
Structured Output Prediction

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

SOP

Structured Output Prediction: the task

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…
Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

The task
The input is (typically) a structured object
The output is also a structured-object (rather than a scalar)
e.g.:

A sequence (part-of-speech tagging, protein secondary
structure prediction)
A tree (parse-tree prediction)
A graph (link detection, protein 3D structure prediction)

Image from Joachims et al, 2009

SOP

Structured Output Prediction: the issue

The issue
Standard supervised
learning learns a function

f : X → Y

However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)
The problem cannot be
formalized as multiclass
classification

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

Image from Joachims et al, 2009

SOP

Structured Output Prediction: approaches
y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

Energy-based models

y∗ = argminy∈YE(x , y)

An energy function predicts the energy of each
input-output pair
Prediction is achieved by getting minimal energy output for
a given input
Inference methods are needed to solve the argmin
problem (learning with inference)

SOP

Energy-based models

E(Y, X)E(Y, X)

Figure 3: How training affects the energies of the possible answers in the discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.

Ȳ iY i

(Y)

E
(W

,·,
X

i)

Ȳ iY i

(Y)

E
(W

,·,
X

i)

Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-
tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect
answers.

9

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y
⇤

E
(x

,y
)

y
i

ȳ
i

E
(x

i ,
y
;w

)

�
=
>

�
=

¬Y
1
_

¬Y
2

m
a
x

w
,x

,µ
,"

µ
�

↵
k X i=
1

k"
i
k 1

�
�

k X i=
1

kw
i
k 1

+
�

k X i=
1

hw
i
,x

i
i

s.
t.

hw
i
,x̄

h +
�

x̄
h �
i�

µ
�

"i h

hw
i
,x

i
�

x
j
i�

µ

w
i
2

W
fe

a
si

b
le

x
i
2

X f
e
a
si

b
le

,"
i
�

0

8i
,j

2
[1

,k
],

i
6=

j,
h
2

[1
,|D

|]

hw
,x̄

h +
�

x̄
h �
i=

0

hw
,x

1
�

x
2
i=

0

U
(x

)
=
hw

,�
(x

)i

x
⇤

=
ar

gm
ax

x
2X

fe
a
s
ib

le

hw
,�

(x
)i

U
(x

,y
)

=
hw

,'
(x

,y
)i

y
⇤

=
ar

gm
ax

y
2Y

fe
a
s
ib

le

hw
,'

(x
,y

)i

1y
⇤

E
(x

,y
)

y
i

ȳ
i

E
(x

i ,
y
;w

)

�
=
>

�
=

¬Y
1
_

¬Y
2

m
a
x

w
,x

,µ
,"

µ
�

↵
k X i=
1

k"
i
k 1

�
�

k X i=
1

kw
i
k 1

+
�

k X i=
1

hw
i
,x

i
i

s.
t.

hw
i
,x̄

h +
�

x̄
h �
i�

µ
�

"i h

hw
i
,x

i
�

x
j
i�

µ

w
i
2

W
fe

a
si

b
le

x
i
2

X f
e
a
si

b
le

,"
i
�

0

8i
,j

2
[1

,k
],

i
6=

j,
h
2

[1
,|D

|]

hw
,x̄

h +
�

x̄
h �
i=

0

hw
,x

1
�

x
2
i=

0

U
(x

)
=
hw

,�
(x

)i

x
⇤

=
ar

gm
ax

x
2X

fe
a
s
ib

le

hw
,�

(x
)i

U
(x

,y
)

=
hw

,'
(x

,y
)i

y
⇤

=
ar

gm
ax

y
2Y

fe
a
s
ib

le

hw
,'

(x
,y

)i

1

Learning
Adjust weights of energy function to drive correct output to
have minimal energy
Based on loss functions between correct output and
incorrect ones
Typically focus on most offending incorrect answer:

ȳ i = argminy∈Y,y 6=y i E(x i , y i ; w)

