Concept-based Models

Stefano Teso
Advanced Topics in Machine Learning & Optimization — 2023-24

The State of XAl

B White-box models:

e Shallow decision trees, sparse linear models, rule
lists, ...

e Explanations for free
e Well suited for, e.g., tabular data

e Low performance on non-tabular data, specifically

because they don't support representation learning.

B Black-box models + post-hoc explainers:

Like neural nets + LIME, SHAP, Input Grads

High performance on non-tabular data like images
and text thanks to representation learning.

Perturbation-based explanations are expensive to
compute and can have high variance

Gradient-based explanations are widely applicable
and cheap to compute, but they are often too “lo-
cal”.

Tree Regularization

B Regularizing black-boxes to be more transparent is a well-known strategy

B Regularizing black-boxes to be more transparent is a well-known strategy

Idea: take a black-box fy and make it “more interpretable”:

e If fy is a dense linear model, add a sparsifying L; regularizer so that its weight vector contains many zeros.

e This makes the model more simulatable: “take in input data together with the parameters of the model
and in reasonable time step through every calculation required to produce a prediction” Lipton (2018)

B Regularizing black-boxes to be more transparent is a well-known strategy

Idea: take a black-box fy and make it “more interpretable”:

e If fy is a dense linear model, add a sparsifying L; regularizer so that its weight vector contains many zeros.

e This makes the model more simulatable: “take in input data together with the parameters of the model
and in reasonable time step through every calculation required to produce a prediction” Lipton (2018)

B Can we go generalize this strategy?

B Regularizing black-boxes to be more transparent is a well-known strategy

Idea: take a black-box fy and make it “more interpretable”:

e If fy is a dense linear model, add a sparsifying L; regularizer so that its weight vector contains many zeros.

e This makes the model more simulatable: “take in input data together with the parameters of the model
and in reasonable time step through every calculation required to produce a prediction” Lipton (2018)

B Can we go generalize this strategy?

B Can we make a neural network behave like a decision tree — so as to facilitate conversion into one using,
e.g., LIME?

B Regularizing black-boxes to be more transparent is a well-known strategy

Idea: take a black-box fy and make it “more interpretable”:

e If fy is a dense linear model, add a sparsifying L; regularizer so that its weight vector contains many zeros.

e This makes the model more simulatable: “take in input data together with the parameters of the model
and in reasonable time step through every calculation required to produce a prediction” Lipton (2018)

B Can we go generalize this strategy?

B Can we make a neural network behave like a decision tree — so as to facilitate conversion into one using,
e.g., LIME? Yes Wu et al. (2018)

M Take a regular neural network pg(y | x) and a training set S =

{(xi,y;) : i = 1,...,m}. Normally, you would train it by minimizing

the following empirical loss:
1

i D> —logpy(x,y)

(x,y)€S

pg (0.02, 0.0001, 0.98)

s, (5.2, 014, 9.3)

[Iaye: L-1]

[Iay:er 2]

[Iay;r 1]
inplfxt X

The structure of a typical feed-forward neural

network with L layers.

B Take a regular neural network pg(y | x) and a training set S =
{(xi,yi) : i = 1,...,m}. Normally, you would train it by minimizing
the following empirical loss:

L > —logpy(x.y)

ISl (x,y)€S

Tree Regularization

Instead of minimizing the usual loss, minimize the following augmented

loss:
1

= > (—logpa(x,y)+ X Q(6,x))
S|
(x,y)€S
where Q(0,x) is the average depth of a shallow DT that fits fp in the
neighborhood of x

pg (0.02, 0.0001, 0.98)

s, (5.2, 014, 9.3)

[Iaye: L-1]

[Iay;r 2]

[Iay;r 1]
inplfjt x

The structure of a typical feed-forward neural

network with L layers.

B Take a regular neural network pg(y | x) and a training set S =
{(xi,yi) : i = 1,...,m}. Normally, you would train it by minimizing
the following empirical loss:

1
Gl > —logpa(x,y)
(x,y)es

Tree Regularization

Instead of minimizing the usual loss, minimize the following augmented
loss:

| > (—logpa(x,y) + A Q(6,%)

(x,y)€S

where Q(6,x) is the average depth of a shallow DT that fits fy in the
neighborhood of x

B Q is small only if fy(x) can be simulated locally by a small DT

pg (0.02, 0.0001, 0.98)

s, (5.2, 0.4, 9.3)

[Iayel" L-1]

[Iay:ar 2]

[Iay;r 1 J
inplfjt X

The structure of a typical feed-forward neural

network with L layers.

Illustration

depth=4

The tree complexity is computed at a the black point x

Illustration

depth =3

The tree complexity is computed at a the black point x

B How to compute (6, 6)?

B How to make minimize the augmented loss?

B How to compute (6, 6)?
B How to make minimize the augmented loss?

Idea: learn an auxiliary regressor d,(0,x) that, given x, predicts the average depth of a DT that fits fp from

the parameters ¢ themselves

Tree Regularization Algorithm

o Fit fyp on training set (cold start)

Tree Regularization Algorithm

o Fit fyp on training set (cold start)
o Repeat:

e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.

Tree Regularization Algorithm

o Fit fyp on training set (cold start)
o Repeat:

e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.
o Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,
Q(6, x) is the average depth of the tree.

Tree Regularization Algorithm

o Fit fp on training set (cold start)
o Repeat:

e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.
o Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,
Q(0,x) is the average depth of the tree.
o Fit d,,(0,x) so that it approximates £:
argmin (d,.(6,x) — Q(6,x))?
"

Tree Regularization Algorithm

o Fit fp on training set (cold start)

o Repeat:
e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.
o Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,

Q(0,x) is the average depth of the tree.
Fit d,,(0,x) so that it approximates Q:
argmin (d,.(6,x) — Q(6,x))?
"

Update 6 by performing one epoch of gradient descent on the modified loss:

argmin ﬁ Z —logpo(x,y) + A - Z du(6,x)
o (xy)€S x€Q

The loss is now fully differentiable

Tree Regularization Algorithm

o Fit fp on training set (cold start)

o Repeat:
e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.
o Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,

Q(0,x) is the average depth of the tree.
Fit d,,(0,x) so that it approximates Q:
argmin (d,.(6,x) — Q(6,x))?
"

Update 6 by performing one epoch of gradient descent on the modified loss:

argmin ﬁ Z —logpo(x,y) + A - Z du(6,x)
o (xy)€S x€Q

The loss is now fully differentiable

B Dataset for training dy is {(0k,xk), Q2(0k,xx) : k =1,...,s} collected across epochs

Tree Regularization Algorithm

o Fit fp on training set (cold start)

o Repeat:
e Sample training instances Q = {x1,...,Xq}, either from the training set S or at random.
o Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,

Q(0,x) is the average depth of the tree.
Fit d,,(0,x) so that it approximates Q:
argmin (d,.(6,x) — Q(6,x))?
"

Update 6 by performing one epoch of gradient descent on the modified loss:

argmin — Z —logpo(x,y) + A - Z du(6,x)
o ISl os x€Q
The loss is now fully differentiable
B Dataset for training dy is {(0k,xk), Q2(0k,xx) : k =1,...,s} collected across epochs

B Makes sense as long as |Q| < |S]

Tree Regularization Algorithm

o Fit fp on training set (cold start)

o Repeat:

Sample training instances Q@ = {x1, ..., Xq}, either from the training set S or at random.
Label the examples in Q using the current model fy and fit a decision tree on them using scikit-learn. Then,
Q(0,x) is the average depth of the tree.
Fit d,,(0,x) so that it approximates Q:
argmin (d,.(6,x) — Q(6,x))?
"

Update 6 by performing one epoch of gradient descent on the modified loss:

argmin — Z —logpo(x,y) + A - Z du(6,x)
o ISl os x€Q
The loss is now fully differentiable
B Dataset for training dy is {(0k,xk), Q2(0k,xx) : k =1,...,s} collected across epochs

B Makes sense as long as |Q| < |S]

B Under the assumption that 6 doesn’t change “too much” across epochs, one can warm start training p from

the previous epoch.

Example: Fitting a Parabola

%80 02 04 o6 08 10

(a) Training Data and Binary Class Labels for 2D Parabola

0 P S e N
e

@

\,;‘i 08 —e— MLP (L2)
5 —e— MLP (L1)
2

206 —e— MLP (Tree)

Decision Tree

0.0 25 5.0 75 100 125 150 175 200
Average Path Length

(b) Prediction quality and complexity as reg. strength A varies

B For A = 9500 (the exact value is not impor-
tant) the tree-regularized network recovers exactly
the shape of a DT with depth 2. Increasing A
further further flattens the tree to depth 1, at the
cost of accuracy.

