U\ {x}

" hich it i " 6: £ £LU{(x)}

stances on which it is most unsure. 7 f e fu(F L)

" return f
B Issues:
1. If the machine doesn't know that it doesn’t know — i.e., its
self-assessed uncertainty is poorly calibrated — then uncer-
tainty sampling can ignore informative instances altogether.
2. Common uncertainty measures (e.g., entropy) mix together

epistemic and aleatoric uncertainty, only the former of which
we can reduce by acquiring more labels.

B Uncertainty sampling is quite heuristic. Are there more principled approaches?

44

Version Space

B Consider a hypothesis space F = {fy : x — y} and a data set £ = {(x;,y)}

A hypothesis f € F is consistent with £, written f = L, iff it makes zero
mistakes on it, that is:

(FEL) = (Syecl(fF® #y)) =0 (24)

45

Version Space

B Consider a hypothesis space F = {fy : x — y} and a data set £ = {(x;,y)}

A hypothesis f € F is consistent with £, written f = L, iff it makes zero
mistakes on it, that is:

(FEL) = (Syecl(fF® #y)) =0 (24)

Version Space
The version space VS(L) of F given L is the set of hypotheses f € F that are
consistent with £, that is:

VS(L)={feF : fl=L} (25)

VS(L) contains those classifiers that
are not ruled out by the examples £
(in orange). It does not include the

purple classifier though!

45

B If L is not separable w.r.t. F, i.e., if there is no hypothesis f € F that is constent with it, then the version
space is empty.

This can happen in practice because:

46

B If L is not separable w.r.t. F, i.e., if there is no hypothesis f € F that is constent with it, then the version
space is empty.

This can happen in practice because:
e F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-
rectly label all data.

46

B If L is not separable w.r.t. F, i.e., if there is no hypothesis f € F that is constent with it, then the version
space is empty.

This can happen in practice because:

e F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-
rectly label all data.

e L is noisy.

Example: L contains the same instance twice but annotated with different labels — e.g., (x,1) and (x,3) —
so no f € F can classify both correctly.

46

B If £ is not separable w.r.t. F, i.e., if there is no hypothesis f € F that is constent with it, then the version
space is empty.

This can happen in practice because:

e F is not expressive enough.
Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-
rectly label all data.

e L[is noisy.
Example: L contains the same instance twice but annotated with different labels — e.g., (x,1) and (x,3) —
so no f € F can classify both correctly.

The Realizable Case

We assume the realizable case: 3f* € F s.t. y = f*(x) for all x and no noise.

This implies that f* € VS(L) for all choices of labeled examples £, because the supervision (x,y) is always
consistent with *. Hence, the version space is never empty, regardless of what data we see!

46

Version Space <> Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x € RY such that there exist two classifiers f, f’
in the version space VS(L) that produce different predictions for them:

DIS(L) = {x e R : 3f,f' € VS(L) . f(x) # F(x)} (26)

47

Version Space <> Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x € RY such that there exist two classifiers f, f’
in the version space VS(L) that produce different predictions for them:

DIS(L) = {x e R : 3f,f' € VS(L) . f(x) # F(x)} (26)

W If x ¢ DIS(L), then all candidate classifiers f in the version space classify it the same: acquiring its label is
pointless.

47

Version Space <> Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x € RY such that there exist two classifiers f, f’
in the version space VS(L) that produce different predictions for them:

DIS(L) = {x e R : 3f,f' € VS(L) . f(x) # F(x)} (26)

W If x ¢ DIS(L), then all candidate classifiers f in the version space classify it the same: acquiring its label is
pointless.

W If x € DIS(L), then at least one f in the version space classifies it differently: acquiring its label is useful.

47

input space hypotheses H

Left: input space R?, data set £ of red crosses vs blue circles. Right: hypothesis space F, each f is a point;
the ground-truth f* is in red.

48

input space hypotheses H

Left: input space R?, data set £ of red crosses vs blue circles. Right: hypothesis space F, each f is a point;
the ground-truth f* is in red.
F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

48

input space hypotheses H

Left: input space R?, data set £ of red crosses vs blue circles. Right: hypothesis space F, each f is a point;
the ground-truth f* is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as
shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

48

input space hypotheses H

Left: input space R?, data set £ of red crosses vs blue circles. Right: hypothesis space F, each f is a point;
the ground-truth f* is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as
shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)
The disagreement region DIS(L) is the space enclosed between these two rectangles.

48

Version Space for Streaming AL

Input: models F
Output: selected model f € F

1

8:

2
3
4:
5
6
7

LD

V<« F

cfort=1,2,3,..., do

receive instance x

if x € DIS(V) then
obtain label y of x

return any f € V

update V+ {f €V :

> implements the version space VS(L)

> if x falls in the disagreement region

f(x) =y}

> update version space

49

Version Space for Streaming AL

Input: models F
Output: selected model f € F

L L+ O

2 V< F > implements the version space VS(L)
3 fort=1,2,3,..., do

4: receive instance x

5 if x € DIS(V) then > if x falls in the disagreement region
6 obtain label y of x

7 update V«+ {f eV : f(x) =y} > update version space

8 return any f € V

B If x € DIS(L), then there are at least two classifiers f, f’ € VS(L) that disagree on how x should be labeled.
Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

49

Version Space for Streaming AL

Input: models F
Output: selected model f € F

L L+ O

2 V< F > implements the version space VS(L)
3 fort=1,2,3,..., do

4: receive instance x

5 if x € DIS(V) then > if x falls in the disagreement region
6 obtain label y of x

7 update V«+ {f eV : f(x) =y} > update version space

8 return any f € V

B If x € DIS(L), then there are at least two classifiers f, f’ € VS(L) that disagree on how x should be labeled.
Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

B Recall that f* is always compatible with examples (x,y), so it is always in VS(L) — algorithm zooms into it!

49

Version Space for Streaming AL

Input: models F
Output: selected model f € F

L L+ O

2 V< F > implements the version space VS(L)
3 fort=1,2,3,..., do

4: receive instance x

5 if x € DIS(V) then > if x falls in the disagreement region
6 obtain label y of x

7 update V«+ {f eV : f(x) =y} > update version space

8 return any f € V

B If x € DIS(L), then there are at least two classifiers f, f’ € VS(L) that disagree on how x should be labeled.
Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

B Recall that f* is always compatible with examples (x,y), so it is always in VS(L) — algorithm zooms into it!
M This algorithm makes no useless queries!

49

Question

B Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also

the target shape)?