Image adapted from LeCun et al, 2006SOP

Structured Output Prediction: approaches

Search-based models
State-space search
process
Initial state with empty
output
Heuristic function to
choose next state (partial
output)
Terminal states are states
with complete output
No need for global
inference algorithm
(learning for inference)

shown great success in a large number of NLP applications.
ILP formulations were found to be helpful in modeling a large
number of problems; the inference problems can be solved
exactly or via various relaxation methods and are shown to
work very well in practice. A recent work [Meshi et al.,
2016] provided a theoretical insight that explains this success:
a large number of relaxed solutions are integral (relaxations
are tight), and this tightness on training instances generalizes
to testing instances (PAC theory for ILP based inference).

Decomposed learning. The decomposed learning frame-
work [Samdani and Roth, 2012; Sontag et al., 2010] improves
the speed of training by performing inference over a subset of
the structured output space Y ′(x) ⊂ Y (x). The size of Y ′(x)
is determined by a parameter k and grows exponentially as a
function of k. The general construction considers all candi-
date structured outputs whose Hamming loss with respect to
correct output y∗ is at most k (referred as neighborhood of
y∗): Y ′(x) = {y ∈ Y (x) : Hamm-Loss(y, y∗) ≤ k}. Sam-
dani and Roth [Samdani and Roth, 2012] provide theoreti-
cal conditions under which decomposed learning is equiva-
lent to standard learning that considers entire output space
Y (x). In practice, decomposed learning is shown to achieve
same accuracy as standard learning with a small value of k
(e.g., 1,2,3) [Samdani and Roth, 2012; Sontag et al., 2010]:
significantly improves the training time.

Amortized inference and structured learning. We need
to solve inference problems for multiple structured inputs
during both training and testing. The naive approach is to
run an inference solver independently on each input exam-
ple. It is conceivable that we can learn useful knowledge
while solving inference problems on past examples to im-
prove the speed of inference on future examples. This is
referred to as amortizing the cost of inference [Srikumar et
al., 2012], which is highly related to the speedup learning
literature [Fern, 2010]. Recent work has exploited the ILP
inference formulation as an abstraction to provably achieve
amortized inference [Srikumar et al., 2012] and significantly
improve the speed of inference and of training cost functions
[Chang et al., 2015b]. The key idea is to store a set of cached
solutions for ILP problems and reuse them for new inference
problems without calling the inference solver when theoreti-
cal conditions are met. For NLP applications, many sentences
have identical structured outputs such as POS tag sequences,
parse trees, semantic parses etc. Therefore, the amortization
theorems “fire” often and result in significant savings. By
viewing inference procedures as computational search pro-
cesses will allow us to study generic approaches to address
speedup learning problems arising in structured prediction.
Some examples include treating ILP inference as a white box
(i.e., branch and bound search) to learn heuristic functions to
achieve amortized inference.

Theoretical results. Early theoretical results for general-
ization were based on covering number bounds for decom-
posable loss functions and linear scoring functions [Taskar et
al., 2003]; and PAC Bayesian theory. Recent results based
on factor graph complexity provide improved bounds, and
served as a motivation to derive the voted risk minimization
principle to achieve better generalization by learning a en-

Figure 1: An example search space for handwriting recognition.

semble of simpler scoring functions [Cortes et al., 2016].

Structured prediction cascades. This approach addresses
inference complexity via cascade training [Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010], where efficiency
is achieved by performing multiple runs of inference from
a coarse level to a fine level of abstraction using learned
cost functions of varying complexity. We can view this as
a form of progressive filtering of candidate structured outputs
by trading-off the accuracy (number of errors) and efficiency
(number of filtered outputs) of filtering at each level. [Weiss
and Taskar, 2010] developed a forward training approach to
learn the weights of different cost functions employed in the
cascade. These methods have shown good success in prac-
tice, but they need to place some restrictions on the form of
the cost functions to facilitate “cascading.”