(¢) Decision Boundaries with L1 regularization

2005 1208 209 210 12130

(d) Decision Boundaries with L2 regularization

Tree 001

Tee 1000 Tee7000 Tree95000 Tree 120000 Tree 150000

(e) Decision Boundaries Tree regularization

Figure 2: 2D Parabola task: (a) Each training data point
in 2D space, overlaid with true parabolic class boundary.
(b): Each method’s prediction quality (AUC) and complexity
(path length) metrics, across range of regularization strength
A. In the small path length regime between 0 and 5, tree
regularization produces models with higher AUC than L1
or L2. (c-e): Decision boundaries (black lines) have qualita-
tively different shapes for different regularization schemes,
as regularization strength \ increases. We color predictions
as true positive (red), true negative (yellow), false negative
(green), and false positive (blue).

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

o The regularizer is approximate: no guarantee that d,, performs well, the depth prediction task is quite
challenging!

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

o The regularizer is approximate: no guarantee that d,, performs well, the depth prediction task is quite
challenging!

o DTs only make sense for tabular data

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

o The regularizer is approximate: no guarantee that d,, performs well, the depth prediction task is quite
challenging!

o DTs only make sense for tabular data

o — conflicts with representation learning

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

o The regularizer is approximate: no guarantee that d,, performs well, the depth prediction task is quite
challenging!

o DTs only make sense for tabular data

o — conflicts with representation learning

B Can we combine the benefits of black-box and white-box models in a more direct and efficient manner?

M Tree-based regularization has some limitations:

o Training is either computationally expensive: must train d, in every epoch!

o The regularizer is approximate: no guarantee that d,, performs well, the depth prediction task is quite
challenging!

o DTs only make sense for tabular data

o — conflicts with representation learning

B Can we combine the benefits of black-box and white-box models in a more direct and efficient manner?

Yes: change the nets’ architecture

From Inputs/Examples to Concepts

B Post-hoc explainers can be unfaithful (Teso, 2019)

Toward Faithful Explanatory Active Learning

o emm® Commma
o 2 Ky Y
1o oy A4 '\o .
Vol - -
XN ’ Io O ' o o* ~\
RICIPAS o“ ° 1 °x' 3o
o ! I o
X -~ o CY 7
N v

Fig. 1. Examples on which LIME produces unfaithful explanations. The decision surface
of f is represented by the colored areas: light green means positive, light red negative.
The pink circle represents the kernel k: points inside of it are assigned substantial
weights while all others are not. Left: all synthetic examples with large weight have the
same label. Middle: the synthetic examples fail to capture the non-additive interaction
of the two features. Right: the kernel is too broad, and the synthetic dataset is highly

complex and non-linear.

B Unfaithful explanations mean the user might be correcting non-existent bugs!

From Inputs/Examples to Concepts

B Low-level explanations are ambiguous (Rudin, 2019)

M [s it classified as “positive” because it is “red”, because it is “sporty”, or because it is a “car”?

B Human communication makes heavy use of high-level concepts!

Concept-based models (CBMs) are “gray-box” models [1] that support high-dimensional inputs &
representation learning without giving up on interpretability.

age
hair]
skinl

@ Map input to high-level concepts in a black-box manner
@ Compute a prediction from the concepts in a white-box manner

@ If concepts are interpretable, predictions admit faithful explanations like:

“fictional” because {age: —0.05, hair: +0.02, skin: 0.9}

The Simplest Case

M | will focus on concepts that are:

B This case is complicated enough already ;-)

Concrete.

Categories:

Properties:

Simple compositionality: “red and shiny”.

“dog”, “ball”.
“red”, “shiny”.

Atomic: no hierarchy, no real grammar.

Validation
(confounded)

Test
(non-confounded)

Class Rule

)

Large (gray) cube
and
Large cylinder

Small metal cube

and
Small (metal) sphere

Y
Large blue sphere
and

Small yellow sphere

.

(Source: The CLEVR-HANS data set (Stammer et al., 2021))

Concept-based Models (CBMs)

Concept-based Models

A model fy is gray-box if it combines uninterpretable black-box components with a white-box skeleton and:

o It automatically outputs explanations for all of its decisions
o Its explanations are cheap to compute
o lts explanations are faithful (and hence low-variance)

o Features large capacity and representation learning

aka “partially interpretable models” because only parts of their decision process are transparent.

B We will see different classes of CBMs:

o Self-explainable Neural Networks (SENNs)
o Prototype-based Networks (ProtoNets, PCNs, PPNets)
o Concept-bottleneck Models (CBNMs)

Self-explainable Neural Networks

A linear model has the form:

f(x) = sign(Z wix;i + b)

i€ld]
“score” of x

A linear model is sparse if w € RY few non-zero entries Tibshirani (1996); Ustun and Rudin (2016) and dense
otherwise. We will briefly forget about sparsity for now.

It is easy to gather an intuitive understanding of what the model does:

e w; >0 = x; correlates with, aka “votes for”, the positive class
e w; <0 = x; anti-correlates with, aka “votes against”, the positive class

o w; =~ 0 = Xx; is irrelevant: changing it does not affect the outcome

Example: Papayas

Does a papaya x taste good?
Consider a linear classifier:
f(x) = sign(1.3 - 1(x pulp is orange) +

0.7 - 1(x skin is yellow) +
0- 1(x is round) 4

—0.5 - 1(x skin is green) +
Figure 1: A bunch of papaya fruits.
—2.3-1(x is moldy))

It is easy to read off what attributes are “for” and “against” x being tasty for the model — specifically because
the model encodes independence assumptions, e.g., that the shape of x is unrelated to its color.!

When explaining a decision made by the model, it is irrelevant whether these assumptions match how reality works: we are explaining the
model’s reasoning process, or equivalently its interpretation of how reality works, not reality itself!

B Linear models only work for linear data and cannot perform represen-
tation learning: their only parameters are weights, and these are applied
to the inputs directly!

B We already know that to turn a linear model work in a non-linear one
it is sufficient to embed all points, giving:

p(1|x):a<ZW,-x,-) — p(l\x):a(Zw,— x)

where, e.g., x are words in a document and ¢(x) is a BERT or TF-IDF
embedding. However, doing so forfeits interpretability!

lllustration of a linear model. It cannot separate data with a

complex, non-linear distribution.

lllustration of a non-linear model. It works well with non-linear

data like text, images, etc.

B Linear models only work for linear data and cannot perform represen-
tation learning: their only parameters are weights, and these are applied
to the inputs directly!

B We already know that to turn a linear model work in a non-linear one
it is sufficient to embed all points, giving:

p(llX):0'<ZW,'X,') — p(1 \X):U(ZW;r;g(x))

where, e.g., x are words in a document and ¢(x) is a BERT or TF-IDF
embedding. However, doing so forfeits interpretability!

B Self-explainable neural networks (SENNs) Alvarez-Melis and
Jaakkola (2018), generalize linear models to non-linear data and rep-
resentation learning.

lllustration of a linear model. It cannot separate data with a

complex, non-linear distribution.

lllustration of a non-linear model. It works well with non-linear

data like text, images, etc.

B Linear models only work for linear data and cannot perform represen-
tation learning: their only parameters are weights, and these are applied
to the inputs directly!

B We already know that to turn a linear model work in a non-linear one
it is sufficient to embed all points, giving:

p(1|x):a<ZW,-x,-) — p(l\x):a(Zw,— x)

where, e.g., x are words in a document and ¢(x) is a BERT or TF-IDF
embedding. However, doing so forfeits interpretability!

B Self-explainable neural networks (SENNs) Alvarez-Melis and
Jaakkola (2018), generalize linear models to non-linear data and rep-
resentation learning.

B Idea: take a non-linear model (e.g., a neural net) but ensure that it
behaves like a linear model at any given point x € R9!

lllustration of a linear model. It cannot separate data with a

complex, non-linear distribution.

lllustration of a non-linear model. It works well with non-linear

data like text, images, etc.

lllustration of Embedding

Top left: original data, not lineary separable. Top right: embedded data, now more easily seprable. Bottom right: linear model learned in embedding space. Bottom left: decision

surface of the same model in input (linear) space.

embed

effect

B A self-explainable neural network has the form:
po(1|x) =0 (D wilx)$i(x))
i
“score” of x
where:

o ¢ : RY — R¥ embeds inputs into feature space

o w:RY — R¥ computes a weight vector for each input

B A self-explainable neural network has the form:
po(1|x) =0 (D wilx)$i(x))
i
“score” of x
where:

o ¢ : RY — R¥ embeds inputs into feature space
o w:RY — R¥ computes a weight vector for each input

e w(x) is regularized to vary slowly w.r.t. x

B A self-explainable neural network has the form:
po(1]x)=0(D_ wi(x)¢i(x))
i
“score” of x
where:

o ¢ : RY — R¥ embeds inputs into feature space
o w:RY — R¥ computes a weight vector for each input

e w(x) is regularized to vary slowly w.r.t. x

M Defines a different linear model for every x € RY

B A self-explainable neural network has the form:
po(1|x) = U(Zw,)i(x))
“score” of x
where:

o ¢ : RY — R¥ embeds inputs into feature space
o w:RY — R¥ computes a weight vector for each input

e w(x) is regularized to vary slowly w.r.t. x

M Defines a different linear model for every x € R

B Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any xq
there exists a constant vector wg that depends only on xg and a “large enough” « > 0 such that:

Z w; (x')pi(x") Z woi #i(X0) for all x’ that are closer than « to xg

i

B A self-explainable neural network has the form:
po(1|x) = U(Zw,)i(x))
“score” of x
where:

o ¢ : RY — R¥ embeds inputs into feature space
o w:RY — R¥ computes a weight vector for each input

e w(x) is regularized to vary slowly w.r.t. x

M Defines a different linear model for every x € R

B Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any xq
there exists a constant vector wg that depends only on xg and a “large enough” « > 0 such that:

Z w; (x')pi(x") Z woi #i(X0) for all x’ that are closer than « to xg

i

B If w(x) = w is constant w.r.t. x, we obtain a linear model again

M Left: a linear model. Notice that the weights w are constant everywhere.