(a) target function (b) initial sample (¢) uncertainty-based selective sampling over time

Figure 2.8: An example of uncertainty sampling failure. (a) Positive instances lie inside the two black
triangles. (b) An initial random sample fails to draw many training instances from the negative space in
between the triangles. (c) The trained network becomes overly confident that instances in the center are
positive. As a result, it avoids that region and begins to learn a different, more square-like shape.

50

Question

(a) target function (b) initial sample (¢) uncertainty-based selective sampling over time

Figure 2.8: An example of uncertainty sampling failure. (a) Positive instances lie inside the two black
triangles. (b) An initial random sample fails to draw many training instances from the negative space in
between the triangles. (c) The trained network becomes overly confident that instances in the center are
positive. As a result, it avoids that region and begins to learn a different, more square-like shape.

B Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also
the target shape)? Yes! Incoming points x in the center region belong to the disagreement region (some
classifiers in F might believe they should be black, while f* knows that they are white), so they are accepted
and allow us to retrieve *.

50

Question

(a) target function (b) initial sample (¢) uncertainty-based selective sampling over time

Figure 2.8: An example of uncertainty sampling failure. (a) Positive instances lie inside the two black
triangles. (b) An initial random sample fails to draw many training instances from the negative space in
between the triangles. (c) The trained network becomes overly confident that instances in the center are
positive. As a result, it avoids that region and begins to learn a different, more square-like shape.

B Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also
the target shape)? Yes! Incoming points x in the center region belong to the disagreement region (some
classifiers in F might believe they should be black, while f* knows that they are white), so they are accepted
and allow us to retrieve *.

B Can we do better if we can choose x?

50

Version Space for Pool-based AL

Input: models F
Output: selected model f € F

1. Lo

2V F > implements the version space VS(L)
3 fort=1,2,..., T do

4: X < argmax, ¢y, acqys(V, F,x)

5 obtain label y of x

6 update V+ {f €V : f(x) =y} > update version space

7: return any f € V

B We can always ensure that there is a point on which the classifiers in the version space disagree, unless the
version space is empty or includes a single classifier. In this case we can simply terminate.

Problem: how do we define the acquisition function?

51

Instances Hypotheses
f
‘ X

Consider the linear classifiers, i.e., F is:

f(x)=1(0Tx>0) : OeR?, ||0]2=1
{f)=1(67x>0) 1ol }

The version space of L is essentially the set of direction vectors @ that classify all points correctly.

(27)

52

Instances Hypotheses

Xy X3 Xy

X3

M Classifiers are hyperplanes in instance space and instances are hyperplanes in hypothesis space. In some
sense, the two spaces are “dual” of one another.

53

Instances Hypotheses

X1 71Xy

X3

B Idea: pick the point x € U that (greedily) restricts the version space as much as possible. In this special case,
x passes close to the center of VS(L).

54

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.

55

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.

B The volume of a region A C F is:

Vol (A) = /A do

55

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.

B The volume of a region A C F is:

Vol(A):/AdB:/eeRle‘ 5{6 € A}de

So computing a volume in general requires integration.

(28)

55

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.
B The volume of a region A C F is:
Vol (A) = / do = / 0{6 € A}do (28)
A 9cRIO|
So computing a volume in general requires integration.

M Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,
the volume to be minimize is: Vol (VS(L U {(x, y)})).

55

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.
B The volume of a region A C F is:
Vol (A) = / do = / 0{6 € A}do (28)
A 9cRIO|
So computing a volume in general requires integration.

M Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,
the volume to be minimize is: Vol (VS(L U {(x, y)})). However, we don’t know the label y of x.

55

Idea: pick x € U that reduces the volume of the version space VS(L) as much as possible.
B The volume of a region A C F is:
Vol (A) = / do = / 0{6 € A}do (28)
A 9cRIO|
So computing a volume in general requires integration.

M Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,
the volume to be minimize is: Vol (VS(L U {(x, y)})). However, we don’t know the label y of x.

B The best we can do is to compute the average volume based on the probability of the predicted labels given
by the model:

argmin > poly |) - Vol (VS(£ U {(x.)})) (29)

xeud € y=1

This tells us what the volume of the VS would be if we were to add x — with an unknown label y — to the data.

55

Question: how to encode the version space?

56

Question: how to encode the version space?

B If F is finite, can explicitly store f = £. Bonus: computing expected volume is doable (integral becomes
sum).

56

Question: how to encode the version space?

B If F is finite, can explicitly store f = £. Bonus: computing expected volume is doable (integral becomes
sum).

M If F is infinite, cannot store explicitly. However, we only need to compute its volume:

=3 Py 30 Yol (VS(£U {(x,)D) (30)
yele this is the difficult bit

56

Question: how to encode the version space?

B If F is finite, can explicitly store f = £. Bonus: computing expected volume is doable (integral becomes
sum).

M If F is infinite, cannot store explicitly. However, we only need to compute its volume:

S oy %) Vol (VS(£ U {(x, 1)) (30)

y€lcl this is the difficult bit

o If 7 is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.
For instance with rejection sampling, let B C VS(L) of known volume:

{6 ~ Uniform(B) : i=1,....s}, Vol (VS(C)) ~ v011(3) : %Z]l(é,- e vs(c")) (31)
i=1

To check, 1(6; € VS(L')), check that fy classifies all examples in L correctly.

56

Question: how to encode the version space?

B If F is finite, can explicitly store f = £. Bonus: computing expected volume is doable (integral becomes
sum).

M If F is infinite, cannot store explicitly. However, we only need to compute its volume:

S oy %) Vol (VS(£ U {(x, 1)) (30)

y€lcl this is the difficult bit

o If 7 is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.
For instance with rejection sampling, let B C VS(L) of known volume:

s

{6 ~ Uniform(B) : i=1,....s}, Vol (VS(C)) ~ v011(3) : %Z]l(é,- e vs(c")) (31)
i=1

To check, 1(6; € VS(L')), check that fy classifies all examples in L correctly.

o Otherwise (think CNN on ImageNet), can be extremely challenging — we cannot use VS!

56

Not All Classifiers in VS Think Exactly The Same

I"~ ‘A A ﬁ

Py Ppy Py Pyoy Py Pg(3)
(a) uncertain but in agreement (b) uncertain and in disagreement

Figure 3.5: Examples of committee and consensus distributions. Py refers the output distribution of
the ith hypothesis, and P¢ represents the consensus across all committee members.

57

B These approaches make two assumptions:

58

B These approaches make two assumptions:

o Disagreement is measured using all hypotheses in the version space VS(L).

58

B These approaches make two assumptions:

o Disagreement is measured using all hypotheses in the version space VS(L).

o Disagreement is binary: it is only O if all hypotheses fully agree on x € U.

