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Structured Output Prediction: the task
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the modeled compatibility between inputs x and classes y. 
To classify x, the prediction rule h(x) then simply chooses the 
highest-scoring class

 h(x) y argmax  f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have 
been chosen such that the inequalities f (x, y–) < f (x, y) hold for 
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads 
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n 
1_
2

 __w__2, s.t.  f (xi, yi) ��f (xi, y
–) ≥ 1  (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a 
total of n(k − 1) inequalities that are all linear in w, since one 
can expand f (xi, yi) ��f (xi, y

–) = (wyi 

� wy–) ��)(xi). Hence, it is a 
convex quadratic program.

The first challenge in using (2) for structured outputs is 
that, while there is generalization across inputs x, there is 
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since 
the number of possible outputs can become very large (or 
infinite), naively reducing structured output prediction to 
multiclass classification leads to an undesirable blowup in 
the overall number of parameters.

The key idea in overcoming these problems is to extract 
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of )(x). This yields compatibility 
functions with contributions from combined properties of 
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even 
for outputs that were never actually observed in the training 
data. At the same time, since we will define compatibility 
functions via f (x, y) { w ��<(x, y), the number of parameters 
will simply equal the number of features extracted via <, 
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to 
arrive at the following (hard-margin) optimization problem 
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just 
one parameter for each class, we would already have more 
parameters than we could ever hope to have enough training 
data for. Second, just making a single prediction on a new 
example is a computationally challenging problem, since 
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that 
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least, 
we need efficient training algorithms that have a run-time 
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by 
one, starting with the formulation of the structural SVM 
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural 
SVM from the multiclass SVM.6 These multiclass SVMs use 
one weight vector wy for each class y. Each input x now has 
a score for each class y via f (x, y) { wy ��)(x). Here ) (x) is a 
vector of binary or numeric features extracted from x. Thus, 
every feature will have an additively weighted influence in 

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of 
 proteins (middle), and predicting an equivalence relation over noun phrases (right).
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Figure 2. Structured output prediction as a multiclass problem.
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A graph (link detection, protein 3D structure prediction)
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Structured Output Prediction: the issue

The issue
Standard supervised
learning learns a function

f : X → Y

However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)
The problem cannot be
formalized as multiclass
classification
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the modeled compatibility between inputs x and classes y. 
To classify x, the prediction rule h(x) then simply chooses the 
highest-scoring class

 h(x) y argmax  f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have 
been chosen such that the inequalities f (x, y–) < f (x, y) hold for 
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads 
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:
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The first challenge in using (2) for structured outputs is 
that, while there is generalization across inputs x, there is 
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since 
the number of possible outputs can become very large (or 
infinite), naively reducing structured output prediction to 
multiclass classification leads to an undesirable blowup in 
the overall number of parameters.

The key idea in overcoming these problems is to extract 
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of )(x). This yields compatibility 
functions with contributions from combined properties of 
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even 
for outputs that were never actually observed in the training 
data. At the same time, since we will define compatibility 
functions via f (x, y) { w ��<(x, y), the number of parameters 
will simply equal the number of features extracted via <, 
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to 
arrive at the following (hard-margin) optimization problem 
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just 
one parameter for each class, we would already have more 
parameters than we could ever hope to have enough training 
data for. Second, just making a single prediction on a new 
example is a computationally challenging problem, since 
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that 
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least, 
we need efficient training algorithms that have a run-time 
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by 
one, starting with the formulation of the structural SVM 
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural 
SVM from the multiclass SVM.6 These multiclass SVMs use 
one weight vector wy for each class y. Each input x now has 
a score for each class y via f (x, y) { wy ��)(x). Here ) (x) is a 
vector of binary or numeric features extracted from x. Thus, 
every feature will have an additively weighted influence in 

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of 
 proteins (middle), and predicting an equivalence relation over noun phrases (right).
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Figure 2. Structured output prediction as a multiclass problem.
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Structured Output Prediction: approaches
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Energy-based models

y∗ = argminy∈YE(x , y)

An energy function predicts the energy of each
input-output pair
Prediction is achieved by getting minimal energy output for
a given input
Inference methods are needed to solve the argmin
problem (learning with inference)
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Energy-based models

E(Y, X)E(Y, X)

Figure 3: How training affects the energies of the possible answers in the discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.
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Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-
tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect
answers.
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Learning
Adjust weights of energy function to drive correct output to
have minimal energy
Based on loss functions between correct output and
incorrect ones
Typically focus on most offending incorrect answer:

ȳ i = argminy∈Y,y 6=y i E(x i , y i ; w)

Image adapted from LeCun et al, 2006SOP



Structured Output Prediction: approaches

Search-based models
State-space search
process
Initial state with empty
output
Heuristic function to
choose next state (partial
output)
Terminal states are states
with complete output
No need for global
inference algorithm
(learning for inference)

shown great success in a large number of NLP applications.
ILP formulations were found to be helpful in modeling a large
number of problems; the inference problems can be solved
exactly or via various relaxation methods and are shown to
work very well in practice. A recent work [Meshi et al.,
2016] provided a theoretical insight that explains this success:
a large number of relaxed solutions are integral (relaxations
are tight), and this tightness on training instances generalizes
to testing instances (PAC theory for ILP based inference).

Decomposed learning. The decomposed learning frame-
work [Samdani and Roth, 2012; Sontag et al., 2010] improves
the speed of training by performing inference over a subset of
the structured output space Y ′(x) ⊂ Y (x). The size of Y ′(x)
is determined by a parameter k and grows exponentially as a
function of k. The general construction considers all candi-
date structured outputs whose Hamming loss with respect to
correct output y∗ is at most k (referred as neighborhood of
y∗): Y ′(x) = {y ∈ Y (x) : Hamm-Loss(y, y∗) ≤ k}. Sam-
dani and Roth [Samdani and Roth, 2012] provide theoreti-
cal conditions under which decomposed learning is equiva-
lent to standard learning that considers entire output space
Y (x). In practice, decomposed learning is shown to achieve
same accuracy as standard learning with a small value of k
(e.g., 1,2,3) [Samdani and Roth, 2012; Sontag et al., 2010]:
significantly improves the training time.

Amortized inference and structured learning. We need
to solve inference problems for multiple structured inputs
during both training and testing. The naive approach is to
run an inference solver independently on each input exam-
ple. It is conceivable that we can learn useful knowledge
while solving inference problems on past examples to im-
prove the speed of inference on future examples. This is
referred to as amortizing the cost of inference [Srikumar et
al., 2012], which is highly related to the speedup learning
literature [Fern, 2010]. Recent work has exploited the ILP
inference formulation as an abstraction to provably achieve
amortized inference [Srikumar et al., 2012] and significantly
improve the speed of inference and of training cost functions
[Chang et al., 2015b]. The key idea is to store a set of cached
solutions for ILP problems and reuse them for new inference
problems without calling the inference solver when theoreti-
cal conditions are met. For NLP applications, many sentences
have identical structured outputs such as POS tag sequences,
parse trees, semantic parses etc. Therefore, the amortization
theorems “fire” often and result in significant savings. By
viewing inference procedures as computational search pro-
cesses will allow us to study generic approaches to address
speedup learning problems arising in structured prediction.
Some examples include treating ILP inference as a white box
(i.e., branch and bound search) to learn heuristic functions to
achieve amortized inference.

Theoretical results. Early theoretical results for general-
ization were based on covering number bounds for decom-
posable loss functions and linear scoring functions [Taskar et
al., 2003]; and PAC Bayesian theory. Recent results based
on factor graph complexity provide improved bounds, and
served as a motivation to derive the voted risk minimization
principle to achieve better generalization by learning a en-

Figure 1: An example search space for handwriting recognition.

semble of simpler scoring functions [Cortes et al., 2016].

Structured prediction cascades. This approach addresses
inference complexity via cascade training [Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010], where efficiency
is achieved by performing multiple runs of inference from
a coarse level to a fine level of abstraction using learned
cost functions of varying complexity. We can view this as
a form of progressive filtering of candidate structured outputs
by trading-off the accuracy (number of errors) and efficiency
(number of filtered outputs) of filtering at each level. [Weiss
and Taskar, 2010] developed a forward training approach to
learn the weights of different cost functions employed in the
cascade. These methods have shown good success in prac-
tice, but they need to place some restrictions on the form of
the cost functions to facilitate “cascading.”

4 Search-based Learning Approaches
In this section, we discuss different search-based learning ap-
proaches and their distinction with traditional cost function
learning methods. Search-based approaches formulates in-
ference as an explicit search problem.

Overview. Search-based methods formulate the problem of
structured prediction as an explicit state-space search process
using a search architecture (search space, search procedure,
and termination criteria). They learn appropriate search con-
trol knowledge (e.g., heuristics, cost functions) using training
data to optimize the accuracy of this search architecture in
making predictions. Unlike traditional approaches, there is
no need to solve a global optimization problem at prediction
time. In effect, the system learns how to do inference (aka
learning for inference) when compared to learning with in-
ference) style of cost function learning approaches.

Potential advantages. Some advantages of search-based
methods include: 1) Scale gracefully with the representa-
tion complexity. We can employ higher-order features for
functions that guide the search without increasing the infer-
ence complexity. 2) Since inference is modeled as “white-
box”, learning process can observe search errors and perform
robust training. It can help with debugging from a practi-
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Search-based models

learning
Adjust weights of heuristic function to have high score for
correct moves given current state
on-trajectory training, current state is always a correct one.
off-trajectory training, current state is highest scoring state
even if incorrect

SOP



Energy-based models: Structured SVMLARGE MARGIN METHODS FOR STRUCTURED AND INTERDEPENDENT OUTPUT VARIABLES

Figure 1: Illustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natural language parsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and empirical results.

The rest of the paper is organized as follows: Section 2 presents the general framework of
large margin learning over structured output spaces using representations of input-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algorithm for solving the resulting
optimization problems. Sections 4 and 5 discuss numerous important special cases and experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning functions f : X → Y between input spaces
X and arbitrary discrete output spaces Y based on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical application in the sequel,
consider the case of natural language parsing, where the function f maps a given sentence x to a
parse tree y. This is depicted graphically in Figure 1.

The approach we pursue is to learn a discriminant function F : X ×Y → R over input-output
pairs from which we can derive a prediction by maximizing F over the response variable for a
specific given input x. Hence, the general form of our hypotheses f is

f (x;w) = argmax
y∈Y

F(x,y;w) , (1)

where w denotes a parameter vector. It might be useful to think of F as a compatibility function
that measures how compatible pairs (x,y) are, or, alternatively, −F can be thought of as a w-
parameterized family of cost functions, which we try to design in such a way that the minimum of
F(x, ·;w) is at the desired output y for inputs x of interest.

Throughout this paper, we assume F to be linear in some combined feature representation of
inputs and outputs Ψ(x,y), i.e.

F(x,y;w) = ⟨w,Ψ(x,y)⟩ . (2)

The specific form of Ψ depends on the nature of the problem and special cases will be discussed
subsequently. However, whenever possible we will develop learning algorithms and theoretical

1455

Joint input-output feature map

f (x , y) = wT Ψ(x , y) = −E(x , y)

Joint input-output feature map Ψ(x , y)

Features capture interaction between input and output
variables and between output variables among themselves
Energy function is a linear function of the feature map
The function can be kernelized

Image from Tsochantaridis et al., 2005SOP



Structured SVM: learning

minw,ξ
1
2
||w||2 + C

∑
i

ξi

subject to:

wT Ψ(xi , yi)−wT Ψ(xi , y ′) ≥ ∆(yi , y ′)− ξi

∀i , y ′ 6= yi

Max-margin formulation

∆(yi , y ′) is the cost for predicting y ′ instead of yi
(structured-output loss)
The formulation aims at separating correct predictions from
incorrect predictions with a large margin
Hard to solve directly (exponential number of constraints!!)
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Structured SVM: learning
Cutting plane algorithm

1 Initialize weights and constraints Si = ∅ ∀i
2 While constraint added

1 For each example i

ξi = maxy ′∈Si ∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi )

ξnew
i = maxy ′ 6=yi ∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi )

2 If ξnew
i − ξ > ε

3 Add constraint and update Si
4 retrain

Alternatives
Stochastic subgradient descent
Block-coordinate Frank-Wolfe optimization

SOP



Structured SVM: inference

(Loss augmented) argmax inference
inference at prediction time

y∗ = argmaxy∈YwT Ψ(x , y)

loss augmented inference at training time (most offending
incorrect answer)

ȳ ′ = argmaxy ′ 6=yi
∆(yi , y ′) + wT Ψ(xi , y ′)−wT Ψ(xi , yi)

Approaches
Viterbi algorithm for sequence labelling
CYK algorithm for parse tree prediction
Loopy belief propagation (approximate)
Amortized inference (use previous solutions to speed up
related inference tasks)

SOP



Structured SVM: PROs and CONs

PROs
Max-margin approach
Guarantees on number of iterations (depends on ε,
independent on number of output structures)
Can deal with arbitrary constrains on output structure

CONs
Inefficient, (loss augmented) inference required at every
training iteration
The function to be learned is complex, high-order feature
typically required (making inference even more expensive)

SOP



Search-based models: ordered vs unordered

Ordered search space
Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)
Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space
Learner dynamically orders decisions
Easy-first approach (make easy decisions first)

SOP



Search-based models: classifier-based

Setting

Ordered search space
Reduction to multi-class classification on next decision
Training examples:

input is set of outputs up to position t
output is correct output for position t + 1

imitation learning (training examples as expert
demonstrations)

SOP



Classifier-based structured prediction: exact imitation
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Exact Imitation: Classification examples 

, - - - - - - 𝑓𝑓                                             𝑠𝑠                            

𝑓𝑓                                              𝑡𝑡                            

𝑓𝑓                                              𝑟𝑟                            

𝑓𝑓                                              𝑢𝑢                            

𝑓𝑓                                              𝑐𝑐                            

𝑓𝑓                                              𝑡𝑡                            

, s - - - - - 

, s t - - - - 

, s t r - - - 

, s t r u - - 

, s t r u c - 

Input Output 
�For each training example  

Image from Fern et al., 2016
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Exact imitation problem: error propagation
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Learned Recurrent Classifier: Illustration 

�Error propagation: 
�errors in early decisions propagate to down-stream decisions  

SOP



Error propagation

Problem
Errors in early decisions propagate to down-stream ones
System is not trained to deal with decisions given incorrect
states

Solution
Generate trajectories using current policy
Use optimal policy to generate optimal next states given
states visited by current policy

SOP



DAgger (Dataset Aggregation)

The algorithm
1 Collect training set D of N trajectories using ground-truth

policy π∗

2 Repeat
1 π ← LEARNCLASSIFIER(D)
2 Collect set of states S along trajectories computed using π
3 For each s ∈ S

1 D ← D ∪ {(s, π∗(s))}

3 Return π

SOP



Search-based models: easy-first approach

CONs of classifier-based approaches
Need to define an ordering over output variables
Some decision are harder than others→ fixed ordering
can be suboptimal

Easy-first approach: rationale
Make easy decisions first to constraint harder ones
Learn to dynamically order decisions
Analogous to constraint satisfaction algorithms

SOP



Example: Cross-document coreference
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Example: Cross-Document Coreference 

One of the key suspected mafia bosses arrested yesterday had hanged himself. 

Police said Lo Presti has hanged himself. 

had hanged  

has hanged  

Easy 

One of the key suspected mafia bosses  

Lo Presti  

Hard 

Doc 1 

Doc 2 
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Easy-first approach: inference
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Easy-First Approach: Key Elements 

• Search space 
– A state corresponds to a partial solution 
– In each state, we consider a set of fixed possible actions 

had hanged  

has hanged  

One of the key suspected mafia bosses  

Lo Presti  

Four possible merge actions 

The Police  
? ? ? 

? 

good actionsbad actions

Easy action first
State s is partial solution
Set of possible actions a ∈ A(s) from a state (no ordering)
Action scoring function f (s,a) = wT Ψ(s,a)

Proceed making highest scoring (most-confident) action
first

SOP



Easy-first approach: learning

Easy-first policy learning
while not termination condition do

for (x , y) ∈ D do
s ← I(x)
while not ISTERMINAL(s) do

ap ← maxa∈A(s) wT Ψ(s,a)
if ap ∈ B(s) then

UPDATE(w ,G(s),B(s))
end if
ac ← CHOOSEACTION(A(s))
s ← Apply ac on s

end while
end for

end while

SOP



Easy-first policy learning

UPDATE(w ,G(s),B(s))

Variants
Highest scoring good action better than highest scoring
bad action (perceptron update)
Highest scoring good action better than all bad actions

ac ← CHOOSEACTION(A(s))

Variants
Choose highest scoring good action (ac ∈ G(s),
on-trajectory training)
Choose highest scoring action (ac ∈ G(s) ∪ B(s),
off-trajectory training)

SOP



Combining energy-based and search-based
approaches

HC-search framework
Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)
Score candidates with energy function and select minimal
energy output (C = cost/energy function)

SOP



Deep energy-based methods
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Structured Prediction Energy Networks (SPEN)
Energy function modelled as a deep network
Replaces outputs y ∈ {0,1}L with relaxations ŷ ∈ [0,1]L

Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)
Inference by gradient descent over ŷ (+ rounding if needed)
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SPEN

PROs
Efficient inference by gradient descent
No need to pre-specify input-output features (input-output
representation learning)

CONs
No algorithmic guarantees (local optimization of energy)
No management of explicit constraints
No support for hard constraints

SOP



Deep search-based methods

Transformers for machine translation
Use attention mechanism to learn input word encodings
that depend on other words in the sentence
Use attention mechanism to learn output word encodings
that depend on input word encodings and previously
generated output words
Predict output words sequentially stopping when the
“word” end-of-sentence is predicted

Images and animations from Jay Allamar’s “The Illustrated Transformer”
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Tranformer: self-attention (concept)
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Tranformer: self-attention (vectors)
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Tranformer: self-attention (computation)

Steps
Query vector q1 times key vector k2 gives importance of
word 2 for encoding word 1
Softmax normalizes importances over all words in the
sentence (

√
dk helps numerical stability)

Result z1 is combination of values vi for all words, each
weighted by its normalized importance for 1

SOP



Tranformer: encoder layer
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Tranformer: encoder-decoder architecture
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Tranformer: predicting the first word
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Tranformer: predicting the following words
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