B Right: a SENN. Notice that locally the weights w(x) are almost identical!

20

M Left: a linear model. Notice that the weights w are constant everywhere.

B Right: a SENN. Notice that locally the weights w(x) are almost identical!

B SENNs are stable locally (interpretability) but flexible globally (large capacity)

20

Learning w(x)

M How to ensure that w(x) is “locally linear”?

Taylor’s approximation for vector-valued functions

Let w(x) be a vector-valued function of a vector input x. Taylor's
theorem implies that w can be approximated around any xq as:

w(x) = w(xo) + J(x—x0) +

first-order term quadratic+ terms

o g A q F)
where J is the matrix of derivatives J,, = 8:3' Taylor d ition of a one-dimensional function, namely
b sin x. The original function can be viewed as a (weighted)
sum of the 1st, 2nd, 3rd, etc. derivatives of the function.

B The approximation is actually exact for linear functions: Credits: Wikimedia.

wlx=w x4 J(x — x0)

B If we want w(x) to behave like a linear function we should minimize
the contribution of the quadratic term, but doing so directly is challeng-
ing.

21

Idea: regularize the model to approximate its own first-order Taylor expansion

22

Idea: regularize the model to approximate its own first-order Taylor expansion

A SENN with parameters 6 (including the params of w(x) and of ¢(x)) is trained by minimizing:

: D> —logpe(y | x)+X-Q(6,%)

|S| (x,y)€S

where the regularizer Q penalizes w(x) for local deviations from linearity:

Q(6,x) := | Vxpp(1 | x) - Jop(x) |l
— SN——
neural net analogue of weights if £ were linear

and A\ > 0 trades off between performance and non-linearity.

22

Idea: regularize the model to approximate its own first-order Taylor expansion

A SENN with parameters 6 (including the params of w(x) and of ¢(x)) is trained by minimizing:
1
D> —logpe(y | x)+X-Q(6,%)
S|
(x,y)€S

where the regularizer Q penalizes w(x) for local deviations from linearity:

Q(6,x) = || Vxpp(1 | x) - Jop(x) |l
— SN——
neural net analogue of weights if £ were linear

and A\ > 0 trades off between performance and non-linearity.

B Conceptually similar to tree-regularization, but with linear models in place of DTs. It is actually much faster
because the regularizer does not require to learn DTs during training & Jacobian can be computed relatively
quickly using autodiff packages.

22

Learning the Embedding Function ¢(x)

Idea: learn to map x to interpretable concepts ¢. Strict requirement! Recall that an explanation looks like:

(Wl(X) s(x), L, wy(x) d)r,(x))

If ¢i(x) has clear semantics (e.g., “document x is about politics”) this is a valid explanation, otherwise (e.g.,
for BERT embeddings) it is not!

23

Learning the Embedding Function ¢(x)

Idea: learn to map x to interpretable concepts ¢. Strict requirement! Recall that an explanation looks like:
(m(x) : p1(x), ..., wy(x): d)n(x))

If ¢i(x) has clear semantics (e.g., “document x is about politics”) this is a valid explanation, otherwise (e.g.,
for BERT embeddings) it is not!

A minimal set of desiderata:

1. Fidelity: the representation of x in terms of concepts should preserve relevant information
2. Diversity: inputs should be representable with few, non-overlapping concepts

3. Grounding: concepts should have an immediate human-understandable interpretation.

This is a very rough and incomplete list.

23

Learning the Embedding Function ¢(x)

Idea: learn to map x to interpretable concepts ¢. Strict requirement! Recall that an explanation looks like:
(m(x) : p1(x), ..., wy(x): d)r,(x))

If ¢i(x) has clear semantics (e.g., “document x is about politics”) this is a valid explanation, otherwise (e.g.,
for BERT embeddings) it is not!

A minimal set of desiderata:

1. Fidelity: the representation of x in terms of concepts should preserve relevant information
2. Diversity: inputs should be representable with few, non-overlapping concepts

3. Grounding: concepts should have an immediate human-understandable interpretation.

This is a very rough and incomplete list.

Remark: nobody knows how to formalize/implement the last desideratum properly!

23

B There are a few alternatives. One is to assume that ¢(-) is defined manually by a domain expert:

Consider a medical diagnosis setting. A medical doctor could tell you that lorazepam is an important feature
for predicting clinical depression. This can be modelled as a feature of the form:

¢3(x) = 1(the clinical record x reports administration of lorazepam)

This process makes perfect sense for tabular data.

24

B There are a few alternatives. One is to assume that ¢(-) is defined manually by a domain expert:

Example
Consider a medical diagnosis setting. A medical doctor could tell you that lorazepam is an important feature
for predicting clinical depression. This can be modelled as a feature of the form:

¢3(x) = 1(the clinical record x reports administration of lorazepam)

This process makes perfect sense for tabular data.

B An alternative useful for non-tabular data is to learn ¢(-) automatically from the data beforehand:

Train a convolutional neural network to classify ImageNet (1000 classes including many common objects) and
then use the predictions made by the model to define 1000 different features, one for each class.

24

B There are a few alternatives. One is to assume that ¢(-) is defined manually by a domain expert:

Consider a medical diagnosis setting. A medical doctor could tell you that lorazepam is an important feature
for predicting clinical depression. This can be modelled as a feature of the form:

¢3(x) = 1(the clinical record x reports administration of lorazepam)

This process makes perfect sense for tabular data.

B An alternative useful for non-tabular data is to learn ¢(-) automatically from the data beforehand:

Train a convolutional neural network to classify ImageNet (1000 classes including many common objects) and
then use the predictions made by the model to define 1000 different features, one for each class.

M Or, ideally, learn ¢(-) jointly with the rest of the model. How?

24

B Model ¢(-) using an autoencoder:

25

B Model ¢(-) using an autoencoder:

Input Layer

Output Layer

[P Fmmmmmmd
e DECODER

An autoencoder is defined as an encoder-decoder pair (¢, 1):
¢:RI SR o RF SR

Encoder and decoder are trained jointly to minimize reconstruction loss frec(x,x') = ZJ-

ela) (i —x)?

25

B Model ¢(-) using an autoencoder:

Input Layer
Output Layer

[P mmmmm et
e DECODER

An autoencoder is defined as an encoder-decoder pair (¢, 1):
¢:RI SR o RF SR

Encoder and decoder are trained jointly to minimize reconstruction loss frec(x,x') = ZJ-

The idea is to learn the autoencoder end-to-end with the SENN by minimizing:

i Z {_pe(y | x) + A Q(@,X) + >\/ . frec(X,’l,b(d)(X)))}

1] (x,y)€S

ela) (i —x)?

25

B Model ¢(-) using an autoencoder:

x
=
Output Layer

[P mmmmm et
,,,,,,,,,,,,,,,, DECODER

An autoencoder is defined as an encoder-decoder pair (¢, 1):
¢ RIS RF R RY

. .. e . n N2
Encoder and decoder are trained jointly to minimize reconstruction loss lrec(x,x’) = Zje[d] (xi —x7)

The idea is to learn the autoencoder end-to-end with the SENN by minimizing:
1

G Do {poly IR +2-Q(0,%) + N - e (x4 (d(x))) }

(x,y)€S

B This encourages ¢ to satisfy fidelity, i.e., preserving both task-relevant information (because of the
cross-entropy loss) and instance-relevant information (because of #rec)

25

The complete architecture of a SENN is:

oLy,
I (teon
loss L1,
=
o cl: i
dmt>mﬂ>mt>ﬁﬁ
I
i
A D B
concept encoder h(- ; wy) ~ N
-
relevance parametrizer 8(- ; w) ‘W ageregator g(- wy)
a ~
g T : @8 ®® cxplanation
g - ew w0

’ k
Phe {(h()i,0(2)i) };,

‘-

Figure 1: A SENN consists of three components: a concept encoder (green) that transforms the
input into a small set of interpretable basis features; an input-dependent parametrizer (orange) that
generates relevance scores; and an aggreg: function that combines to produce a prediction. The
robustness loss on the parametrizer encourages the full model to behave locally as a linear function
on h(x) with parameters ¢(z), yielding immediate interpretation of both concepts and relevances.