M Let's relax both of them — speed-up!

58

B These approaches make two assumptions:

o Disagreement is measured using all hypotheses in the version space VS(L).

o Disagreement is binary: it is only O if all hypotheses fully agree on x € U.

M Let's relax both of them — speed-up!

B Moreover, version space is only non-empty in the realizable case. How do we deal with this?

58

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {ci, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

59

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {cy, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!
B How to generate the committee C? Some alternatives:

o Uniform: Pick each ¢; uniformly at random from VS(L). Very uninformed choice.

59

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {cy, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!
B How to generate the committee C? Some alternatives:

o Uniform: Pick each ¢; uniformly at random from VS(L). Very uninformed choice.

o Bagging: sample k subsets of £, train one classifier ¢; on each.

59

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {cy, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

B How to generate the committee C? Some alternatives:

o Uniform: Pick each ¢; uniformly at random from VS(L). Very uninformed choice.
o Bagging: sample k subsets of £, train one classifier ¢; on each.

e Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-
takes made by previous classifier.

59

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {cy, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

B How to generate the committee C? Some alternatives:

o Uniform: Pick each ¢; uniformly at random from VS(L). Very uninformed choice.
o Bagging: sample k subsets of £, train one classifier ¢; on each.
e Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data — assuming their accuracy is 100% — so they
are all in the VS.

59

Query By Committee (QBC)

M Idea: replace VS witha committee C:

o Select k representatives C = {cy, ..., ¢} from VS(L), with k > 100.

e Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

B How to generate the committee C? Some alternatives:

o Uniform: Pick each ¢; uniformly at random from VS(L). Very uninformed choice.
o Bagging: sample k subsets of £, train one classifier ¢; on each.
e Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data — assuming their accuracy is 100% — so they
are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Measuring Disagreement of C on x € U

B “Hard” Voting + Entropy:

argmax _Z n(y,x) log n(y, x)

xeu k

y

Each classifier votes either 0 or 1.

k

)

n(y,x):

S 1(ex) = y)

ceC

(32)

60

Measuring Disagreement of C on x € U

B “Hard” Voting + Entropy:

argmax —Z nly,x) log M, n(y,x) == Z 1(c(x) =y)

xeu y k k cec
Each classifier votes either 0 or 1.
B “Soft” Voting 4+ Entropy:
argmax — > pe(y | x)log pe(y | %), c(y | x) = ch(y | x)
xeu y ceC

Output probabilities of each ¢ € C taken into account.

(32)

(33)

60

Measuring Disagreement of C on x € U

B “Hard” Voting + Entropy:

argmax —Z nly,x) log M, n(y,x) == Z 1(c(x) =y)

xeu y k k cec
Each classifier votes either 0 or 1.
B “Soft” Voting 4+ Entropy:
argmax — > pe(y | x)log pe(y | %), c(y | %) = ch(y | x)
xeu y ceC

Output probabilities of each ¢ € C taken into account.

B Average Kullback-Liebler divergence:

argmax — ZIK]L pe(Y [x)llpc(Y | x))
xeUu CEC

L(p(Y | x)|lq(Y | x)) := Xy:p(y | %) log Zg : 2

Very expressive, measures difference between whole distributions, i.e., prob. of all possible labels.

(32)

(33)

(34)

(35)

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of py on example z = (x,y) is denoted £(6, z). For instance, cross-entropy loss:

U0,2) :=—32;1(j = y)logpo(j | x) = — log pa(y | x) (36)

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of py on example z = (x,y) is denoted £(6, z). For instance, cross-entropy loss:
£0,2) :=—=32;1(=y)logpy(j | x) = —log po(y | x) (36)
The true risk L* of § w.r.t. the ground-truth distribution p*(X, Y) is:
L7(0) := Eznp=[£(0, 2)] (37)

It measures the true quality of the model, unobserved.

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of py on example z = (x,y) is denoted £(6, z). For instance, cross-entropy loss:
£0,2) :=—=32;1(=y)logpy(j | x) = —log po(y | x) (36)

The true risk L* of § w.r.t. the ground-truth distribution p*(X, Y) is:

L(0) := Bznp= [£(60, 2)] (37)
It measures the true quality of the model, unobserved.
The empirical risk Z_g of O w.r.t. data set S = {z1,...,zm} sampled i.i.d. from p* is:
~ 1
Ls(0) := = > _(0,2) (38)
|S| zeS

It estimates the quality of the model from a sample S, optimized during training.

61

Model Improvement

Let 0 be the parameters obtained by training on S and #%7 those obtained by training on SU {z}, i.e.,

6 := argmin Ls(6) 677 := argmin ESU{Z}(B)
6 0

where optimization is possibly approximate, e.g., based on SGD.

(39)

62

Model Improvement

Let 0 be the parameters obtained by training on S and #%7 those obtained by training on SU{z}, i.e.,

0 := argmin Ls(6) %7 := argmin ESU{Z} (0) (39)
6 0

where optimization is possibly approximate, e.g., based on SGD.

Model Improvement

The model improvement (MI) given by a new example z € S is the decrease in true risk:
acq(x) == L*(0) — L*(6"7) (40)

The higher, the better — pick the x € U/ that maximizes the improvement.

62

Model Improvement as Greedy Optimization

B MI amounts to solving:

argmax £*(0) — £*(017) = argmin L£*(67%) (41)
xeu xeu

It is guaranteed to find the best next candidate!

“Note: Ml is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they
are ignored in the AL literature.

63

Model Improvement as Greedy Optimization

B MI amounts to solving:

argmax £*(0) — £*(017) = argmin L£*(67%) (41)
xeu xeu

It is guaranteed to find the best next candidate!

B Ml is essentially a greedy strategy for solving:*

argmin L£*(0) (42)
Scu
s.t. |S| < query budget (43)

In this view, AL is a subset optimization problem, and MI solves it directly.

“Note: Ml is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they
are ignored in the AL literature.

63

Model Improvement as Greedy Optimization

B MI amounts to solving:

argmax £*(0) — £*(017) = argmin L£*(67%) (41)
xeu xeu

It is guaranteed to find the best next candidate!

B Ml is essentially a greedy strategy for solving:*

argmin L£*(0) (42)
Scu
s.t. |S| < query budget (43)

In this view, AL is a subset optimization problem, and MI solves it directly.

B Compare this to uncertainty sampling, which is not as sound

“Note: Ml is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they
are ignored in the AL literature.

63

B We want to solve:

argmin L£*(612)
xeu

5The unlabeled set I/ is ideally pretty large, so the approximation is reasonable.

