Graph Neural Networks (GNN)

Andrea Passerini andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Neural Networks on Graph Data

input layer

output layer

Features

- Allow to learn feature representations for nodes
- Allow to propagate information between neighbouring nodes
- Allow for efficient training (wrt to e.g. graph kernels)

Neural Networks on Graph Data

Basic step: graph "convolution"

- Aggregates information from neghbours to update information on node
- Inspired by convolution on pixels in CNN
- Differs from CNN convolution as neighbourhood has variable size

Graph "convolution" operation

Generic form

- Aggregate information from neighbouring nodes:

$$
h_{\mathcal{N}(v)}^{(k)}=\operatorname{AGGREGATE}^{(k)}\left(\left\{h_{u}^{(k-1)}: u \in \mathcal{N}(v)\right\}\right)
$$

- Combine node information with aggregated neighbour information:

$$
h_{v}^{(k)}=\operatorname{CombINE}^{(k)}\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right)
$$

where

- k is the index of the layer (operations are layer-dependent)
- $h_{v}^{(k)}$ is the hidden representation of node v (initialized to the node features $h_{v}^{(0)}=x_{v}$)
- $\mathcal{N}(v)$ is the set neighbours of v

Example: GraphSAGE (Hamilton et al., 2017)

Graph "convolution" operation

- Mean aggregation

$$
h_{\mathcal{N}(v)}^{(k)}=\operatorname{MEAN}^{(k)}\left(\left\{h_{u}^{(k-1)}: u \in \mathcal{N}(v)\right\}\right)
$$

- Max aggregation (on transformed representation)

$$
h_{\mathcal{N}(v)}^{(k)}=\operatorname{MAX}^{(k)}\left(\left\{\sigma\left(W_{\text {pool }}^{(k)} h_{u}^{(k-1)}+b\right): u \in \mathcal{N}(v)\right\}\right)
$$

- Combine operation as concatenation + linear mapping + non-linearity:

$$
h_{v}^{(k)}=\sigma\left(W^{(k)}\left[h_{v}^{(k-1)} ; h_{\mathcal{N}(v)}^{(k)}\right]\right)
$$

Node embedding generation

Algorithm
1: $h_{v}^{(0)}=x_{v} \forall v \in \mathcal{V}$
2: for $k \in 1, \ldots, K$ do
3: \quad for $v \in \mathcal{V}$ do
4: $\quad h_{\mathcal{N}(v)}^{(k)} \leftarrow \operatorname{AGGREGATE}^{(k)}\left(\left\{h_{u}^{(k-1)}: u \in \mathcal{N}(v)\right\}\right)$
5: $\quad h_{v}^{(k)} \leftarrow \operatorname{COMBINE}^{(k)}\left(h_{v}^{(k-1)}, h_{\mathcal{N}(v)}^{(k)}\right)$
6: $\quad h_{v}^{(k)} \leftarrow h_{v}^{(k)} /\left\|h_{v}^{(k)}\right\|$
7: end for
8: end for
9: return $h_{v}^{(K)} \forall v \in \mathcal{V}$

Message Passing Neural Networks (MPNN)

Generic form

- Aggregate messages from neighbouring nodes:

$$
m_{v}^{(k)}=\sum_{u \in \mathcal{N}(v)} M^{(k-1)}\left(h_{v}^{(k-1)}, h_{u}^{(k-1)}, e_{v u}\right)
$$

- Update node information:

$$
h_{v}^{(k)}=U^{(k)}\left(h_{v}^{(k-1)}, m_{v}^{(k)}\right)
$$

where

- $e_{v u}$ are the features associated to edge (v, u)
- $M^{(k-1)}$ is a message function (e.g. an MLP) computing message from neighbour
- $U^{(k)}$ is a node update function (e.g. an MLP) combining messages and local information

Node Classification

Procedure

- Compute node embeddings with layerwise architecture
- Add appropriate output layer on top of each node embedding (MLP + softmax, MLP + linear)

Image from Wu et al., 2019

Node classification: scalability

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

Sampling node neighbourhood

Replace $\mathcal{N}(v)$ with a layer-dependent sampling function $\mathcal{N}_{k}(v)$ that takes a random sample of a node's neighbourhood.

Image from Hamilton et al., 2017

GNN for graph classification

Basic approaches

- Apply final aggregation (READOUT) to combine all nodes in a single representation (mean, sum).
- Introduce a "virtual node" connected to all nodes in the graph

Problems

- No hierarchical structure is learned.
- Lack of "pooling" operation which is effective in CNNs to learn complex pattern.

Graph classification with Hierachical Pooling

Features

- Alternate convolutional and pooling layers as in CNN.
- Progressively reduce number of nodes.
- Pool all nodes in last layer into a single representation.