26

Recall that during training we minimize:

S {po(y [0+ A QO + N el ()} lreclxx) = 3 (i — X))

1
ISl (x,y)€S j€ld]

M Extra elements:

o Diversity: encourage sparse concept activations by adding A’ - ||¢(x)||1 to the loss

27

Recall that during training we minimize:

S {po(y [0+ A QO + N el ()} lreclxx) = 3 (i — X))

1
S
| |(x,y)ES J€ld]
M Extra elements:

o Diversity: encourage sparse concept activations by adding A’ - ||¢(x)||1 to the loss

o Grounding: represent learned concepts ¢;(x) using concrete examples.

27

Recall that during training we minimize:
1
S
151 (xy)€S j€ld]

M Extra elements:

o Diversity: encourage sparse concept activations by adding A’ - ||¢(x)||1 to the loss

o Grounding: represent learned concepts ¢;(x) using concrete examples.

* A set of concrete prototypes, i.e., training examples that maximally activate them:

PU) = argmax Z @;(x)

PCS:|P|=p XEP

I

/

ST {1 %)+ A Q0) + N - lrec(x, (0(X))) lrec(x,X) = D (x5 — X/

)2

27

Recall that during training we minimize:

< Do {1 x) +X-Q0) + N - lrec(x, P(6(x)} lrec(x,x) = D (x5 = x)?

ISl (x,y)€S j€ld]

M Extra elements:

o Diversity: encourage sparse concept activations by adding A’ - ||¢(x)||1 to the loss

o Grounding: represent learned concepts ¢;(x) using concrete examples.

* A set of concrete prototypes, i.e., training examples that maximally activate them:

PU) = argmax Z @;(x)

PCS:|P|=p XEP

* synthetic prototypes, i.e., inputs x that maximally activate one concept without activating the others:

xU) = argmax oj(x) — Z #j(x)

x€Rd k#j

In practice, approximated using gradient ascent or similar techniques.

27

Prototypes

Prtotypes

Crmmsms

Figure 2: Learned prototypes and criticisms from Imagenet dataset (two types of dog breeds)

28

Is there a more direct way of incorporating prototypes and representation learning in an interpretable manner?

29

Prototypes + Deep Learning

B A prototype is an example that is prototypical of a certain class.

BExample: in a dog vs. cat image classification problem, the prototypes for the dog class correspond to
prototypical images of dogs (e.g., a chihuahua, a mastiffs, ...) that have “average features”.

B Formally, a prototype is an example that is close (or similar) to many examples of the corresponding class,
s.t. taken together they manage to “cover” all examples of that class. Distance is computed in, e.g., embedding
space.

They can be found by clustering the data of a given class, for instance using k-means or other clustering
algorithms. 30

Prototypical Networks

B What about prototypical networks (ProtoNets)? Snell et al. (2017)

31

Prototypical Networks

B What about prototypical networks (ProtoNets)? Snell et al. (2017)

Idea:

o Learn an embedding function ¢ : R — R¢

31

Prototypical Networks

B What about prototypical networks (ProtoNets)? Snell et al. (2017)

Idea:

o Learn an embedding function ¢ : R — R¢

o Represent each class y € {1,...,v} by its centroid in embedding space ¢’ := siy Pxesy D)

31

Prototypical Networks

B What about prototypical networks (ProtoNets)? Snell et al. (2017)

Idea:

o Learn an embedding function ¢ : R — R¢
o Represent each class y € {1,...,v} by its centroid in embedding space ¢’ := siy Pxesy D)

e Fix a distance function d(¢, ¢'), compute vector of distances from class centroids:

d = (d(o(x),c"),..., d($(x),¢"))

The Euclidean distance d(¢, ¢') = ||¢ — ¢'[|2 works well Snell et al. (2017)

31

Prototypical Networks

B What about prototypical networks (ProtoNets)? Snell et al. (2017)

Idea:

o Learn an embedding function ¢ : R — R¢
o Represent each class y € {1,...,v} by its centroid in embedding space ¢’ := siy Pxesy D)

e Fix a distance function d(¢, ¢'), compute vector of distances from class centroids:

d = (d(o(x),c"),..., d($(x),¢"))
The Euclidean distance d(¢, ¢') = ||¢ — ¢'[|2 works well Snell et al. (2017)
o Predicted probability of x belonging to class y proportional to distance from prototype of that class:

exp(—d(¢(x),)
>, exp(—d(@(x).)

po(y | x) := softmax(—d), =

o Set of all parameters is 0 = {¢,c!,...,c"}.

31

B Very simple architecture

p = (0.01, 0.88, 0.11)

d = (0.56, 0.12, 0.03)
c'=(32,9.7, 0.1, 0.3)

=(0.4, 3.3, 0.6, 9.4)

$=(5.2, 014, 9.3, 6.5)

layer L-1

—Tlearned!

layer 2

=(0.4, 3.2, 2.7, 3.3)

input x

32

J
d = (0.68, 0.30, 0.45)

|
p = (0.10, 0.75, 0.15)

B And also very explainable! The probability of each class can be traced back to the corresponding prototype!

33

B During training both the space in which the embeddings live (determined by the lower layer) and the

k

prototypes ¢ are learned jointly!

34

B Fit ¢ by minimizing cross-entropy on the training set:

argmind,,{cl ““““ v} 7%‘

2See: https://en.wikipedia.org/wiki/LogSumExp

> (xy)es logpoly | x)

35

https://en.wikipedia.org/wiki/LogSumExp

B Fit ¢ by minimizing cross-entropy on the training set:

argmind},{cl cv} 7%‘ Z(x,y)es |ng9(y|X)

The negative log-likelihood at a training example (x,y) is:

—log pg(y | x) = — log softmax(—d),
. exp(—d(9(x), <))
5, exp(—d(6(x),)

= —{logexp(—d(&(x),c”)) — log 3_,, exp(—d((x), "))}
=—{ —d(#(x),¢") — log 3, exp(—d(H(x), "))}
= d(¢(x),) + log 3=, exp(—d(¢(x), ¢))

2See: https://en.wikipedia.org/wiki/LogSumExp

D
)
3
(4)
®)

35

https://en.wikipedia.org/wiki/LogSumExp

B Fit ¢ by minimizing cross-entropy on the training set:

argming, ro1 vy *%‘ > (xy)es logpoly | x)

The negative log-likelihood at a training example (x,y) is:

—log pg(y | x) = — log softmax(—d),

exp(—d(6(x),¢)
>, exp(—d(6(x). "))

—{logexp(—d((x),¢")) — log 3, exp(—d((x), "))}
—{ = d(6(x), ") — log X, exp(—d(H(x),")}
= d(¢(x),¢) + log 10, exp(—d($(x), "))

—log

D
)
3
(4)
®)

The first element is the distance to the prototype of class y. The second element is the “soft maximum” of the

negative distances to other classes 2:

max{—di,...,—d} < IogZexp(—dyz) < max{—di,...,—d,} + log(v)
y/

2See: https://en.wikipedia.org/wiki/LogSumExp

https://en.wikipedia.org/wiki/LogSumExp

B Fit ¢ by minimizing cross-entropy on the training set:

argming, ro1 vy *%‘ > (xy)es logpoly | x)

The negative log-likelihood at a training example (x,y) is:

—log pg(y | x) = — log softmax(—d), (1)
_ exp(—d(¢(x),)
- IOg 7 (2)
>y exp(—=d(p(x),¢))
= —{logexp(—d((x), ")) — log 3=, exp(—d((x), "))} (3)
=—{—d(¢(x),c") —log ¥, exp(—d((x), "))} (4)
= d(¢(x),¢") + log 3=, exp(—d((x), ")) (5)
The first element is the distance to the prototype of class y. The second element is the “soft maximum” of the
negative distances to other classes 2:
max{—di,...,—d} < IogZexp(—dyz) < max{—di,...,—d,} + log(v)
y/

Minimizing this implies (i) min. distance to true class y and (ii) approx. max. distance to other classes.

2See: https://en.wikipedia.org/wiki/LogSumExp

35

https://en.wikipedia.org/wiki/LogSumExp

B Very clear results

Figure 2: A t-SNE visualization of the embeddings
learned by Prototypical networks on the Omniglot
dataset. A subset of the Tengwar script is shown
(an alphabet in the test set). Class prototypes are
indicated in black. Several misclassified characters
are highlighted in red along with arrows pointing
to the correct prototype.