(44)

64

B We want to solve:

argmin L£*(612) (44)
xeu
Problem: £*(-) is an integral over x’ € R9:
£50%) = B [€0*.) = [0%,y) (45)

which is intractable

5The unlabeled set I/ is ideally pretty large, so the approximation is reasonable.

64

B We want to solve:

argmin ﬁ*(§+2) (44)
x€U
Problem: £*(-) is an integral over x’ € R9:
L¥(077) =By pe [0(012,2")] = /IR) 0677, (%', y"))dx’ (45)
which is intractable — approximate using empirical average over 1/:3
L0%) ~ Ly (017) = ﬁ S Ut (x,y) (46)
x'eU

5The unlabeled set I/ is ideally pretty large, so the approximation is reasonable.

64

B We want to solve:

argmin L£*(612) (44)
xeu
Problem: £*(-) is an integral over x’ € R9:
£4(F7) = B (0577, 2)] = [007 (5 (45)
Rd
which is intractable — approximate using empirical average over 1/:3
*(p+z & ontz 1 Dtz
LHOF) = Ly(07) = = D407, (X, y") (46)
Z/{‘ x'eU
Example: if £ is the 0-1 loss, then this amounts to:
1
il Z 1(fp(x) # ') (47)

x'eu

5The unlabeled set I/ is ideally pretty large, so the approximation is reasonable.

64

B We already decided on this approximation:

cHet?) —

Ly(67) =

1
|

PRI ENCND)

x'elU

(48)

65

B We already decided on this approximation:
@) = Lu(@) = DO (L))

1
Ul =,

(48)

Problem: we don’t have access to the ground-truth label z = (x, y)

65

B We already decided on this approximation:

L£*(67%) — Eu(§+2)—7 St () (48)
XEZ/{

Problem: we don’t have access to the ground-truth label z = (x,y) — marginalize w.r.t. p*:

Eymp (V1) | 71 Z (O (¢, y")) (49)
x' cU

This averages over alternative future models 6+(Y) obtained after retraining on LU (x, y).

65

B We already decided on this approximation:

L£*(67%) — Eu(§+2)—7 St () (48)
XEZ/{

Problem: we don’t have access to the ground-truth label z = (x,y) — marginalize w.r.t. p*:

Eypr wl ZW) (x,y")) (49)

x'eU

This averages over alternative future models 6+(Y) obtained after retraining on LU (x, y).

Problem: we don't have access to the ground-truth label y’ either

65

B We already decided on this approximation:

L£*(67%) — Lyu(0t7) = — Z 0ot (',) (48)
x'elU
Problem: we don’t have access to the ground-truth label z = (x,y) — marginalize w.r.t. p*:
Eymp (V1) | 71 Z (R NCHD) (49)
x'eU

This averages over alternative future models 6+(Y) obtained after retraining on LU (x, y).

Problem: we don't have access to the ground-truth label y’ either — marginalize w.r.t. p*:
]Epr (Y|x) Z Ev ~p*(Y|x") |:£(0+(X7Y)7 (X/,y/))] (50)

XEZ/I

This averages over the unknown labels y’ of the instances in X’ € U.

65

B We already decided on this approximation:

L) - Byvpe (v

IU\

> By v [0, ()]

x'eU

(51)

66

B We already decided on this approximation:

Lrer) — Eypr(viy

1
|

Z]Ey’Np‘ (Y|x) [Z(§+(X‘Y)7 (ley/))]

x'eU

(51)

Problem: we don't have access to p* at all

66

B We already decided on this approximation:

~ 1 ~
L*(0%%) — Byp (v l D Eyrpr(vix) [Z(GHX‘”,(X'JI))] (51)
x'eU
Problem: we don’t have access to p* at all — estimate using model’s distribution:
(52)

1 —~
Eynps(vix) [ul %Ey’w’,; (YIx') [f(ffﬁ (X/,y/))]]
@)

(b)
()

where 0+ 1= 0ty |If py is “good enough”, then the approximation is good.

66

B We already decided on this approximation:

~ 1 ~
L*(0%%) — Byp (v l D Eyrpr(vix) [Z(GHX‘”,(X'JI))] (51)
x'eU
Problem: we don’t have access to p* at all — estimate using model’s distribution:
(52)

1 —~
Eynps(vix) [ul %Ey’w’,; (YIx') [f(ffﬁ (X/,y/))]]
@)

(b)
()

where 0+ 1= 0ty |If py is “good enough”, then the approximation is good.

(2) Is the expected loss of the updated model on x’' € U,

66

B We already decided on this approximation:

~ 1 ~
L*(0%%) — Byp (v l D Eyrpr(vix) [Z(GHX‘”,(X'JI))] (51)
x'eU
Problem: we don’t have access to p* at all — estimate using model’s distribution:
(52)

1 ~
]Eywp[}(y\x)[m %]Eyzwp{) (YIx') [€(0+, (xuy/))]]
(@)

(b)
()

where 0+ 1= 0ty |If py is “good enough”, then the approximation is good.

(2) Is the expected loss of the updated model on x’' € U,

(b) Is the average expected oss of the updated model on all of U,

66

B We already decided on this approximation:

~ 1 ~
L*(0%%) — Byp (v l D Eyrpr(vix) [Z(GHX‘”,(X'JI))] (51)
x'eU
Problem: we don’t have access to p* at all — estimate using model’s distribution:
(52)

1 ~
]Eywp[}(y\x)[m %]Eyzwp{) (YIx') [€(0+, (xuy/))]]
(@)

(b)
()

where 0+ 1= 0ty |If py is “good enough”, then the approximation is good.

(2) Is the expected loss of the updated model on x’' € U,
(b) Is the average expected oss of the updated model on all of U,

(c) Is the above averaged over the possible updated models oY),

66

B We already decided on this approximation:

E*(§+Z) — EVNP& (YIx) [

1
|

Z Eyspy (v €07, (K, y))]]

(53)

67

B We already decided on this approximation:

E*(§+Z) — EY~P§(Y|X) [lﬂl| Z TE;V/‘VPH,(Y\Y’) {/((}+, (X/<)//))]:|
x'eu

(53)

Example: consider the 0-1 loss (0, (x,y)) = 1(fy(x) # y).