4 Search-based Learning Approaches
In this section, we discuss different search-based learning ap-
proaches and their distinction with traditional cost function
learning methods. Search-based approaches formulates in-
ference as an explicit search problem.

Overview. Search-based methods formulate the problem of
structured prediction as an explicit state-space search process
using a search architecture (search space, search procedure,
and termination criteria). They learn appropriate search con-
trol knowledge (e.g., heuristics, cost functions) using training
data to optimize the accuracy of this search architecture in
making predictions. Unlike traditional approaches, there is
no need to solve a global optimization problem at prediction
time. In effect, the system learns how to do inference (aka
learning for inference) when compared to learning with in-
ference) style of cost function learning approaches.

Potential advantages. Some advantages of search-based
methods include: 1) Scale gracefully with the representa-
tion complexity. We can employ higher-order features for
functions that guide the search without increasing the infer-
ence complexity. 2) Since inference is modeled as “white-
box”, learning process can observe search errors and perform
robust training. It can help with debugging from a practi-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6293

SOP

Search-based models

learning
Adjust weights of heuristic function to have high score for
correct moves given current state
on-trajectory training, current state is always a correct one.
off-trajectory training, current state is highest scoring state
even if incorrect

SOP

Energy-based models: Structured SVMLARGE MARGIN METHODS FOR STRUCTURED AND INTERDEPENDENT OUTPUT VARIABLES

Figure 1: Illustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natural language parsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and empirical results.

The rest of the paper is organized as follows: Section 2 presents the general framework of
large margin learning over structured output spaces using representations of input-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algorithm for solving the resulting
optimization problems. Sections 4 and 5 discuss numerous important special cases and experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning functions f : X → Y between input spaces
X and arbitrary discrete output spaces Y based on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical application in the sequel,
consider the case of natural language parsing, where the function f maps a given sentence x to a
parse tree y. This is depicted graphically in Figure 1.

The approach we pursue is to learn a discriminant function F : X ×Y → R over input-output
pairs from which we can derive a prediction by maximizing F over the response variable for a
specific given input x. Hence, the general form of our hypotheses f is

f (x;w) = argmax
y∈Y

F(x,y;w) , (1)

where w denotes a parameter vector. It might be useful to think of F as a compatibility function
that measures how compatible pairs (x,y) are, or, alternatively, −F can be thought of as a w-
parameterized family of cost functions, which we try to design in such a way that the minimum of
F(x, ·;w) is at the desired output y for inputs x of interest.

Throughout this paper, we assume F to be linear in some combined feature representation of
inputs and outputs Ψ(x,y), i.e.

F(x,y;w) = ⟨w,Ψ(x,y)⟩ . (2)

The specific form of Ψ depends on the nature of the problem and special cases will be discussed
subsequently. However, whenever possible we will develop learning algorithms and theoretical

1455

Joint input-output feature map

f (x , y) = wT Ψ(x , y) = −E(x , y)

Joint input-output feature map Ψ(x , y)

Features capture interaction between input and output
variables and between output variables among themselves
Energy function is a linear function of the feature map
The function can be kernelized

Image from Tsochantaridis et al., 2005SOP

Structured SVM: learning

minw,ξ
1
2
||w||2 + C

∑
i

ξi

subject to:

wT Ψ(xi , yi)−wT Ψ(xi , y ′) ≥ ∆(yi , y ′)− ξi

∀i , y ′ 6= yi

Max-margin formulation

∆(yi , y ′) is the cost for predicting y ′ instead of yi
(structured-output loss)
The formulation aims at separating correct predictions from
incorrect predictions with a large margin
Hard to solve directly (exponential number of constraints!!)