36

Prototypical Networks are not without issues:

+ Somewhat interpretable:
- Each class is clearly identified by a prototype
- Each prediction can be decomposed into contributions of different prototypes

37

Prototypical Networks are not without issues:

+ Somewhat interpretable:
- Each class is clearly identified by a prototype
- Each prediction can be decomposed into contributions of different prototypes

- Not really interpretable:
- Class prototypes seldom correspond to concrete examples (e.g., average of several examples)
- Unclear why a particular prototype is relevant/similar to an example

37

Prototypical Networks are not without issues:

+ Somewhat interpretable:
- Each class is clearly identified by a prototype
- Each prediction can be decomposed into contributions of different prototypes

- Not really interpretable:
- Class prototypes seldom correspond to concrete examples (e.g., average of several examples)
- Unclear why a particular prototype is relevant/similar to an example

+ /- Designed for few-shot regime

- Only one prototype per class
- Works well if few examples, poorly if many

37

Prototype Classification Networks

Architecture of prototype classification networks (PCNs)

e Autoencoder:
Encoder: f : RP — RY,z := f(x) Decoder: g : RT — RP, % := g(z)

Learned so that g(f(x)) = x, for instance by minimizing ||x — %||? over the training set.

38

Prototype Classification Networks

Architecture of prototype classification networks (PCNs)

e Autoencoder:
Encoder: f : RP — RY,z := f(x) Decoder: g : RT — RP, % := g(z)

Learned so that g(f(x)) = x, for instance by minimizing ||x — %||? over the training set.

e Prototype Layer [new!]
- Memorizes m prototypes [p;, - - -, Pp]. with p; € RY
- Outputs squared Euclidean distances between f(x) and each prototype:

p(z) = (llz—psl?, -, Iz = pml*)

38

Prototype Classification Networks

Architecture of prototype classification networks (PCNs)

e Autoencoder:
Encoder: f : RP — RY,z := f(x) Decoder: g : RT — RP, % := g(z)

Learned so that g(f(x)) = x, for instance by minimizing ||x — %||? over the training set.

e Prototype Layer [new!]
- Memorizes m prototypes [p;, - - -, Pp]. with p; € RY
- Outputs squared Euclidean distances between f(x) and each prototype:

p(z) = (llz—psl?, -, Iz = pml*)

e Dense Layer + Softmax

xp wl¥) . x
po(y | x) = softmax(Wp(f(x))), = ex:£ :V(y’l))(-g(f)()x))
y/

38

Prototype Classification Networks

input
X

reconstructed
input

G°NHX®

encoder
network

f

decoder
network

9

transformed
input

f®

prototype classliﬁer network h

prototype
layer p

fully-connected ~ softmax
layer w layer s

output of
prototype
classifier
network

(ho)

39

B ProtoNets:

e Map x to space of emebeddings RY
e Each class y is represented by exactly one centroid ¢ € RY

o Predict label based on closest centroid

40

B ProtoNets:

e Map x to space of emebeddings RY
e Each class y is represented by exactly one centroid ¢ € RY

o Predict label based on closest centroid

B PCNs:

e Map x to space of embeddings RY
e Has a budget of m prototypes, not class-specific
o Compute (squared) distance to all prototypes

e Predict label based on weighted sum of squared distances

40

B ProtoNets:

e Map x to space of emebeddings RY
e Each class y is represented by exactly one centroid ¢ € RY

o Predict label based on closest centroid

B PCNs:

e Map x to space of embeddings RY
e Has a budget of m prototypes, not class-specific
o Compute (squared) distance to all prototypes

e Predict label based on weighted sum of squared distances

B PCNs are more flexible: possibly multiple prototypes per class

40

B ProtoNets:

e Map x to space of emebeddings RY
e Each class y is represented by exactly one centroid ¢ € RY

o Predict label based on closest centroid

B PCNs:

e Map x to space of embeddings RY
e Has a budget of m prototypes, not class-specific
o Compute (squared) distance to all prototypes

e Predict label based on weighted sum of squared distances

B PCNs are more flexible: possibly multiple prototypes per class

B PCNs recover ProtoNets if one prototype per class and W is fixed to —/

40

B The PCN loss is a weighted sum of several terms:

o Classification loss, like the negative log-likelihood:

— 157 Lxyyes 108 Po(y [X) = — 5 2oy yes 2op Ly = K)log po(k | x)

B The PCN loss is a weighted sum of several terms:
o Classification loss, like the negative log-likelihood:
— 157 Lxyyes 108 Po(y [X) = — 5 2oy yes 2op Ly = K)log po(k | x)
e Reconstruction loss so tha the autoencoder works as expected:
157 Zyyeslx — g(FE)IP

Ensures that z is representative of both x and of y

41

B The PCN loss is a weighted sum of several terms:

o Classification loss, like the negative log-likelihood:

_ﬁ Yxyeslogpo(y | X) = — 5 X yes Sox Ly = k) log po(k | %)

e Reconstruction loss so tha the autoencoder works as expected:

& Speslx— g(Fx)I2

Ensures that z is representative of both x and of y

o Interpretability regularizer:

LS et Mingeyyes lIp; — FCOI2

Each prototype must be as close as possible to one training example — if decoder is smooth, decoding of
prototype will be interpretable

41

B The PCN loss is a weighted sum of several terms:

o Classification loss, like the negative log-likelihood:
— 157 Lxyyes 108 Po(y [X) = — 5 2oy yes 2op Ly = K)log po(k | x)

e Reconstruction loss so tha the autoencoder works as expected:

& Speslx— g(Fx)I2

Ensures that z is representative of both x and of y

o Interpretability regularizer:

LS et Mingeyyes lIp; — FCOI2

Each prototype must be as close as possible to one training example — if decoder is smooth, decoding of
prototype will be interpretable
o Clustering regularizer:
1 .
TsT Z(x,y)es min;cim) ||I’j - f(x)||2

Each example must be as close as possible to one of the prototypes — prototypes cluster examples

41

B The PCN loss is a weighted sum of several terms:

o Classification loss, like the negative log-likelihood:
— 157 Lxyyes 108 Po(y [X) = — 5 2oy yes 2op Ly = K)log po(k | x)

e Reconstruction loss so tha the autoencoder works as expected:

& Speslx— g(Fx)I2

Ensures that z is representative of both x and of y

o Interpretability regularizer:

LS et Mingeyyes lIp; — FCOI2

Each prototype must be as close as possible to one training example — if decoder is smooth, decoding of
prototype will be interpretable

o Clustering regularizer:
1 .
TsT Z(x,y)es min;cim) ||I’j - f(x)||2

Each example must be as close as possible to one of the prototypes — prototypes cluster examples

M In practice min over S restricted to mini-batch.

Learned Prototypes

ol /]3]3]<s]el7]4]3]

Figure 2: Some random images from the training set in the
first row and their corresponding reconstructions in the sec-
ond row.

HiEEBAERN

Figure 3: 15 learned MNIST prototypes visualized in pixel
space.

42

Learned Prototypes

BlelANIETIAIN
OHDNNER

Figure 9: 15 decoded prototypes for Fashion-MNIST.

43

Learned Prototypes

interpretable | non-interpretable
train acc 98.2% 99.8%
test acc 93.5% 94.2%

Table 3: Car dataset accuracy.

R o A

R = @

H o> @ P

Figure 5: Decoded prototypes when we include R, and R».

M Cars dataset — contains small B/W images of cars from different angles.

B High performance without entirely sacrificing interpretability.

4

0 1 2 3 4 5 6 7 8 9

-0.07 7.77 1.81 0.66 4.01 2.08 3.11 4.10 | 2045 | -2.34
2.84 3.29 1.16 1.80 | -1.05 4.36 440 | -071 0.97 | -18.10
-25.66 432 | -023 6.16 1.60 0.94 1.82 1.56 398 | -1.77
-1.22 1.64 3.64 4.04 0.82 0.16 2.44 | -22.36 4.04 1.78
272 | -027 | -049 | -12.00 225 | -3.14 2.49 3.96 572 | -1.62
-5.52 1.42 2.36 1.48 0.16 043 | -11.12 241 1.43 1.25
4.77 2.02 221 | -13.64 352 | -1.32 3.01 0.18 | -0.56 | -1.49

0.52 | -24.16 2.15 2.63 | -0.09 2.25 0.71 0.59 3.06 2.00
056 | -1.28 1.83 | -0.53 | -098 | -0.97 | -10.56 427 1.35 4.04
-0.18 1.68 0.88 260 | -0.11 | -329 | -11.20 2.76 0.52 0.75
598 0.64 477 -143 3.13 | -17.53 1.17 1.08 | -2.27 0.78
1.53 | -5.63 | -8.78 0.10 1.56 3.08 043 | -0.36 1.69 3.49
1.71 149 | -1331 | -0.69 | -0.38 4.55 1.72 1.59 3.18 2.19
5.06 | -0.03 0.96 4.35 | :21.75 4.25 142 | -127 1.64 0.78
-1.31 -0.62 | -2.69 0.96 2.36 2.83 276 | 482 | -4.14 4.95

TSNS S

Table 1: Transposed weight matrix (every entry rounded off to 2 decimal places) between the prototype layer and the softmax
layer. Each row represents a prototype node whose decoded image is shown in the first column. Each column represents a digit
class. The most negative weight is shaded for each prototype. In general, for each prototype, its most negative weight is towards
its visual class except for the prototype in the last row.

Bl Interpretation of prototype-class weights for MNIST

Effect of Regularizers

Ll

Figure 6: Decoded prototypes when we remove Ry and R;.

Figure 7: Decoded prototypes when we remove R .

B Disabling the regularizers hinders interpretability of the prototypes

46

M Is autoencoding the way to go?

47

M Is autoencoding the way to go?

B Can we go beyond concrete prototypes and look at where certain prototypes activate?

Horse-picture from Pascal VOC data set
Source tag
present

|

Classified
as horse

RO
“K’(j’f“ 4 No source
LS —~ = tag present

|

Not classified
as horse

'é) =

47

B How would you describe why the image looks like a “clay colored sparrow”?

Leftmost: a test image of a clay-colored sparrow

Second column: same test image, each with a
bounding box generated by our model
-- the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our
algorithm

Fourth column: source images of the prototypical
parts in the third column

Rightmost column: activation maps indicating how
similar cach prototypical part resembles

part of the test bird

Figure 1: Image of a clay colored sparrow and how parts of it look like some learned prototypical
parts of a clay colored sparrow used to classify the bird’s species.

48

B How would you describe why the image looks like a “clay colored sparrow”?

Lefimost: a test image of a clay-colored sparrow

Second column: same test image, each with a
bounding box generated by our model
-- the content within the bounding box
is considered by our model to look similar
to the prototypical part (same row, third
column) learned by our algorithm

Third column: prototypical parts learned by our
algorithm

Fourth column: source images of the prototypical
parts in the third column

Rightmost column: activation maps indicating how
similar cach prototypical part resembles

part of the test bird

Figure 1: Image of a clay colored sparrow and how parts of it look like some learned prototypical
parts of a clay colored sparrow used to classify the bird’s species.

B Perhaps bird’'s head and wing bars look like those of a prototypical clay colored sparrow

B Radiologists compare X-ray scans with prototypical tumor images

48

B How would you describe why the image looks like a “clay colored sparrow”?

looks like.

Lefimost: a test image of a clay-colored sparrow
Second column: same test image, each with a
bounding box generated by our model

. -- the content within the bounding box
i is considered by our model to look similar
Jooks ke [to the prototypical part (same row, third
column) learned by our algorithm
Third column: prototypical parts learned by our

- algorithm
looks like = Fourth column: source images of the prototypical
parts in the third column
L Rightmost column: activation maps indicating how

similar cach prototypical part resembles
looks like part of the test bird
=gl

Figure 1: Image of a clay colored sparrow and how parts of it look like some learned prototypical
parts of a clay colored sparrow used to classify the bird’s species.

B Perhaps bird’'s head and wing bars look like those of a prototypical clay colored sparrow

B Radiologists compare X-ray scans with prototypical tumor images

Idea: enable models to focus on parts of the image and compare them with prototypical parts of training
images from a class — reasoning of the form “this looks like that”

48

Refresher: Convolutional Filters

Convolution

Pooling
layer

layer

\g‘_/ i ?75-’
Sum Gger input oot
channels

o

™
L%
c‘\v
Y
mxm,x3x5

M Structure:

e Given an input x of size w X h X ¢

49

Refresher: Convolutional Filters

M Structure:

e Given an input x of size w X h X ¢

Convolution
layer

Pooling e A conv. layer has d kernels k;, j € [d], each

layer

of size w’ x b’ x ¢

v

~N—

C,=
Sum oger input
channels

49

Refresher: Convolutional Filters

Convolution Pooling
layer layer

~N—

C,=
Sum oger input
channels

M Structure:

e Given an input x of size w X h X ¢

e A conv. layer has d kernels k;, j € [d], each
of size w’ x b’ x ¢

e Each kernel is convolved with the input to
obtain an output y; of size a X b, with a =

w—2|% | and b=h-2|%]

49

Refresher: Convolutional Filters

Convolution Pooling
layer layer

~N—

€=
Sum oger input
channels

M Structure:

e Given an input x of size w X h X ¢

e A conv. layer has d kernels k;, j € [d], each
of size w X b x ¢

e Each kernel is convolved with the input to
obtain an output y; of size a X b, with a =

’ o h/

w—2|% | and b=h-2|%]

e The outputs yi, ..., yq are stacked to obtain
the complete a X b X d embedding y

B The size of the kernel is the receptive field of
the convolutional layer

49

Refresher: Convolutional Networks

B Convolutional filters take an input, typically
reduce its size, and output a variable number of

Conlx;::.lrlion Pooling channels (depth)

layer

v

N Cin

] ==
Sum oger input
channels

mxm,x3x5

Refresher: Convolutional Networks

Convolution

Pooling
layer

layer

v

N Cin

€=
Sum oger input
channels

mxm,x3x5

B Convolutional filters take an input, typically
reduce its size, and output a variable number of
channels (depth)

B Pooling layers behave similarly but aggregate
their inputs using max or avg, and have no learn-
able parameters

50

Refresher: Convolutional Networks

~N—

€=
Sum oger input
channels

Convolution
layer

mxm,x3x5

Pooling
layer

v

B Convolutional filters take an input, typically
reduce its size, and output a variable number of
channels (depth)

B Pooling layers behave similarly but aggregate
their inputs using max or avg, and have no learn-
able parameters

B CNNs stack convolutional layers intermixed
with pooling layers (e.g., max activations) on top
of each other to produce a latent representation:

wxhxec — w xhxd

50

B Consider convolutional embeddings z = f(x) :
wx hxc

with w/ < w and b < h

—

w' x b xd

51

B Consider convolutional embeddings z = f(x) :
wxhxec — w xhxd
with w/ < w and b < h
B In ProtoNets and PCNs, a prototype p € R* %/ %9 is a point in embedding space:

e Summarizes a set of examples
o Distance from prototype used as activation

o Interpretability achieved by ensuring that p is “close” to concrete example

51

B Consider convolutional embeddings z = f(x) :
wxhxec — w xhxd
with w/ < w and b < h
B In ProtoNets and PCNs, a prototype p € R* %/ %9 is a point in embedding space:

e Summarizes a set of examples
o Distance from prototype used as activation

o Interpretability achieved by ensuring that p is “close” to concrete example

M In PPNets, a part-prototype p € R'*1%9 is a part of a point in embedding space

e Summarizes a set of example parts
e Distance from part-prototype used as activation

e Interpretability achieved by ensuring that p is “close” to concrete example parts

51

ProtoPNets (Chen et al., 2019)

B ProtoPNets are a class of “gray-box” models that aim at achieveing high-performance through
representation learning while providing faithful explanations for their own predictions.

B Embed input image x using convolutional layers — each “tube” in the latent representation can be mapped
back to a region of the image.

52

ProtoPNets (Chen et al., 2019)

B ProtoPNets are a class of “gray-box” models that aim at achieveing high-performance through
representation learning while providing faithful explanations for their own predictions.

0ol =

L

data ﬂ m

P. Bunti L. Albatross

W Jointly learn k part-prototypes for each class, i.e., “tubes” of latent representations of parts of concrete
training examples. Learned using typical clustering losses (coverage & separation).

52

ProtoPNets (Chen et al., 2019)

B ProtoPNets are a class of “gray-box” models that aim at achieveing high-performance through
representation learning while providing faithful explanations for their own predictions.

data ﬂ m

P. Bunti L. Albatross

W During inference, input “tubes” are compared to learned part-prototypes (also “tubes”) and their similarity is
computed - this captures similarity information between the input and training examples.

52

ProtoPNets (Chen et al., 2019)

B ProtoPNets are a class of “gray-box” models that aim at achieveing high-performance through
representation learning while providing faithful explanations for their own predictions.

P. Bunting

M The similarities themselves are passed through a linear layer and a softmax activation to obtain a distribution
over classes.