67

B We already decided on this approximation:

~ 1
@) = By v [IMI Z Eyopy vy [60F, (8, y))]] (53)
Example: consider the 0-1 loss (6, (x,y)) = 1(fy(x) # y). Then:
By py (YIx) [L(f5 () #Y)] =ppu #y X)), y = (x) (54)
=1-ps (' %) (55)

67

B We already decided on this approximation:

*(n+z 1
@) = Eyepviy [|u| Z Eyopy vy [60F, (8, y))]] (53)
Example: consider the 0-1 loss (6, (x,y)) = 1(fy(x) # y). Then:
Eyrps vy (LG () #Y)] =pe (0" £y X)), 9= 1f5(X) (54)
=1-ps (7 |X) (55)
Hence, the above can be rewritten as (ﬁ doesn’t matter because it is independent of x):
1 .
By ps(YIx) [W S -pu (¥ X/))] < Y ply %) Z L 1x) (56)

x'eU y€[c] x'eU

67

B We already decided on this approximation:

*(P+z 1 ~
L£*(61%) — EYNPe (V%) [|U| Z Fv’wﬁ,(v\v)[/((ﬁ-,(X’«y’))H (53)
Example: consider the 0-1 loss (6, (x,y)) = 1(fy(x) # y). Then:
Eyrps vy (LG () #Y)] =pe (0" £y X)), 9= 1f5(X) (54)
=1-ps (7 |X) (55)
Hence, the above can be rewritten as (ﬁ doesn’t matter because it is independent of x):
1 .
By ps(YIx) [W S -pu (¥ X/))] < Y ply %) Z L 1x) (56)

x'eU y€[c] x'eU

B We pick x € U that minimizes the above — minimizes expected future confidence on U/

67

B We already decided on this approximation:

@) = Eyepyvin| oo

1
|

Z Eyropsr (YIx!)[0", (x,y))H

(57)

68

B We already decided on this approximation:

1

E*(9+Z) N EVNP@ (Y]x) [lul

Z Eyeapy (vixr) [40T, (<))]

(57)

Example: consider the negative log-likelihood ¢(6, (x,y)) =

—log po(y | x).

68

B We already decided on this approximation:

~ 1
*(N+z N+ /
L (9) — IEyrvpe (Y|x) [Iul Z Wy’wpo,(Y\x’ { (H (! Y))]] (57)
Example: consider the negative log-likelihood £(0, (x,y)) = — log pg(y | x). Then:
Byrps vy [logpge (V) 1¥)] = =2 rerq par (v | X') log pgi (v | X') (58)
= Hg. (Y | x) (59)

68

B We already decided on this approximation:

*(+z 1 /
C@F) — Bypvi [IMI Z Eyeapy (vixr) [40T, (<))] (57)
Example: consider the negative log-likelihood £(0, (x,y)) = — log pg(y | x). Then:
Byrps vy [logpge (V) 1¥)] = =2 rerq par (v | X') log pgi (v | X') (58)
= Hg. (Y | %) (59)
Hence, the above can be rewritten as:
1
]Eywpé(Y\x) [m Z (H(i—(y ‘ X))] X Z pg(y ‘ X) Z ()+ Y ‘ X) (60)

x'eU y€lc] x'eU

68

B We already decided on this approximation:

~ 1
@) = Eyepyvio [|u| Z Byt gy vy (07, (1)) 57)
Example: consider the negative log-likelihood £(0, (x,y)) = — log pg(y | x). Then:
Byrps vy [logpge (V) 1¥)] = =2 rerq par (v | X') log pgi (v | X') (58)
= Hg. (Y | x) (59)
Hence, the above can be rewritten as:
1
]Eywpé(Y\x) [m Z (H(i—(y ‘ X))] X Z pg(y ‘ X) Z ()+ Y ‘ X) (60)

x'eU y€lc] x'eU

B We pick x € U that minimizes the above — minimizes expected future entropy on U

68

M In uncertainty sampling, we pick x that minimizes model’s estimate of current uncertainty w.r.t. itself, this is
myopic

B In expected model improvement, we pick x that minimizes model’s estimate of expected future uncertainty
w.r.t. unlabeled set, this is less myopic

69

comp.graphics vs. comp.windows.x comp.sys.ibm.pc.hardware vs. comp.os.ms-windows.misc

0.9

accuracy

ermot-teddction Sampling
density-weighted QBC
uncertainty sampling

error-reduction sampling
density-weighted QBC
uncertainty sampling -

20 40 60 80 100

20 40 60 80 100 o
number of labeled instances

number of labeled instances

Figure4.1: Learning curves showing that expected error reduction can outperform QBC and uncertainty
sampling for two binary text classification tasks. Source: Adapted from Roy and McCallum (2001), with

kind permission of the authors.

70

B We already decided on this approximation:

—~ 1 ~
L) — By vy [@ > By, (v [407, (59|
x'eU

(61)

71

B We already decided on this approximation:

*(n4z 1 ~
L (0+) — E}/NP§(Y|X) [m Z Eylwpm (Y[x') [4(9 f s (X/7y/))]]
x'eU

(61)

Problem: computing 8 requires to fit model on £ U {(x,y)} (slow)

71

B We already decided on this approximation:

*(n4z 1 ~
L (0+) — E}/NP§(Y|X) [m Z Eylwpm (Y[x') [4(9 f s (X/7y/))]]
x'eUu

(61)

Problem: computing 8 requires to fit model on £ U {(x,y)} (slow)

Problem: this has to be done |U/| X [c] times.

71

B We already decided on this approximation:

*(n4z 1 ~
L (0+) — Ey~p§(Y|X) [m Z Eylwpm (Y[x') [4(9 f ’(X/7y/))]]
x'eUu

(61)

Problem: computing 8 requires to fit model on £ U {(x,y)} (slow)
Problem: this has to be done |U/| X [c] times.

Problem: this has to be done in each iteration of active learning.

71

B We already decided on this approximation:

* N4z 1 N
L (0+) ? Ey~p§(Y|X) [IUI § Ey’wpm (Y|x’) [4(9 ‘ s (X/7 y/))]] (61)
x'eUu

Problem: computing 8 requires to fit model on £ U {(x,y)} (slow)
Problem: this has to be done |U/| X [c] times.
Problem: this has to be done in each iteration of active learning.

B Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable
incremental learning (e.g., perceptron-like learning algorithms).

71

Expected Model Change

M Unless a candidate (x, y) induces a large change in the model gupon retraining, then it cannot reduce the
model’s risk by much: change is a prerequisite for improvement.

72

Expected Model Change

M Unless a candidate (x, y) induces a large change in the model gupon retraining, then it cannot reduce the
model’s risk by much: change is a prerequisite for improvement.

Inituition:
00,2') —00%,2") < |00,2') - £06%,2)] < c-|6-6%F, >0 (62)

where ||-|| is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions £.

72

Expected Model Change

M Unless a candidate (x, y) induces a large change in the model gupon retraining, then it cannot reduce the
model’s risk by much: change is a prerequisite for improvement.

Inituition:
00,2') —00%,2") < |00,2') - £06%,2)] < c-|6-6%F, >0 (62)

where ||-|| is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions £.
B Large change also occurs when the loss increases — hence the absolute value in the second step of Eq. 62.

All in all, EMC looks for examples x € U/ that “make a difference” one way or the other.

But once (x,y) is acquired it is added to the training set £ on which 0 is fit, so loss is likely to go down rather
than up.

72

Expected Model Change

B The trick is that if § is obtained via gradient descent, the difference -0+ is easy to compute:
-6 =n-Vel(0,2) (63)
where 7) is the learning rate. This gives expected gradient length:
acaeL (%) = Eympy (vl [V060; (x,1))]?] (64)
The square does not change ranking of examples & avoids computing a square root.

o Quite cheap to compute using automatic differentiation packages (using Jacobian to parallelize over Uf)

e Assuming 7 is constant across examples and GD, the computation is exact. For other optimizers, it is an
approximation

73

Are Uncertain Points Representative?

A AO

Figure 5.1: An illustration of when uncertainty sampling can be a poor strategy. Shaded polygons rep-
resent labeled instances in £, and circles represent unlabeled instances in ¢. Since A is on the decision
boundary, it would be queried as the most uncertain. However, B would probably provide more informa-
tion about the input distribution as a whole.

74

Diversity-based Selection

Idea: pick instances x € U that are both locally informative and also similar to as many other unlabeled points

as possible:
B

1
argmax acq(f,x) - [— Z sim(x, x") (65)
xeU |Z/{| P=

where:

e acq(f,x) is a “standard” acquisition function based on, e.g., pointwise uncertainty.

o sim(x, x/) measures the similarity between x and x’, e.g., a Gaussian kernel, Pearson’s correlation coeffi-
cient, Spearman’s rank correlation. Application specific.

e 3> 0is a hyper-parameter

Intuitively, x's label conveys information about the label on the other points in U

75

Example

085 r r T T 085
0.80 0.80
075 075
oy
8 o070 070
5
§ 065 . 065 - 4
0.60) 4 060 , 1
/ information density —— 4 information density ———
055 [uncertainty sampling 1 055 f uncertainty sampling 1
random sampling random sampling
050 : : 050 . . :
0 20 40 60 80 100 0 20 40 60 80 100
0.80 0.60
*
075 055 | comp-
> 070
g 050 -
5 065
3
045
& o060
information density —— | .40 information density ——
055 uncertainty sampling 1 uncertainty sampling
4 random sampling random sampling
050 0.35
0 20 40 60 8 100 0 20 40 60 80 100
labeled instances # labeled instances
Figure 5.2: Learning curves showing that, by explicitly weighting queries by their representativeness

among the input instances, information density can yield better results than the base uncertainty sampling
heuristic by itself.

B We optimize:

1
argmax acq(f,x)- [— Z sim(x,x’) (66)
xeU IZ/{| X' eu

Properties:

o Tends to work better than pure more “local” acquisition functions (Settles, 2012)

e Even when uncertainty sampling is worse than random, information density performs well

v

B We optimize:

1
argmax acq(f,x)- [— Z sim(x,x’) (66)
xeU IZ/{| X' eu

Properties:

o Tends to work better than pure more “local” acquisition functions (Settles, 2012)
e Even when uncertainty sampling is worse than random, information density performs well

o Similarity computation can be sped-up using caching: “simply” store similarity matrix S; = [sim(x;, x;)]
for all x;,x; € U (only needs to be done once)

v

B We optimize:

argmax acq(f,x) -
xeuU

Z sim(x,x’) (66)

1
|Z/{| x'eu

Properties:

o Tends to work better than pure more “local” acquisition functions (Settles, 2012)
e Even when uncertainty sampling is worse than random, information density performs well

o Similarity computation can be sped-up using caching: “simply” store similarity matrix S; = [sim(x;, x;)]
for all x;,x; € U (only needs to be done once)

o Approximate using clustering: cluster U so that points within cluster are similar and points across clusters
are not — block-diagonal similarity matrix, lowers storage requirement from O(|U/|2) to O(3_; |cluster;|?)

v

B Do we gain anything by “summarizing” the data using clustering?

78

B Do we gain anything by “summarizing” the data using clustering?

Idea:

o Cluster unlabeled data set i/ — {C; CU : i€ [k]}

e Treat each C; as a separate problem, e.g., query cluster centroids

78

B Do we gain anything by “summarizing” the data using clustering?

Idea:

o Cluster unlabeled data set i/ — {C; CU : i€ [k]}

e Treat each C; as a separate problem, e.g., query cluster centroids

Problems:

o U may not have a good clustering structure or sim(-, -)
may not be able to capture it

e How many clusters and at what granularity?

e Clusters of x's may not correlate well with label y.

15
5

Figure: the swiss roll dataset has no
obvious clustering structure.

78

Extensions

B Consider a neural network fp : RY — [c]:

fo(x) = argmax py(y | x)
y€ld]

peo(y | x) = softmax(We,(x))y
where:

e 6 ={W,w} are parameters
° @, R — RX is an embedding function (e.g., convolutions + pooling layers)

o W € R*K are the parameters of the top dense layer

79

Deep Architectures

M Deep NNs have a number of quirks:

80

Deep Architectures

M Deep NNs have a number of quirks:

e Very overconfident even away from the training set: their uncertainty cannot be trusted — strategies
based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-
ment, density-aware sampling, etc.)

80

Deep Architectures

M Deep NNs have a number of quirks:

e Very overconfident even away from the training set: their uncertainty cannot be trusted — strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-
ment, density-aware sampling, etc.)

o Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days — hard to
ensure responsivity

80

Deep Architectures

M Deep NNs have a number of quirks:

e Very overconfident even away from the training set: their uncertainty cannot be trusted — strategies
based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-
ment, density-aware sampling, etc.)

o Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days — hard to
ensure responsivity

e Quite insensitive to the addition of a single example — what's the point of querying individual instances?