SOP

Structured SVM: learning
Cutting plane algorithm

1 Initialize weights and constraints Si = ∅ ∀i
2 While constraint added

1 For each example i

ξi = maxy ′∈Si ∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi)

ξnew
i = maxy ′ 6=yi ∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi)

2 If ξnew
i − ξ > ε

3 Add constraint and update Si
4 retrain

Alternatives
Stochastic subgradient descent
Block-coordinate Frank-Wolfe optimization

SOP

Structured SVM: inference

(Loss augmented) argmax inference
inference at prediction time

y∗ = argmaxy∈YwT Ψ(x , y)

loss augmented inference at training time (most offending
incorrect answer)

ȳ ′ = argmaxy ′ 6=yi
∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi)

Approaches
Viterbi algorithm for sequence labelling
CYK algorithm for parse tree prediction
Loopy belief propagation (approximate)
Amortized inference (use previous solutions to speed up
related inference tasks)

SOP

Structured SVM: PROs and CONs

PROs
Max-margin approach
Guarantees on number of iterations (depends on ε,
independent on number of output structures)
Can deal with arbitrary constrains on output structure

CONs
Inefficient, (loss augmented) inference required at every
training iteration
The function to be learned is complex, high-order feature
typically required (making inference even more expensive)

SOP

Search-based models: ordered vs unordered

Ordered search space
Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)
Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space
Learner dynamically orders decisions
Easy-first approach (make easy decisions first)

SOP

Search-based models: classifier-based

Setting

Ordered search space
Reduction to multi-class classification on next decision
Training examples:

input is set of outputs up to position t
output is correct output for position t + 1

imitation learning (training examples as expert
demonstrations)

SOP

Classifier-based structured prediction: exact imitation

55

Exact Imitation: Classification examples

, - - - - - - 𝑓𝑓 𝑠𝑠

𝑓𝑓 𝑡𝑡

𝑓𝑓 𝑟𝑟

𝑓𝑓 𝑢𝑢

𝑓𝑓 𝑐𝑐

𝑓𝑓 𝑡𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output
�For each training example

Image from Fern et al., 2016

SOP

Exact imitation problem: error propagation

57

Learned Recurrent Classifier: Illustration

�Error propagation:
�errors in early decisions propagate to down-stream decisions

SOP

Error propagation

Problem
Errors in early decisions propagate to down-stream ones
System is not trained to deal with decisions given incorrect
states

Solution
Generate trajectories using current policy
Use optimal policy to generate optimal next states given
states visited by current policy

SOP

DAgger (Dataset Aggregation)

The algorithm
1 Collect training set D of N trajectories using ground-truth

policy π∗

2 Repeat
1 π ← LEARNCLASSIFIER(D)
2 Collect set of states S along trajectories computed using π
3 For each s ∈ S

1 D ← D ∪ {(s, π∗(s))}

3 Return π

SOP

Search-based models: easy-first approach

CONs of classifier-based approaches
Need to define an ordering over output variables
Some decision are harder than others→ fixed ordering
can be suboptimal

Easy-first approach: rationale
Make easy decisions first to constraint harder ones
Learn to dynamically order decisions
Analogous to constraint satisfaction algorithms

SOP

Example: Cross-document coreference

65

Example: Cross-Document Coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.

Police said Lo Presti has hanged himself.

had hanged

has hanged

Easy

One of the key suspected mafia bosses

Lo Presti

Hard

Doc 1

Doc 2

SOP

Easy-first approach: inference

70

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution
– In each state, we consider a set of fixed possible actions

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

Four possible merge actions

The Police
? ? ?

?

good actionsbad actions

Easy action first
State s is partial solution
Set of possible actions a ∈ A(s) from a state (no ordering)
Action scoring function f (s,a) = wT Ψ(s,a)

Proceed making highest scoring (most-confident) action
first

SOP

Easy-first approach: learning

Easy-first policy learning
while not termination condition do

for (x , y) ∈ D do
s ← I(x)
while not ISTERMINAL(s) do

ap ← maxa∈A(s) wT Ψ(s,a)
if ap ∈ B(s) then

UPDATE(w ,G(s),B(s))
end if
ac ← CHOOSEACTION(A(s))
s ← Apply ac on s

end while
end for

end while

SOP

Easy-first policy learning

UPDATE(w ,G(s),B(s))