52

Part-Prototype Networks

Architecture of part-prototype networks (PPNets)

o Embedding function [it was an autoencoder]

f- wahxc _ Rw/xhlxd

Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

53

Part-Prototype Networks

Architecture of part-prototype networks (PPNets)
o Embedding function [it was an autoencoder]

f: wahxc _ Rw/xhlxd

Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

e Part-prototype Layer
- Memorizes m part-prototypes [py, . ..,Pp], with p; € R1X1Xd [they were full prototypes]

53

Part-Prototype Networks

Architecture of part-prototype networks (PPNets)
o Embedding function [it was an autoencoder]
£ RWXhxc _, pw'xh'xd
Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

e Part-prototype Layer
- Memorizes m part-prototypes [py, . ..,Pp], with p; € R1X1Xd [they were full prototypes]

- Part-prototypes are per class, L%J for each class y € [v] [they were shared]

53

Part-Prototype Networks

Architecture of part-prototype networks (PPNets)

o Embedding function [it was an autoencoder]

f: wahxc _ Rw/xhlxd

Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

e Part-prototype Layer
- Memorizes m part-prototypes [py,. ..
- Part-prototypes are per class, L%J for each class y € [v] [they were shared]
- Computes activation of part-prototypes of each y on z = f(x):

s Pl with p; € R2X1% [they were full prototypes]

a=aMo.. . ocal al)(z) = [act(z, pgy)))2, ..., act(z, pg))z]

[it was squared L, distance]

53

Part-Prototype Networks

Architecture of part-prototype networks (PPNets)

o Embedding function [it was an autoencoder]

f: wahxc _ Rw/xhlxd

Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

e Part-prototype Layer
- Memorizes m part-prototypes [py, . ..,Pp], with p; € R1X1Xd [they were full prototypes]
- Part-prototypes are per class, L%J for each class y € [v] [they were shared]
- Computes activation of part-prototypes of each y on z = f(x):

a=aMo.. . ocal al)(z) = [act(z,pgy))) ,. .. act(z, p,,,))z]

[it was squared L, distance]
e Dense Layer + Softmax [same]

po(y | x) = softmax(Wa(f(x))), = eXpegw _ a((yf(r(c,)c)(S

53

B How to m m
easure activati
on of
part-prototype p € R1X1Xd on a full
a full embeddin ’
gz € Rw ><h/><d7

54

B How to measure activation of part-prototype p € R1*1%9 on a full embedding z € RW'xh'xd?

e Break down z into all its pieces z of size 1 X 1 x d,
denoted:

parts(z)

54

B How to measure activation of part-prototype p € R1*1%9 on a full embedding z € RW'xh'xd?

e Break down z into all its pieces z of size 1 X 1 x d,
denoted:

parts(z)

e Measure L, distance between p and each part z of z:

d(p,z) = [[p — 7|

54

B How to measure activation of part-prototype p € R1*1%9 on a full embedding z € RW'xh'xd?

e Break down z into all its pieces z of size 1 X 1 x d,
denoted:

parts(z)

e Measure L, distance between p and each part z of z:
d(p,z) = |lp — z||

e Convert distance into activation:

d(p,z)? + 1)

wctp3) =g (G075

54

B How to measure activation of part-prototype p € R1*1%9 on a full embedding z € RW'xh'xd?

e Break down z into all its pieces z of size 1 X 1 x d,
denoted:
parts(z)

e Measure L, distance between p and each part z of z:
d(p,z) = |lp — z||

e Convert distance into activation:

d(p,7)? + 1)
d(p,z)? + ¢

e Define activation of p on full embeddings z as maximum

act(p,z) = log (

activation of its parts:

act(p,z) = _max act(p,z)
zEparts(z)

54

B How to measure activation of part-prototype p € R1*1%9 on a full embedding z € RW'xh'xd?

e Break down z into all its pieces z of size 1 X 1 x d,
denoted:

parts(z) /s

e Measure L, distance between p and each part z of z: o o5 o5 10 4=

d(p,z) = [lp — =zl o

e Convert distance into activation: A\

d ,~2 1 — s 0=
act(p,z) = log d(p.z)° +1

d(p,z)* + e . .

Comparison between difference-of-logs
e Define activation of p on full embeddings z as maximum and Gaussian of d:
activation of its parts:
act’(p,) = exp (—v - d(p,%)?)

act(p,z) = _max act(p,z)

z€parts(z) In the plot € = 0.001, v =1

54

Similarity score

L A e Dy J
Rl A A Y

Convolutional layers / Prototype layer gy Fully connected layer /1 Output logits

Remark:

o Convolutional filters slide over the input (first step from the left)

o Part-prototypes slide over the embeddings (second step from the left)

55

B How to ensure that part-prototypes are class-specific?

56

B How to ensure that part-prototypes are class-specific?

Desiderata:

e Clustering: each training example of class y should strongly activate at least one part-prototype p of that
class.

56

B How to ensure that part-prototypes are class-specific?

Desiderata:

e Clustering: each training example of class y should strongly activate at least one part-prototype p of that
class.
Can be converted into a regularization term:
1
chs =T

min |p 7|
| I(W)es)

min
PEPPS), zeparts(f(x

56

B How to ensure that part-prototypes are class-specific?

Desiderata:

e Clustering: each training example of class y should strongly activate at least one part-prototype p of that
class.
Can be converted into a regularization term:

1
chs =

min |p 7|
| I(W)es)

min
PEPPS), zeparts(f(x

e Separation: Every training example of class y should activate none of the part-prototypes p of the other
classes.

56

B How to ensure that part-prototypes are class-specific?

Desiderata:

e Clustering: each training example of class y should strongly activate at least one part-prototype p of that
class.
Can be converted into a regularization term:
1
chs =T

min |p 7|
| I(W)es)

min
PEPPS), zeparts(f(x
e Separation: Every training example of class y should activate none of the part-prototypes p of the other
classes.
Can be converted into a regularization term:
1

Qsep =

in_|p—2?
151 e 2

min _ m
s pgppsy zE€parts(f(x

56

B How to ensure that part-prototypes are interpretable?

57

B How to ensure that part-prototypes are interpretable?
Idea: “push” learned prototypes of class y to a concrete training example by solving:

Prew < argmin ”pnew _pH2
PnewEQ('V)

where:
oW = {7 : 7 € parts(f(x7)), vi = y}

is the set of all parts of (latent representations of) instances x; in the prototype’s class.

57

B How to ensure that part-prototypes are interpretable?

Idea: “push” learned prototypes of class y to a concrete training example by solving:

Prew < argmin ”pnew _pH2
PnewEQ('V)

where:
oW = {7 : 7 € parts(f(x7)), vi = y}

is the set of all parts of (latent representations of) instances x; in the prototype’s class.

M Solved using SGD or similar.

57

B Training is split into three stages:

o Load a pre-trained CNN and take its feature extractor f(x), freeze the bottom layers.

58

B Training is split into three stages:

o Load a pre-trained CNN and take its feature extractor f(x), freeze the bottom layers.

o Learn the part prototypes {p} of all classes while fine-tuning the top convolutional layers of f by minimiz-
ing:

1

S|

At this stage, fix the weight vectors of the top dense layer to:

D> Lee(x,y) + MQas + AoQsep
(x,y)€S

w =

v _J1 if p; belongs to class y
—% otherwise

58

B Training is split into three stages:

o Load a pre-trained CNN and take its feature extractor f(x), freeze the bottom layers.

o Learn the part prototypes {p} of all classes while fine-tuning the top convolutional layers of f by minimiz-
ing:

1

S|

At this stage, fix the weight vectors of the top dense layer to:

Z Zce(xa }/) + A1Qes + A2Q2sep
(x,y)€s

w =

v _J1 if p; belongs to class y
—% otherwise

o Periodically push prototypes close to training examples.

58

B Training is split into three stages:

o Load a pre-trained CNN and take its feature extractor f(x), freeze the bottom layers.

o Learn the part prototypes {p} of all classes while fine-tuning the top convolutional layers of f by minimiz-
ing:
1
&l D> Lee(x,y) + MQas + AoQsep
(x,y)€S

At this stage, fix the weight vectors of the top dense layer to:

w =

v _J1 if p; belongs to class y
—% otherwise

o Periodically push prototypes close to training examples.

e Once f and {p} are found, optimize weights of top dense layer W by optimizing the cross-entropy loss —
convex problem

58

Example

Why is this bird classfied as a red-bellied woodpecker?

Evidence for this bird being a red-bellied woodpecker
Prototype Training image

Original image Activation map Similarity Class Points
(box showing part that score connection contributed
looks like prototype)

where prototype
comes from

6.499 x 1.180 = 7.669
4.392 x 1.127 = 4.950

3.890 x 1.108 = 4.310

Total points to red-bellied woodpecker: 32,736

B Not quite counterfactual, but useful

Evidence for this bird being a red-cockaded woodpecker:
Training image Activation map Similarity Class Points

where prototype
m

Original image Prototype
score connection contributed

(box showing part that

2.452 x 1.046 = 2.565

2.125 x 1.091 = 2.318

1.945 x 1.069 = 2.079

Total points to red-cockaded woodpecker: 16.886

59

Example

ototype Nearest training patches Nearest test patches
(in bounding box) (in bounding box) (in bounding box)

Cardinal

(a) nearest prototypes of two test images
lefi: original test image
right: top: three nearest prototypes of the image,
with prototypical parts shown in box
below: test image with patch closest to each
prototype shown in box

(b) nearest image patches o prototypes
lefiz prototype, with prototypical parts in box

middle: nearest training images to prototype, with patch closest to prototype in box
right: nearest test images to prototype, with patch closest o prototype in box

Figure 5: Nearest prototypes to images and nearest images to prototypes. The prototypes are learned
from the training set.

B PPNets are the only method that explains where prototypes activate and where they come from!

60

Example

looks like

looks like (6>

(a) Object attention (b) Part attention (c) Part attention + comparison with learned
(class activation map) (attention-based models) prototypical parts (our model)

Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).