80

Deep Architectures

M Deep NNs have a number of quirks:

e Very overconfident even away from the training set: their uncertainty cannot be trusted — strategies
based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-
ment, density-aware sampling, etc.)

o Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days — hard to
ensure responsivity

e Quite insensitive to the addition of a single example — what's the point of querying individual instances?

e Training is stochastic (i.e., not 100% stable) — changes in performance can depend on factors other than
new labeled examples, high variance

80

Overconfidence

Problem: Deep NNs tend to be very overconfident even away from the training set — their uncertainty cannot
be trusted

81

Overconfidence

Problem: Deep NNs tend to be very overconfident even away from the training set — their uncertainty cannot
be trusted

(a) MAP (b) Temp. scaling (c) Bayesian (last-layer) (d) Bayesian (all-layer)

Figure 1. Binary classification on a toy dataset using a MAP estimate, temperature scaling, and both last-layer and all-layer Gaussian
approximations over the weights which are obtained via Laplace approximations. Background color and black line represent confidence
and decision boundary, respectively. Bonom row shows a zoomed-out view of the top row. The Bayesian approximations—even in the
last-layer give desirabl fident close to the training data and uncertain otherwise. MAP and temperature

scaling yield pre i The optimal is picked as in Guo et al. (2017).

Credit: (Kristiadi et al., 2020).

81

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 2
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

82

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

82

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be
decreased. (left)

B Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects
on uncertainty on the choice of 6. It decreases by acquiring more data. (right)

82

Aleatoric vs Epistemic (Hiillermeier and Waegeman, 2021)

+
++++
+ + 5
+ +
+ o
+ o
a o ©
o

Figure 5: Left: Even with precise knowledge about the optimal hypothesis, the prediction
at the query point (indicated by a question mark) is aleatorically uncertain, because the
two classes are overlapping in that region. Right: A case of epistemic uncertainty due to
a lack of knowledge about the right hypothesis, which is in turn caused by a lack of data.

B Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be
decreased. (left)

B Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects
on uncertainty on the choice of 6. It decreases by acquiring more data. (right)

B There isn't much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

82

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

83

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

e Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even
more so

83

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

e Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even
more so

e Using Bayesian techniques — i.e., maintaining a distribution over alternative NNs — is also challenging.

83

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

e Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even
more so

e Using Bayesian techniques — i.e., maintaining a distribution over alternative NNs — is also challenging.

Idea of Bayesian NNs:

o Replace parameters 6 with distribution over alternative parameters p(6 | £)

83

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

e Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even
more so

e Using Bayesian techniques — i.e., maintaining a distribution over alternative NNs — is also challenging.
Idea of Bayesian NNs:

o Replace parameters 6 with distribution over alternative parameters p(6 | £)

e Compute predictions by marginalizing over 0:

prin= [plyixo) - po]c) d (67)

NN with params 6 posterior over params

83

Bayesian NNs

B The problem with NNs is that uncertainty depends on a single model:

e This gives poor epistemic uncertainty

e Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even
more so

e Using Bayesian techniques — i.e., maintaining a distribution over alternative NNs — is also challenging.

Idea of Bayesian NNs:

o Replace parameters 6 with distribution over alternative parameters p(6 | £)

e Compute predictions by marginalizing over 0:

prin= [plyixo) - po]c) d (67)
N—— N——
NN with params 6 posterior over params
e Learn by updating distribution:
pO1L) — pO]LU{(xy)}) (68)

Not trivial! Is there an efficient approximation?

83

Dropout

M Randomly set nodes to 0 with a fixed probability.

(a) Standard Neural Net (b) After applying dropout.
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

B Used as a regularization technique: by randomly removing neurons, prevents them from relying on each
other “too much”

84

Dropout as Bayesian Approximation

B Computing class probabilities:

b [x.0)= [ply [%.0)p(6] £)dB (69)
~ /p(y | X, 9)pdropout(e)d0 (70)
1 & _ _
~ E Z p(y | X, 0')» 6, ~ pdropout(g) (71)
r=1

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class
probabilities.

85

Dropout as Bayesian Approximation

B Computing class probabilities:

b [x.0)= [ply [%.0)p(6] £)dB (69)
~ /p(y | X, 9)pdropout(e)d0 (70)
1 & _ _
~ E Z p(y | X, 0')» 6, ~ pdropout(g) (71)
r=1

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class
probabilities.

B Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a
mixture of two Gaussians (Gal and Ghahramani, 2016).

85

Dropout as Bayesian Approximation

B Computing class probabilities:

b [x.0)= [ply [%.0)p(6] £)dB (69)
~ /p(y | X, 9)pdropout(e)d0 (70)
1 & _ _
~ E Z p(y | X, 0')» 6, ~ pdropout(g) (71)
r=1

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class
probabilities.

B Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a
mixture of two Gaussians (Gal and Ghahramani, 2016). The approximation is independent of £ — no training
required.

85

Dropout as Bayesian Approximation

B Computing class probabilities:

b [x.0)= [ply [%.0)p(6] £)dB (69)
~ /p(y | X, e)pdropout(e)de (70)
1 & _ _
~ E Z p(y | X, 0')) 6, ~ pdropout(g) (71)
r=1

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class
probabilities.

B Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a
mixture of two Gaussians (Gal and Ghahramani, 2016). The approximation is independent of £ — no training
required.

B Immediately leads to more calibrated output probabilities!

85

BALD (Gal et al., 2017)

Question: does dropout help with query selection too?

86

BALD (Gal et al., 2017)

Question: does dropout help with query selection too? Yes.

B Uncertainty sampling:

acaunc(®) = — 3 p(Y =y |x,£)logp(Y = y | x,£)
y€ld]

Simply run the NN multiple times on your input x with different (random) dropout masks, then average the
resulting probabilities.

(72)

86

Illustration

100 100 100
% %
% %

0 BALD & Var Ratios & — Max
i Determiristic BALD Deterministc Var Ratios — Detorministic Max Eniropy

o 100 200 300 400 500 600 700 80 900 1000 o 00 200 300 400 500 600 700 80 900 1000 0 100 200 300 400 500 600 700 80 900 1000

(a) BALD (b) Var Ratios (c) Max Entropy
Figure 2. Test accuracy as a function of number of acquired images for various acquisition functions, using both a Bayesian CNN (red)

and a deterministic CNN (blue).

M For all choices of acquisition function, the dropout-based uncertainty helps!

87

M Let us look at batch-based active learning.

Batch Selection

Given L, U and a classifier f € F trained on L, find a batch B C U of b > 1 unlabeled instances that brings
maximal information to the model:

argmax acqga;p(f, B) (73)
BCU

st. |Bl=b (74)

88

M Let us look at batch-based active learning.

Batch Selection

Given L, U and a classifier f € F trained on L, find a batch B C U of b > 1 unlabeled instances that brings
maximal information to the model:

argmax acqga;p(f, B) (73)
BCu

st. |B|=b (74)

Advantages:

e Only retrain the model after ever b examples, meaning that supervision has an effect.

o Retraining is less frequent, leading to faster overall execution (at the expense of possibly instance selec-
tion, because b examples depend on a fixed f).

e Supports parallel annotation for, e.g., crowd-sourcing scenarios.