Problem

How to decide which nodes to pool together

Graph classification with Differentiable Pooling

Idea

- Use standard GNN module to obtain embedding of nodes
- Perform graph pooling using a differentiable soft cluster assignment module
- Repeat the process for K layers
- Aggregate in single cluster in the last layer
- Use final representation to classify graph

Graph classification with Differentiable Pooling

Components

- Layerwise soft cluster assignment matrix: $S^{(k)} \in \mathbb{R}^{n_{k} \times n_{k+1}}$
- Layerwise input embedding matrix: $\boldsymbol{Z}^{(k)} \in \mathbb{R}^{n_{k} \times d}$
- Layerwise soft adjacency matrix: $A^{(k+1)}$
- Layerwise output embedding matrix: $X^{(k+1)} \in \mathbb{R}^{n_{k+1} \times d}$

Graph classification with Differentiable Pooling

Compute $A^{(k+1)}, X^{(k+1)}$ given $S^{(k)}, Z^{(k)}$

- Computer $A^{(k+1)}$ based on connectivity strength between nodes in cluster

$$
A^{(k+1)}=S^{(k)^{T}} A^{(k)} S^{(k)}
$$

- Compute $X^{(k+1)}$ as weighted combination of cluster (soft) members

$$
X^{(k+1)}=S^{(k)^{\top}} Z^{(k)}
$$

Graph classification with Differentiable Pooling

Compute $S^{(k)}, Z^{(k)}$ given $A^{(k)}, X^{(k)}$

- Computer $Z^{(k)}$ using a standard GNN module

$$
Z^{(k)}=\operatorname{GNN}_{k}^{e m b e d}\left(A^{(k)}, X^{(k)}\right)
$$

- Computer $S^{(k)}$ using a second standard GNN module followed by a per-row softmax

$$
S^{(k)}=\operatorname{SOFTMAX}\left(\operatorname{GNN}_{k}^{\text {pool }}\left(A^{(k)}, X^{(k)}\right)\right)
$$

Graph classification with Differentiable Pooling

Note

The maximal number of clusters in the following layer $\left(n_{k+1}\right)$ is a hyper-parameter of the model (typically 10-25\% of n_{k}).

Graph classification with Differentiable Pooling

Side objectives

Training using only graph classification loss can be difficult (very indirect signal). Two side objectives are introduced at each layer k :
link prediction Encourage nearby nodes to be pooled together:

$$
L_{L P}=\left\|A^{(k)}-S^{(k)} S^{(k)^{T}}\right\|_{F}
$$

where $\|M\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m}\left|M_{i, j}\right|^{2}}$
cluster entropy Encourage hard assignment of nodes to clusters:

$$
L_{E}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} H\left(S_{i}^{(k)}\right)
$$

where $H\left(S_{i}^{(k)}\right)$ is the entropy of the $i^{t h}$ row of $S^{(k)}$.

Attention Mechanisms for GNN

What is Attention

- Attention is a mechanism that allows a network to focus on certain parts of the input when processing it
- In multi-layered networks attention mechanisms can be applied at all layers
- It is useful to deal with variable-sized inputs (e.g. sequences)

Attention Mechanisms for GNN

Why Attention in GNN

- GNN compute node representations from representations of neighbours
- Nodes can have largely different neighbourhood sizes
- Not all neighbours have relevant information for a certain node
- Attention mechanism allow to adaptively weight the contribution of each neighbour when updating a node

Graph Attention Networks (GAT)

Attention coefficients

$$
\alpha_{i j}=\frac{f\left(W h_{i}, W h_{j}\right)}{\sum_{j^{\prime} \in \mathcal{N}(i)} f\left(W h_{i}, W h_{j^{\prime}}\right)}
$$

- Models importance of node j for i as a function of their representations
- Node representations are first transformed using W
- An attentional mechanism f, shared for all nodes computes attention of i for j
- Attention coefficient is normalized over neighbours of i (including i itself)

Graph Attention Networks (GAT)

Image from Veličković, et al., 2018

Attention mechanism

$$
f\left(W h_{i}, W h_{j}\right)=\operatorname{LEAKYRELU}\left(a^{T}\left[W h_{i} ; W h_{j}\right]\right)
$$

Graph Attention Networks (GAT)

Node update

$$
h_{i}^{(k)}=\sigma\left(\sum_{j \in \mathcal{N}(i)} \alpha_{i j} W h_{j}^{(k-1)}\right)
$$

- Node is updated as the sum of neighbour (updated) representations, each weighted by its attention coefficient
- A non-linearity σ is (possibly) applied to this updated representation

Graph Attention Networks (GAT)