B Comparison between PPNets and other approaches to explainability

A Template

B Many concept-based models follow a two-level structure

62

A Template

B Many concept-based models follow a two-level structure

B The model extracts a vector of concept activations from x:

c(x) = (a(x),. .., c(x)) € RF

62

A Template

B Many concept-based models follow a two-level structure

B The model extracts a vector of concept activations from x:

c(x) = (a(x),. .., c(x)) € RF

B Then it aggregates them into class scores, often in a simulatable Lipton (2018) manner, e.g., using a linear
combination:

s, (x) == (W) (x), e(x)) = >, w) (%) - i(x)

where w(Y)(x) € R is the weight vector associated to class y.

62

A Template

B Many concept-based models follow a two-level structure

B The model extracts a vector of concept activations from x:

c(x) = (a(x),. .., c(x)) € RF

B Then it aggregates them into class scores, often in a simulatable Lipton (2018) manner, e.g., using a linear
combination:

s, (x) == (W) (x), e(x)) = >, w) (%) - i(x)

where w(Y)(x) € R is the weight vector associated to class y.

B Class probabilities are then obtained using a softmax: P(y | x) := softmax(s(x))y .

62

A Template

B Many concept-based models follow a two-level structure

B The model extracts a vector of concept activations from x:

c(x) = (a(x),. .., c(x)) € RF

B Then it aggregates them into class scores, often in a simulatable Lipton (2018) manner, e.g., using a linear
combination:

s, (x) == (W) (x), e(x)) = >, w) (%) - i(x)

where w(Y)(x) € R is the weight vector associated to class y.
B Class probabilities are then obtained using a softmax: P(y | x) := softmax(s(x))y .

B The concepts {¢;} are:

e Learned from data so to be discriminative and interpretable.

e Black-box: what's “above” the concepts is interpretable, what's “underneath” is not.

62

A Template

B Key Feature: easy to extract a local explanation that captures how different concepts ¢ contribute to a
decision (x,y)!

63

A Template

B Key Feature: easy to extract a local explanation that captures how different concepts ¢ contribute to a
decision (x,y)!

These explanations take the form:

expl(x,y) == {(w”(x), () :j € [K]}

63

A Template

B Key Feature: easy to extract a local explanation that captures how different concepts ¢ contribute to a

decision (x,y)!

These explanations take the form:

expl(x,y) == {(w”(x), () :j € [K]}

Remarks:

e The concepts and the weights are both integral to the explanation:
- Concepts {c;} establish a vocabulary that enables communication with stakeholders
- Weights {w;(x)} convey the relative importance of different concepts

e The prediction y = f(x) is independent from x given the explanation expl(x, y) — the explanations is
100% faithful to the model's decision process.

63

e Faithful by construction
e Supplied for free

o No hyperparameter tuning

64

e Faithful by construction
e Supplied for free

o No hyperparameter tuning

A net mapping inputs to high-quality concepts can be
used for a million things!

o Understanding, intervening, computing recourse,
debugging

o Reasoning (?) & verification (?)!

64

e Faithful by construction
e Supplied for free

o No hyperparameter tuning

A net mapping inputs to high-quality concepts can be
used for a million things!

o Understanding, intervening, computing recourse,
debugging

o Reasoning (?) & verification (?)!

B Am | Dreaming?

64

e Faithful by construction
e Supplied for free

o No hyperparameter tuning

A net mapping inputs to high-quality concepts can be
used for a million things!

o Understanding, intervening, computing recourse,
debugging

o Reasoning (?) & verification (?)!

B Am | Dreaming? Kinda :-(

64

e Faithful by construction
e Supplied for free

o No hyperparameter tuning

A net mapping inputs to high-quality concepts can be
used for a million things!

o Understanding, intervening, computing recourse,
debugging

o Reasoning (?) & verification (?)!

B Am | Dreaming? Kinda :-(
B Interpretability not well defined!

B Each CBM implements it in its own way:
o Activation sparsity
e Orthonormality
o Similarity to concrete examples

e ...all unsupervised approaches

64

Concept Annotations

Concept Bottleneck Models

Pang Wei Koh ! Thao Nguyen'!? Yew Siang Tang" !
Stephen Mussmann' Emma Pierson' Been Kim? Percy Liang '

Abstract

We seek to learn models that we can interact with
using high-level concepts: if the model did not
think there was a bone spur in the x-ray, would
it still predict severe arthritis? State-of-the-art
models today do not typically support the manip-
ulation of concepts like “the existence of bone
spurs”, as they are trained end-to-end to go di-
rectly from raw input (e.g., pixels) to output (e.g.,
arthritis severity). We revisit the classic idea of
first predicting concepts that are provided at train-
ing time, and then using these concepts to predict
the label. By construction, we can intervene on
these concept bottleneck models by editing their
predicted concept values and propagating these
changes to the final prediction. On x-ray grading
and bird identification, concept bottleneck mod-
els achieve competitive accuracy with standard
end-to-end models, while enabling interpretation
in terms of high-level clinical concepts (“bone

srnre™) ar hird attribntes (wing calar™ Theee

(Source: (Koh et al., 2020) Also:

input x

concepts ¢
sclerosis

bone spurs tasky

Regressor arthritis
grade (KLG)

narrow joint space

concepts ¢

wing color
undertail color task y

Classifier
bird species

beak length

Figure 1. We study concept bottleneck models that first predict
an intermediate set of human-specified concepts c. then use ¢ to
predict the final output . We illustrate the two applications we
consider: knee x-ray grading and bird identification.

Concept Whitening (Chen et al., 2020))

65

Concept Annotations Are Not Enough!

Do CONCEPT BOTTLENECK MODELS LEARN
AS INTENDED?

Andrei Margeloiu* Matthew Ashman* Umang Bhatt*
University of Cambridge University of Cambridge University of Cambridge
am2770@cam.ac.uk mca39@cam.ac.uk usb20@cam.ac.uk
Yanzhi Chen Mateja Jamnik Adrian Weller

University of Edinburgh University of Cambridge University of Cambridge

The Alan Turing Institute

ABSTRACT

Concept bottleneck models map from raw inputs to concepts, and then from con-
cepts to targets. Such models aim to incorporate pre-specified, high-level concepts
into the learning procedure, and have been motivated to meet three desiderata:
interpretability, predictability, and intervenability. However, we find that concept
bottleneck models struggle to meet these goals. Using post hoc interpretability
methods, we demonstrate tha

m thus calling into question t!e use!u ness 0! concept
ottleneck models in their current form.

(Source: (?7))

66

Concept Leakage = Unintended Semantics

Fit two concepts to recognize MNIST images of
“4"s and “5"”s using full concept annotations

67

Concept Leakage = Unintended Semantics

Fit two concepts to recognize MNIST images of @ Use the learned concepts, predict parity of remain-
“4"s and “5"”s using full concept annotations ing digits (i.e., all except “4” and “5")

"even"or "odd"

it is "4" | it is "5" it is "4" | it is "5"

/ 0 3 ¢

B Performance is much better than random!

Take-away

B Concept-based models combine features of white and black-box models:

o Interpretability (for parts of the prediction process)
o Faithfulness of the produced explanations, they come for free

e High performance on non-tabular data, thanks to representation learning

B SENNs upgrade linear models to representation learning; not 100% clear how to learn interpretable concepts

B Prototype and part-prototype models (partially) solve this issue by mapping prototypes to examples (or parts
of examples)

W Still very much an open area of research! (Especially ensuring that concepts are interpretable)

68

References

Alvarez-Melis, D. and Jaakkola, T. S. (2018). Towards robust interpretability with self-explaining neural
networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 7786—7795.

Chen, C,, Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. (2019). This looks like that: Deep learning for
interpretable image recognition. Advances in Neural Information Processing Systems, 32:8930-8941.

Chen, Z., Bei, Y., and Rudin, C. (2020). Concept whitening for interpretable image recognition. Nature
Machine Intelligence, 2(12):772-782.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., and Liang, P. (2020). Concept
bottleneck models. In International Conference on Machine Learning, pages 5338-5348. PMLR.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability
is both important and slippery. Queue, 16(3):31-57.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206-215.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages 4080—4090.

Stammer, W., Schramowski, P., and Kersting, K. (2021). Right for the right concept: Revising neuro-symbolic
concepts by interacting with their explanations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3619-3629.

Teso, S. (2019). Toward faithful explanatory active learning with self-explainable neural nets. In Proceedings of
the Workshop on Interactive Adaptive Learning (IAL 2019), pages 4-16.

68

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267-288.

Ustun, B. and Rudin, C. (2016). Supersparse linear integer models for optimized medical scoring systems.
Machine Learning, 102(3):349-391.

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V., and Doshi-Velez, F. (2018). Beyond sparsity: Tree
regularization of deep models for interpretability. In Thirty-Second AAAI Conference on Artificial Intelligence.

68

	Tree Regularization
	Self-explainable Neural Networks
	Prototypes + Deep Learning
	References

