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Non-linear Support Vector Machines
Non-linearly separable problems

@ Hard-margin SVM can address linearly separable problems

@ Soft-margin SVM can address linearly separable problems
with outliers

@ Non-linearly separable problems need a higher expressive
power (i.e. more complex feature combinations)

@ We do not want to loose the advantages of linear
separators (i.e. large margin, theoretical guarantees)

@ Map input examples in a higher dimensional feature space

@ Perform linear classification in this higher dimensional
space
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Non-linear Support Vector Machines

d: X - H

@ ¢ is a function mapping each example to a higher
dimensional space H

@ Examples x are replaced with their feature mapping ®(x)

@ The feature mapping should increase the expressive power
of the representation (e.g. introducing features which are
combinations of input features)

@ Examples should be (approximately) linearly separable in
the mapped space

Non-linear SVM



Homogeneous Inhomogeneous
(d=2) (d=2)

Polynomial mapping

@ Maps features to all possible conjunctions (i.e. products) of
features:
@ of a certain degree d (homogeneous mapping)
Q up to a certain degree (inhomogeneous mapping)
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Non-linear Support Vector Machines
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Linear separation in feature space

@ SVM algorithm is applied just replacing x with ®(x):

o

f(x) = wld(x) + wy

@ A linear separation (i.e. hyperplane) in feature space
corresponds to a non-linear separation in input space, e.g.:

X
f( ¥ > = sgn(wixF + woxiXe + WsXg + Wo)
2
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Support Vector Regression

Rationale

@ Retain combination of regularization and data fitting

@ Regularization means smoothness (i.e. smaller weights,
lower complexity) of the learned function

@ Use a sparsifying loss to have few support vector
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Support Vector Regression

ly = f(x)]e

—€ € y— f(x)

e-insensitive loss

0 if [y — f(x)| < e
ly — f(X)| — € otherwise

(). y) = |y — F(X)]c = {

@ Tolerate small (¢) deviations from the true value (i.e. no
penalty)

@ Defines an e-tube of insensitiveness around true values
@ This also allows to trade off function complexity with data
fitting (playing on ¢ value)
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Support Vector Regression
Optimization problem

. i a

min —||lwl|]c+C i+ &

verm e IO+
subjectto W d(X) +wp— ¥ < e+&

Yi— (Wo(x)+wp ) <e+&

£,6 >0

@ Two constraints for each example for the upper and lower
sides of the tube

@ Slack variables &;, & penalize predictions out of the
e-insensitive tube

v
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Support Vector Regression

@ We include constraints in the minimization function using
Lagrange multipliers («a;, aj*, B;, 87 > 0):

1 ™ -
L=SlIW+CY (& +&) = Y (Bi&i + 57
i=1 i=1

= Z ajle+ &+ yi— WT¢(Xi) — Wp)

i=1

m
=Y ai(e+& — yi+w o(x) + wp)
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Support Vector Regression

Dual formulation

@ Vanishing the derivatives wrt the primal variables we
obtain:
oL
w w— Z(a — ;)P =0—>w= Zoz—a, (x;)
oL u \
o = Z(ai—@i)zo
i=1
oL
875' = C—a,-—ﬁ,-zO—>a,-e[0,C]
1
oL
o = C—af—p=0—-aqa; €][0,C]
I
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Support Vector Regression

Dual formulation

@ Substituting in the Lagrangian we get:

Z af — o) (e — aj)®(x;) T d(x;)

2
[[w[2
m m
+Y &G(C—Bi—a)+ Y & (C—Bf—af)
- =
m m m
—e> (aitai)+ Y _yilaf —ai)+wo Y (aj—af)
(=1 i=1 =

—0
= > (] —a)(ef — ay)o(x))T d(x))

ij=1
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Support Vector Regression

Dual formulation

max 2 — (o] — a)o(x) o (x;)

oeR™

subject to Z(a; —a;)=0

aj,a; €[0,C] Vie[l,m]
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Support Vector Regression

Karush-Khun-Tucker conditions (KKT)

@ At the saddle point it holds that for all /:

aile+ & +yi— W o(x;)) — wp) =0
e+ & —yi+wo(x;) 4+ wp) =0
Bii =0
BiEf =0

@ Combined with C — a; — 3; = 0,a; > 0,5; > 0 and
C—aj -3 =0,af >0,87 >0 we get

aj € [0, C] aj €10, C]

@ and

Oz,':CI'ff,'>0 aszifﬁ,’-">0




Support Vector Regression

Support Vectors

@ All patterns within the e-tube, for which |f(x;) — y;j| <,
have a;, af = 0 and thus don’t contribute to the estimated
function f.

@ Patterns for which either 0 < a; < Cor 0 < o < Careon
the border of the e-tube, that is |f(x;) — yj| = €. They are
the unbound support vectors.

@ The remaining training patterns are margin errors (either
& > 0or & > 0), and reside out of the e-insensitive region.
They are bound support vectors, with corresponding
aj=Coraf=_C.
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Support Vectors

y—wld(x) —wy=0

R — wld(x) +wo—y = —¢
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Support Vector Regression: example for decreasing e
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Appendix

@ Smallest enclosing hypersphere
@ Support vector ranking

Non-linear SVM



Smallest Enclosing Hypersphere

@ Characterize a set of examples defining boundaries
enclosing them

@ Find smallest hypersphere in feature space enclosing data
points

@ Account for outliers paying a cost for leaving examples out
of the sphere

@ One-class classification: model a class when no negative
examples exist

@ Anomaly/novelty detection: detect test data falling outside
of the sphere and return them as novel/anomalous (e.g.
intrusion detection systems, Alzheimer’s patients
monitoring)

Non-linear SVM




Smallest Enclosing Hypersphere
Optimization problem

m
A 2
min R+ C -
RER,0cH £EcR™ ; &

subjectto  [|®(X;) — 0|2 < R?+¢ i=1,....m
>0, i=1,....m

@ o is the center of the sphere

@ R is the radius which is minimized
@ slack variables &; gather costs for outliers

Non-linear SVM



Smallest Enclosing Hypersphere

Lagrangian («;, 5; > 0)

m m
L=RP+CY &-> ai(RP+&—[|o(x) — ol[%) Zﬁ,&
i= i=1
Vanishing the derivatives wrt primal variables
oL u =
55 = 2R( —Za;):O%Za;:1
oL u
%0 = 2204, O—>oZa, ;aicb(x,-)

oL
aifi = C—oz,-—ﬁ,-:O—>a,-E[O,C]
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Smallest Enclosing Hypersphere

Dual formulation

R?(1- 3 o) + 3 §i (C—aj— Bj)

—_——
=0

+> (D) = D ao(x)) () — D an®(xp))
i=1 j=1 h=1

— —
lo) o
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Smallest Enclosing Hypersphere
Dual formulation

m

D ai(®(x) = Y a0(x)T(P(xi) — Y an®(xp)) =
i=1 j=1

h=1
m m

= aid(x) o) = > a;id(x;)
i=1 '

\'
M=
S
©
&)
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Smallest Enclosing Hypersphere
Dual formulation

m
max ) ad(x;)" Z ajo (%) T d(x;)
i=1

oeR™
ij=1

m
subject to Zai:L 0<q;<C, i=1,...,m.

Distance function

@ The distance of a point from the origin is:
R?(x) = [|®(x) — o|[?

= (P(x) — Z a;i®(x;)) T (®(x) - _Z 2j® (X))

= d(x)"d(x 2Za, X)) d(x) + Z ;o (x;) T O(X;)
ij=1
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Smallest Enclosing Hypersphere

Karush-Khun-Tucker conditions (KKT)
@ At the saddle point it holds that for all /:

Bi&i =0
ai(R?+& — ||o(x;) — o|) =0

Support vectors

@ Unbound support vectors (0 < a; < C), whose images lie
on the surface of the enclosing sphere.

@ Bound support vectors (a; = C), whose images lie outside
of the enclosing sphere, which correspond to outliers.

@ All other points (o« = 0) with images inside the enclosing
sphere.
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Smallest Enclosing Hypersphere
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Smallest Enclosing Hypersphere

@ The radius R* of the enclosing sphere can be computed
using the distance function on any unbound support vector
X:

m m
RZ(x) = ®(x) T o(x)—2> ;b (%)) d(X)+ > i ®(x;) " (X))
i=1 ij=1
@ A decision function for novelty detection could be:
f(x) = sen (F?z(x) _ (R*)2)

@ i.e. positive if the examples lays outside of the sphere and
negative otherwise
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Support Vector Ranking

@ Order examples by relevance (e.g. email urgence, movie
rating)

@ Learn scoring function predicting quality of example

@ Constraint function to score X; higher than x; if it is more
relevant (pairwise comparisons for training)

@ Easily formalized as a support vector classification task

Non-linear SVM



Support Vector Ranking

. 1 2
min §||W|| +CZ§:’,/

weX woeR, §; ;,€ER o

subject to
wio(x;) —wio(x) > 1-¢;
§ij=>0
Vi, j: Xi < X

@ There is one constraint for each pair of examples having
ordering information (x; < x; means the former is comes

first in the ranking)
@ Examples should be correctly ordered with a large margin
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Support Vector Ranking
Support vector classification on pairs

. 1
min Slwl| +CY &y

WEX ,WER, & ;ER —
I7j

subject to
YW’ (o(x;) — o(x)) > 1 - &
®(xjj)
§ij>0
Vi j: Xi < X

@ where labels are always positive y; ; = 1
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Support Vector Ranking

Decision function

f(x) = w’d(x)

@ Standard support vector classification function (unbiased)
@ Represents score of example for ranking it
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