Multi-head attention

$$
h_{i}^{(k)}=\text { CONCAT }\left[\sigma\left(\sum_{j \in \mathcal{N}(i)} \alpha_{i j}^{\ell} W^{\ell} h_{j}^{(k-1)}\right) \mid \ell=1, \ldots, L\right]
$$

- Multi-head attention works by having multiple (L) simultaneous attention mechanisms
- Can be beneficial to stabilize learning (see Transformers)
- Updated node representation is concatenation of representations from different heads.
- CONCAT is replaced by MEAN in output layer

Representational power of GNN

Weistfeiler-Lehman (WL) isomorphism test

Given $G=(\mathcal{V}, \mathcal{E})$ and $G^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$, with $n=|\mathcal{V}|=\left|\mathcal{V}^{\prime}\right|$. Let $L(G)=\{I(v) \mid v \in \mathcal{V}\}$ be the set of labels in G, and let $L(G)==L\left(G^{\prime}\right)$. Let label(s) be a function assigning a unique label to a string.

- Set $I_{0}(v)=I(v)$ for all v.
- For $i \in[1, n-1]$
(1) For each node v in G and G^{\prime}
(2) Let $M_{i}(v)=\left\{I_{i-1}(u) \mid u \in \operatorname{neigh}(v)\right\}$
(3) Concatenate the sorted labels of $M_{i}(v)$ into $s_{i}(v)$
(4) Let $l_{i}(v)=\operatorname{label}\left(l_{i-1}(v) \circ s_{i}(v)\right)$ (० is concatenation)
(3) If $L_{i}(G) \mathcal{N} L_{i}\left(G^{\prime}\right)$
(6) Return Fail
- Return Pass

WL isomorphism test: string determination

WL isomorphism test: relabeling

$$
\begin{array}{ll}
5,26 & \longrightarrow 13 \\
6,123 & \longrightarrow 14 \\
6,135 & \longrightarrow 15 \\
1,2346 & \longrightarrow 16 \\
1,3456 & \longrightarrow 17
\end{array}
$$

Representational power of GNN

Theorem (Xu et al., 2019)

Let $\mathcal{F}: \mathcal{G} \rightarrow \mathbb{R}^{d}$ be a GNN. With enough GNN layers, \mathcal{F} maps any graphs G_{1} and G_{2} judged non-isomorphic by the
Weisfeiler-Lehman test to different embeddings if:

- \mathcal{F} aggregates and updates node features iteratively with

$$
h_{v}^{(k)}=\phi\left(h_{v}^{(k-1)}, f\left(\left\{h_{u}^{(k-1)}: u \in \mathcal{N}(v)\right\}\right)\right)
$$

where f and ϕ are injective functions

- \mathcal{F} computes the graph-level readout using an injective function over node features $\left\{h_{v}^{(k)}\right\}$

Note

No (first-order) GNN can have a higher representational power than the Weisfeiler-Lehman test of isomorphism.

Representational power of GNN

Corollary (simplified)

Any function $g(c, X)$ with $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ can be decomposed as:

$$
g(c, X)=\phi\left((1+\epsilon) f(c)+\sum_{x \in X} f(x)\right)
$$

for some functions f and ϕ and infinitely many choices of ϵ

Problem

- Assumes countable \mathcal{X} (no real values).
- Leverages universal approximation theorem of MLPs, learnability can be hard in practice.

Graph Isomorphism Networks (GIN)

Definition

- Update node representation by:

$$
h_{v}^{(k)}=\operatorname{MLP}^{(k)}\left(\left(1+\epsilon^{(k)}\right) h_{v}^{(k-1)}+\sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)}\right)
$$

- Compute graph readout as:

$$
h_{G}=\operatorname{CONCAT}\left(\sum_{v \in G} h_{v}^{(k)} \mid k=0, \ldots, k\right)
$$

Note

Definition guarantees maximal representational power achievable for a GNN (other choices are possible)

Graph Isomorphism Networks (GIN)

Notes

- The MLP ${ }^{(k)}$) jointly models $f^{(k+1)} \circ \phi^{(k)}$ (universal approximator)
- $\epsilon^{(k)}$ can be replaced by a fixed scalar
- CONCAT is used to collect all structural information. It could be replaced by the latest representation (layer K).

Representational power of GNN

Limitations of the WL isomorphism test

- The WL isomorphism test is limited in the graph substructures it can count
- The WL isomorphism test fails to recognize the two upper graphs as non-isomorphic

Images (from here onwards) from Bodnar et al., 2021

Higher-order GNN

$K=\{1,2,3,4,12,13,23,34,123\}$

$K=\{1,2,3,4,12,13,24,34\}$

Simplician complex

- A simplex is the generalization of a triangle to arbitrary dimensions ($0=$ point, $1=$ line, $2=$ triangle, $3=$ tetrahedron, ..)
- A simplicial complex K is a set of simplices such that:
- Every face of a simplex from K is also in K
- The non-empty intersection of any two simplices $\sigma_{1}, \sigma_{2} \in K$ is a face of both σ_{1} and σ_{2}.