Variants
Highest scoring good action better than highest scoring
bad action (perceptron update)
Highest scoring good action better than all bad actions

ac ← CHOOSEACTION(A(s))

Variants
Choose highest scoring good action (ac ∈ G(s),
on-trajectory training)
Choose highest scoring action (ac ∈ G(s) ∪ B(s),
off-trajectory training)

SOP

Combining energy-based and search-based
approaches

HC-search framework
Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)
Score candidates with energy function and select minimal
energy output (C = cost/energy function)

SOP

Deep energy-based methods

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷT BF (x) + cT
2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷT BF (x) + cT
2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷT BF (x) + cT
2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷT BF (x) + cT
2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

ŷT B F (x) + cT
2 g(C1ŷ)

g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

ŷT B F (x) + cT
2 g(C1ŷ)

g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

Structured Prediction Energy Networks (SPEN)
Energy function modelled as a deep network
Replaces outputs y ∈ {0,1}L with relaxations ŷ ∈ [0,1]L

Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)
Inference by gradient descent over ŷ (+ rounding if needed)

SOP

SPEN

PROs
Efficient inference by gradient descent
No need to pre-specify input-output features (input-output
representation learning)

CONs
No algorithmic guarantees (local optimization of energy)
No management of explicit constraints
No support for hard constraints

SOP

Deep search-based methods

Transformers for machine translation
Use attention mechanism to learn input word encodings
that depend on other words in the sentence
Use attention mechanism to learn output word encodings
that depend on input word encodings and previously
generated output words
Predict output words sequentially stopping when the
“word” end-of-sentence is predicted

Images and animations from Jay Allamar’s “The Illustrated Transformer”

SOP

Tranformer: self-attention (concept)

SOP

Tranformer: self-attention (vectors)

SOP

Tranformer: self-attention (computation)

Steps
Query vector q1 times key vector k2 gives importance of
word 2 for encoding word 1
Softmax normalizes importances over all words in the
sentence (

√
dk helps numerical stability)

Result z1 is combination of values vi for all words, each
weighted by its normalized importance for 1

SOP

Tranformer: encoder layer

SOP

Tranformer: encoder-decoder architecture

SOP

Tranformer: predicting the first word

SOP

Tranformer: predicting the following words

SOP

References

Bibliography

Deshwal, A.; Doppa, J. R.; and Roth, D., Learning and inference for
structured prediction: A unifying perspective, in IJCAI 2019.

LeCun, Y.; Chopra, S.; Hadsell, R.; Huang, F. J.; and et al., A tutorial on
energy-based learning, in Predicting Structured Data, MIT Press.

Joachims, T.; Hofmann, T.; Yue, Y.; and Yu, C.-N., Predicting structured
objects with support vector machines, in Communications of the ACM,
2009.

Daumé, H.; Langford, J.; and Marcu, D., Search-based structured
prediction, in Machine Learning, 2009.

Ross, S.; Gordon, G.; and Bagnell, D., A reduction of imitation learning
and structured prediction to no-regret online learning, in AISTATS, 2011.

Belanger D. and McCallum, A., Structured prediction energy networks,
in ICML 2016.

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.,
Kaiser L., and Polosukhin I., Attention is all you need, in NIPS 2017.

SOP

References

Software Libraries
PyStruct - Structured prediction in Python (PyStruct)
[http://pystruct.github.io/]
Torch-Struct: Structured Prediction Library (Torch-Struct)
[https:
//github.com/harvardnlp/pytorch-struct]
PyTorch-Transformers: PyTorch implementations of NLP
Transformers [https://pytorch.org/hub/
huggingface_pytorch-transformers/]

SOP

http://pystruct.github.io/
https://github.com/harvardnlp/pytorch-struct
https://github.com/harvardnlp/pytorch-struct
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

	anm0:
	anm1:

