Structured Output Prediction

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Structured Output Prediction: the task

[Obama]running
in the [presidental
election] has
mobilized fmany
young voters]
[His] [position] on

[climate change] /
was well received (

by [this group)

is~|(climate change)

APPGEAYLQPGEAYLQV

The dog chased the cat.

The task

@ The input is (typically) a structured object

@ The output is also a structured-object (rather than a scalar)
e.g.:
e A sequence (part-of-speech tagging, protein secondary
structure prediction)
o A tree (parse-tree prediction)
e A graph (link detection, protein 3D structure prediction)

4

Image from Joachims et al, 2009

Structured Output Prediction: the issue

@ Standard supervised
learning learns a function

f:x =Y

@ However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)

@ The problem cannot be
formalized as multiclass
classification

The dog chased the cat.

Class1| 2%

Class 2

Class 3

Classk| %

Image from Joachims et al, 2009

Structured Output Prediction: approaches

1
L -

y* v
Energy-based models

yr= argminyey E(x,y)

@ An energy function predicts the energy of each
input-output pair

@ Prediction is achieved by getting minimal energy output for
a given input

@ Inference methods are needed to solve the argmin
problem (learning with inference)

Energy-based models

A

push down

B

=

3 w¢ After

R i pull up training
| ul

E(z',y;w)

A i

Yy Yy 7' Y

@ Adjust weights of energy function to drive correct output to
have minimal energy

@ Based on loss functions between correct output and
incorrect ones

Y

@ Typically focus on most offending incorrect answer:

y = argminyeywéyiE(X", y'w)

V.

Structured Output Prediction: approaches

Search-based models

@ State-space search
process

@ Initial state with empty
output

@ Heuristic function to
choose next state (partial N
output) —_— T

: WD o
@ Terminal states are states s =
. [€ ,struck SNEV=
with complete output T s
terminal state goal state

@ No need for global
inference algorithm
(learning for inference)

Search-based models

learning

@ Adjust weights of heuristic function to have high score for
correct moves given current state

@ on-trajectory training, current state is always a correct one.

@ off-trajectory training, current state is highest scoring state
even if incorrect

Energy-based models: Structured SVM

M The dog chased the cat ‘

x>y

Det N V Det

The dog chased the

/N

N

'

cat

Joint input-output feature map

Yxy) =/

1
0
2
1

0
2
1
1
1

S — NPVP
S — NP
NP — Det N
VP -V NP

Det — dog
Det — the
N —dog

V — chased
N — cat

f(va) :WT\U(X,y) = _E(X7y)

@ Joint input-output feature map W(x, y)

@ Features capture interaction between input and output
variables and between output variables among themselves

@ Energy function is a linear function of the feature map

@ The function can be kernelized

Structured SVM: learning

) 1
minge |WIE+CY ¢
i

subject to:
wiW(x;, y;) — WiV (x, ") > Ay, ') — &
vi,y' # yi

Max-margin formulation

@ A(y;,y') is the cost for predicting y’ instead of y;
(structured-output loss)

@ The formulation aims at separating correct predictions from
incorrect predictions with a large margin

@ Hard to solve directly (exponential number of constraints!!)

Structured SVM: learning
Cutting plane algorithm

@ Initialize weights and constraints S; = () Vi
© While constraint added
@ For each example i

& = maxpesAWYny)+W (X, y) — W (x,y)
T = maxy o A(YLY) W (X, y) — W (X, yi)
Q lfer —¢>e
© Add constraint and update S;
O retrain

INICIGENES

@ Stochastic subgradient descent
@ Block-coordinate Frank-Wolfe optimization

Structured SVM: inference
(Loss augmented) argmax inference

@ inference at prediction time
y* = argmaxyewa\U(X,y)

@ loss augmented inference at training time (most offending
incorrect answer)

y' = argmaxy, ., A(y;, ¥') + wV(x;,y") - wiV(x;,)

Approaches

@ Viterbi algorithm for sequence labelling
@ CYK algorithm for parse tree prediction
@ Loopy belief propagation (approximate)

@ Amortized inference (use previous solutions to speed up
related inference tasks)

Structured SVM: PROs and CONs

@ Max-margin approach

@ Guarantees on number of iterations (depends on e,
independent on number of output structures)

@ Can deal with arbitrary constrains on output structure

V.

@ Inefficient, (loss augmented) inference required at every
training iteration

@ The function to be learned is complex, high-order feature
typically required (making inference even more expensive)

Search-based models: ordered vs unordered

Ordered search space

@ Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)

@ Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space

@ Learner dynamically orders decisions

@ Easy-first approach (make easy decisions first)

Search-based models: classifier-based

@ Ordered search space
@ Reduction to multi-class classification on next decision
@ Training examples:

e input is set of outputs up to position ¢
@ output is correct output for position t + 1

@ imitation learning (training examples as expert
demonstrations)

Classifier-based structured prediction: exact imitation

Image from Fern et al., 2016

Exact imitation problem: error propagation

"

MNQEN, pray-

MNQER praup
‘:‘_,‘ e
MN=Nprauak M= praua

predictedoutput

=R, praua

Error propagation

@ Errors in early decisions propagate to down-stream ones

@ System is not trained to deal with decisions given incorrect
states

@ Generate trajectories using current policy

@ Use optimal policy to generate optimal next states given
states visited by current policy

DAgger (Dataset Aggregation)

The algorithm

@ Collect training set D of N trajectories using ground-truth
policy 7*
© Repeat
Q@ 7 < LEARNCLASSIFIER(D)

@ Collect set of states S along trajectories computed using =
© Foreachse S

Q@ D+ DU{(s,7*(s)}
© Return

Search-based models: easy-first approach

CONs of classifier-based approaches

@ Need to define an ordering over output variables

@ Some decision are harder than others — fixed ordering
can be suboptimal

V.

Easy-first approach: rationale

@ Make easy decisions first to constraint harder ones

@ Learn to dynamically order decisions
@ Analogous to constraint satisfaction algorithms

Example: Cross-document coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.
Doc 1

Police said Lo Presti has hanged himself.
Doc 2

"One of the key suspected mafia bosses I - - { had hanged

Easy-first approach: inference

| One of the key suspected mafia bosses | | had hanged |
7|2 7w

fThe Pollce |,—| Lo Prestn r“~\\\\[has hanged\\l

P S5s
= S, Y
~a

bad actions good actions

Easy action first

@ State s is partial solution

@ Set of possible actions a € A(s) from a state (no ordering)

@ Action scoring function f(s,a) = w' V(s, a)

@ Proceed making highest scoring (most-confident) action
first

Easy-first approach: learning

Easy-first policy learning

while not termination condition do
for (x,y) € D do
s« I(x)
while not ISTERMINAL(S) do
ap MaXaeas) W V(s a)
if a, € B(s) then
UPDATE(w, G(S), B(S))
end if
ac < CHOOSEACTION(A(S))
s« Apply acon s
end while
end for
end while

Easy-first policy learning

UPDATE(w, G(S), B(S))

@ Highest scoring good action better than highest scoring
bad action (perceptron update)

@ Highest scoring good action better than all bad actions

ac < CHOOSEACTION(A(S))

@ Choose highest scoring good action (a; € G(s),

on-trajectory training)

@ Choose highest scoring action (a; € G(s) U B(s),
off-trajectory training)

Combining energy-based and search-based
approaches

HC-search framework

@ Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)

@ Score candidates with energy function and select minimal
energy output (C = cost/energy function)

Deep energy-based methods

E(F(x),9)
!

§'BF(x) + L g(Chy)

* 9
Structured Prediction Energy Networks (SPEN)
@ Energy function modelled as a deep network
@ Replaces outputs y € {0, 1}- with relaxations y < [0, 1]-

@ Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)

@ Inference by gradient descent over y (+ rounding if needed)

v

SPEN

@ Efficient inference by gradient descent

@ No need to pre-specify input-output features (input-output
representation learning)

@ No algorithmic guarantees (local optimization of energy)
@ No management of explicit constraints
@ No support for hard constraints

Deep search-based methods

—_— THE
— a a s
% TRANSFORMER I am a student

Transformers for machine translation

@ Use attention mechanism to learn input word encodings
that depend on other words in the sentence

@ Use attention mechanism to learn output word encodings
that depend on input word encodings and previously
generated output words