Question: can regular acquisition function (like BALD) be extended to this setting?

88

B Natural generalization of instance-level strategies:

acq(f,B) = Z acq(f,x)

xEB

How well does this work?

(75)

89

B Natural generalization of instance-level strategies:

acq(f,B) = Z acq(f,x)

xeB
How well does this work?
M This ignores correlation between instances in x:

o Even if all of them are informative, they may carry the same information

e We want B to be informative as a whole!

(75)

89

Illustration

Accuracy

075 —— BatchBALD

/ —— Random

- BALD
BatchBALD 070
50 100 150 200 250

Acauired dataset size

Figure 1: Idealised acquisitions of BALD and Batch- Figure 2: Performance on Repeated MNIST with
BALD. If a dataset were to contain many (near) replicas acquisition size 10. See section or further de-
for each data point, then BALD would select all repli- tails. BatchBALD outperforms BALD while

cas of a single informative data point at the expense of
other informative data points, wasting data efficiency. in the dataset.

(Credit: (Kirsch et al., 2019).)

90

BatchBALD

B The problem with the “natural generalization™:

acq(f,B) = Z acq(f,x)

xeB

is that the sum doesn't consider the overlap between the information carried by different x € b.

(76)

91

BatchBALD

B The problem with the “natural generalization™:

acq(f,B) = Z acq(f,x) (76)

x€B

is that the sum doesn't consider the overlap between the information carried by different x € b.

Idea: don't break the acquisition function into a sum! For BALD, this means replacing:

S {HOY 1%,£) = Egrpio)o)[H(Y[x,0)] } (77)

xEB

MI(Y,8|x,L)

with
MI{Y1,-. ., Yp},© | {x1,...,%p}, L) (78)

91

BatchBALD

B The problem with the “natural generalization™:

acq(f,B) = Z acq(f,x) (76)

x€B

is that the sum doesn't consider the overlap between the information carried by different x € b.

Idea: don't break the acquisition function into a sum! For BALD, this means replacing:

S {HOY 1%,£) = Egrpio)o)[H(Y[x,0)] } (77)
xeB MI(Y,O|x,L)
with
MI{Y1,-. ., Yp},© | {x1,...,%p}, L) (78)

B In other words, don’t assume independence between the elements of B!

91

Illustration

il yilzy
y1|z2 Y222
yilws yslws

Z Ii; @ 1%, Dirain) = Z OGN TO1 Vb @1X1, s X, Dtrain) = #W(U» n w]
i 7 i

(a) BALD (b) BatchBALD

Figure 3: Intuition behind BALD and BatchBALD using I-diag [30). BALD overestimates the joint mutual
information. BatchBALD, however, takes the overlap between variables into account and will strive to acquire a
better cover of w. Areas contributing to the respective score are shown in grey, and areas that are double-counted
in dark grey.

(Credit: (Kirsch et al., 2019).)

92

—— BALD acquisition size 1
0.05 91 —— BatchBALD acquisition size 10
— BALD acquistion size 10
e 8
090 Wl
7
N £
0585 ~ s 6
g f 2 5
goso i H
<) £
H
&
0.75 3 3
2
070 —— BatchBALD acquisition size 10
— BALD acquisition size 1 1
— BALD acquisiton size 10
065 o
50 200 250 50 100 200 250

100 150 1
Acquired dataset size Acquired dataset size

Figure 5: Performance on MNIST. BatchBALD out- Figure 6: Relative total time on MNIST. Normalized to

performs BALD with acquisition size 10 and performs training BatchBALD with acquisition size 10 to 95% ac-

close to the optimum of acquisition size 1. curacy. The stars mark when 95% accuracy is reached
for each method.

(Credit: (Kirsch et al., 2019).)

0s
375
3.50
04 >
N 325
503
& §3 00
£ Y as
02
250
01 —— BatchBALD 225
— Random — BatchBALD
— BAD — BAD
2.00
0 50 200 250 0 20 30 40 50 0

tion.

(Credit: (Kirsch et al., 2019).)

100
Acquired dataset size
Figure 7: Performance on EMNIST. BatchBALD

consistently outperforms both random acquisition and
BALD while BALD is unable to beat random acquisi-

Acquisition iteration
Figure 8: Entropy of acquired class labels over acqui-

sition steps on EMNIST. BatchBALD steadily acquires
a more diverse set of data points.

94

Conclusion and Further Reading

Take-away

B AL useful when supervision is expensive high — choose it wisely
B Many variants: pool-based, streaming, and query synthesis

B Many practical approaches: uncertainty-based (uncertainty sampling, QBC, expected gradient length),
diversity-based (information density).

Some can be derived from version spaces and model improvement.
B Deep variants select entire batches and often rely on Bayesian techniques
B Critique & realistic annotators, costs, etc.: (Herde et al., 2021) (Settles, 2011)

B Plenty of room for new research ;-)

95

96

References

Baum, E. B. and Lang, K. (1992). Query learning can work poorly when a human oracle is used. In
International joint conference on neural networks, volume 8, page 8.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In international conference on machine learning, pages 1050-1059. PMLR.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning with image data. In International
Conference on Machine Learning, pages 1183-1192. PMLR.

Herde, M., Huseljic, D., Sick, B., and Calma, A. (2021). A survey on cost types, interaction schemes, and
annotator performance models in selection algorithms for active learning in classification. arXiv preprint
arXiv:2109.11301.

Hiillermeier, E. and Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110(3):457-506.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P.,
Soldatova, L. N., et al. (2009). The automation of science. Science, 324(5923):85-89.

Kirsch, A., Van Amersfoort, J., and Gal, Y. (2019). Batchbald: Efficient and diverse batch acquisition for deep
bayesian active learning. Advances in neural information processing systems, 32:7026—7037.

Kristiadi, A., Hein, M., and Hennig, P. (2020). Being bayesian, even just a bit, fixes overconfidence in relu
networks. In International Conference on Machine Learning, pages 5436-5446. PMLR.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016). Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks. Advances in neural information processing systems,
29:3387-3395.

96

Settles, B. (2011). From theories to queries: Active learning in practice. In Active Learning and Experimental
Design workshop In conjunction with AISTATS 2010, pages 1-18. JMLR Workshop and Conference
Proceedings.

Settles, B. (2012). Active learning.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms.
Cambridge university press.

Sharma, M. and Bilgic, M. (2017). Evidence-based uncertainty sampling for active learning. Data Mining and
Knowledge Discovery, 31(1):164-202.

96

	Strategies
	Extensions
	Conclusion and Further Reading
	References