Higher-order GNN

Simplician Weisfeiler-Lehman (SWL) Test

Let K be a simplicial complex. SWL proceeds as follows:
(1) Assign each simplex $s \in K$ an initial colour.
(2) Compute the new colour of each simplex s by hashing the concatenation of its color and the colours of its neighbouring simplices.
(3) Repeat until a stable coloring is obtained

Two simplicial complexes are considered non-isomorphic if the colour histograms at any level of the complex are different.

Types of adjacencies: face adjacencies

set of faces

$$
c_{\mathcal{F}}^{t}(\sigma)=\underbrace{\left\{\left\{c_{\omega}^{t} \mid \omega \in \mathcal{F}(\sigma)\right\}\right\}}_{\text {multiset of face colours }}
$$

Types of adjacencies: coface adjacencies

set of cofaces

$$
c_{\mathcal{C}}^{t}(\sigma)=\underbrace{\left\{\left\{c_{\omega}^{t} \mid \omega \in \mathcal{C}(\sigma)\right\}\right\}}
$$

multiset of coface colours

Types of adjacencies: lower adjacencies

Types of adjacencies: upper adjacencies

set of upper-neighbours

$$
c_{\uparrow}^{t}(\sigma)=\underbrace{\left\{\left\{\left(c_{\omega}^{t}, c_{\sigma \cup \omega}^{t}\right) \mid \omega \in \mathcal{N}_{\uparrow}(\sigma)\right\}\right\}}
$$

multiset of upper-neighbours colour-tuples

Two d-simplices are upper adjacent if they share a common coface of dimension d+1

SWL coloring

Message Passing Simplician Networks

$$
\left.\begin{array}{l}
m_{\mathcal{F}}^{t+1}(v)=\operatorname{AGG}_{w \in \mathcal{F}(v)}\left(M_{\mathcal{F}}\left(h_{v}^{t}, h_{w}^{t}\right)\right) \\
m_{\mathcal{C}}^{t+1}(v)=\operatorname{AGG}_{w \in \mathcal{C}(v)}\left(M_{\mathcal{C}}\left(h_{v}^{t}, h_{w}^{t}\right)\right) \\
m_{\downarrow}^{t+1}(v)=\operatorname{AGG}_{w \in \mathcal{N}_{\downarrow}(v)}\left(M_{\downarrow}\left(h_{v}^{t}, h_{w}^{t}, h_{v \cap w}^{t}\right)\right) \\
m_{\uparrow}^{t+1}(v)=\operatorname{AGG}_{w \in \mathcal{N}_{\uparrow}(v)}\left(M_{\uparrow}\left(h_{v}^{t}, h_{w}^{t}, h_{v \cup w}^{t}\right)\right) \\
h_{v}^{t+1}=U\left(h_{v}^{t}, m_{\mathcal{F}}^{t}(v), m_{\mathcal{C}}^{t}(v), m_{\downarrow}^{t+1}(v), m_{\uparrow}^{t+1}(v)\right) \\
h_{G}=\operatorname{READOUT}\left(\left\{\left\{h_{v}^{L}\right\}\right\}_{v \in \mathcal{K}_{0}}, \ldots,\left\{\left\{h_{v}^{L}\right\}\right\}_{v \in \mathcal{K}_{p}}\right)
\end{array}\right\} \text { Message }
$$

Message Passing Simplician Networks

Message passing examples

- Messages from upper adjacencies for vertex v_{2}
- Messages from upper and face adjacencies for edge $\left(v_{5}, v_{6}\right)$

References

Bibliography

- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu, A Comprehensive Survey on Graph Neural Networks, ArXiv, 2019.
- William L. Hamilton, Rex Ying, Jure Leskovec, Inductive Representation Learning on Large Graphs. In NIPS 2017.
- J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl, Neural message passing for Quantum chemistry. In ICML 2017.
- R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, Hierarchical graph representation learning with differentiable pooling. In NIPS, 2018.
- Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How Powerful are Graph Neural Networks?. In ICLR, 2019.
- P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph Attention Networks. In ICLR, 2018.
- C. Bodnar, F. Frasca, N. Otter, Y. Wang, P. Liò, G. Montufar, M. Bronstein, Weisfeiler and Lehman Go Topological: Message Passing Simplical Networks. In NeurIPS, 2021.

References

Software Libraries

- PyTorch Geometric (PyG) [https:
//github.com/pyg-team/pytorch_geometric]
- Deep Graph Library (dgl) [www.dgl. ai]