@ Predict output words sequentially stopping when the
“word” end-of-sentence is predicted

Images and animations from Jay Allamar’s “The lllustrated Transformer”

Tranformer: self-attention (concept)

The_

animal_
didn_

street_
because_
it_

was_

too_
tire

The_

animal_
didn_

L
Cross_
the_
street_

because_

was_
too_
tire

Tranformer: self-attention (vectors)

Input

Embedding CTTT] CTTT]

Queries o [T a=[1T0 we
Keys [TT] [TT]

Values D:\:‘ Dj]

Tranformer: self-attention (computation)

Q T

softmax(B}}) @) B}}

dy

@ Query vector g; times key vector ko gives importance of
word 2 for encoding word 1

@ Softmax normalizes importances over all words in the
sentence (v/dx helps numerical stability)

@ Result zy is combination of values v; for all words, each
weighted by its normalized importance for 1

o

Tranformer: encoder layer

4 4
",(Add & Normalize)
. 4 [
v (FeedForward) (Feed Forward '
AT L)
1111 [TTT11
A 4
. LayerNorm(EEEE + H:H:)
Y Y
' L T
E (Self-Attention)
. 4 4
‘i (A AR R R R R I I
POSITIONAL é é
ENCODING
x+ T x EIEIEE
Thinking Machines

Tranformer: encoder-decoder architecture

(Softmax)

:",(Add & Normalize .) (Lin‘ear)
H (Feed Forward) (Feed Forward) L
— g — DRSNS
t *
: :,»(. Add & Normalize -) ."(Add & Normalize)

:\ _(_ ______ 1 _____ sle_lfft_tfr_‘t_io_r: — -T) E‘ (Feed Forward) (Feed Forward)

,»(Add & Normalize) . :*(Add & Normalize)
H | [} L)
H FeedForward) (FeedForward)| I > Encoder-Decoder Attenti
H (eed Forward) (Feed Furward) y (ncoder-Decoder Attention)
_____________________________________ [XTI T T T T E LTIy |
] ,»(Add & Normalize) ,»(Add & Normalize)
| - T :) i
. H :
H (Self-Attention) H (Self-Attention)
. Meececmccclecccccacacamama———-
== : T ;
ENCODING
X1 X2
Thinking Machines

Tranformer: predicting the first word

Decoding time step:(1)2 3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

f

(

ENCODER

)

Ly

(

ENCODER

)

Linear + Softmax

T

DECODER

—

7y

C
(
(

DECODER

—/

0OoOm Oom Oom;d

étudiant

Tranformer: predicting the following words

Decoding time step: 1(2)3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

[ENCODERS]

0o OO Oom;

[DECODERS]

References

Bibliography
@ Deshwal, A.; Doppa, J. R.; and Roth, D., Learning and inference for

structured prediction: A unifying perspective, in IJCAI 2019.

@ LeCun, Y.; Chopra, S.; Hadsell, R.; Huang, F. J.; and et al., A tutorial on
energy-based learning, in Predicting Structured Data, MIT Press.

@ Joachims, T.; Hofmann, T.; Yue, Y.; and Yu, C.-N., Predicting structured
objects with support vector machines, in Communications of the ACM,
2009.

@ Daumé, H.; Langford, J.; and Marcu, D., Search-based structured
prediction, in Machine Learning, 2009.

@ Ross, S.; Gordon, G.; and Bagnell, D., A reduction of imitation learning
and structured prediction to no-regret online learning, in AISTATS, 2011.

@ Belanger D. and McCallum, A., Structured prediction energy networks,
in ICML 2016.

@ Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.,
Kaiser L., and Polosukhin I., Attention is all you need, in NIPS 2017.

References

Software Libraries

@ PyStruct - Structured prediction in Python (PyStruct)
[http://pystruct.github.io/]

@ Torch-Struct: Structured Prediction Library (Torch-Struct)
[https:
//github.com/harvardnlp/pytorch-struct]

@ PyTorch-Transformers: PyTorch implementations of NLP
Transformers [https://pytorch.org/hub/
huggingface_pytorch-transformers/]

http://pystruct.github.io/
https://github.com/harvardnlp/pytorch-struct
https://github.com/harvardnlp/pytorch-struct
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

	anm0:
	anm1:

