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Motivation
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What is the world?

It’s made of things, atoms, information.

Humans are incredibly good at understanding information in coarser ways, denoting objects with

names/symbols, and abstracting them.

We shift to semantic content when communicating.

When describing the world we provide models of it.
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Levels of modelization

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

• Statistical: associations like p(X,Y)→ p(Y|X) · p(X)

• Causal Graphical: causal decomposition p(X1, ...,Xn) =
∏

i p(Xi |PAi )

• Structural Causal: Structural Causal Models (SCMs) Xi ← fi (PAi ;Ui ) where Ui ⊥⊥ Uj

• Physical: differential equations iℏ∂tψ = Ĥ ψ
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5



Levels of Reality

In many cases, we can refer to a finer and to a coarser level of

representation

Tb → Tt

Tb : bottom theory, fine-grained, referred to low-level objects

Tt : top theory, coarse-grained, associated with high-level entities

De Haro, Towards a theory of emergence for the physical sciences (2019)

Example: Ising Model of Ferromagnets

Figure 2: Tc denotes a coarse-level parameter of

control of low-level configurations.
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Our case study:

1. We consider high-level entities which originate a lower-level

representation

2. We require that such a map exists and can be inferred

3. We try to learn from data high-level entities/representations,

but in cases where we have control

Example: Ising Model of Ferromagnets

Figure 2: Tc denotes a coarse-level parameter of
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Generative Models
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A small dive into Generative Models

Figure 3: Credits: Dall’Asen N., SML-Journal Club presentation.

Our focus: Variational Autoencoders (VAEs)
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VAEs learn a generative model through latent variables. This method follows from lower-bounding the

log-likelihood of the observed data and introducing variational inference.

Kingma and Welling, Autoencoding Variational Bayes (2014)

p(x) =

∫
p∗(x|z)p(z)dz = Ep(z)[p

∗(x|z)] where x ∈ RD and z ∈ Rk

ELBO from likelihood:

log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
pθ(x|z)p(z)

qϕ(z|x)
qϕ(z|x)

dz

≥
∫

qϕ(z|x) log pθ(x|z)
p(x)

qϕ(z|x)
dz

= Eqϕ(z|x)[pθ(x|z)]−KL(qϕ(z|x)||p(z))

where pθ(x|z) is our generative ansatz, qϕ(z|x) is the approximate posterior, and p(z) is the prior for the model.

Learning parameters θ and ϕ.

factorization : pθ(x|z) =
qϕ(z|x)p(x)

p(x)
variational : qϕ(z|x) = N (z|µ, σ)
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VAEs in Deep Learning

□ We can sample from p(z) and create new examples.

□ ELBO only lower-bounds the log-likelihood, but it has good properties when z ∈ RD

Reizinger: Embracing the gap: VAEs perform independent mechanisms analysis (2022)

□ Endless number of variants:

• β-VAEs

• Info-VAEs

• Total-Correlation VAEs

• DIP-VAEs

• Regularized-AEs

• Factor-VAE

• HVAEs

• JL1-VAEs

• ...
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Disentangled mechanisms
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1. Hypothesis on the world

For each datum x, we can associate a set of elements g (even stochastic) which describe it in an approximate

way.

Figure 4: Example of a datum to which we associate a sets of concepts which describe it.

binding : i : X→ G

Achille and Soatto, On the Learnability of Physical Concepts: Can a Neural Network Understand What’s Real? (2022).
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2. The generative mechanism

In simple cases, all possible variations on X can be reconducted to changes on G + noise. E.g., synthetic

datasets, robotic systems, virtual world, etc.

generative process : g : (G,N)→ X

where N is a noise term (or nuissance). G are called generative factors.
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Independent Mechanisms

□ We ground our construction on a Causal Perspective - Schölkopf et al. (2021)

We look at DAGs: p(G) =
∏

i p(Gi |PAi )

The decomposition of a DAG implies a structure of statistical independence among variables (i ̸= j):

P(Gi |PAi ) ⊥⊥ P(Gj |PAj )

1. no influence: changing one mechanism P(Gi |PAi ) does not change other mechanisms P(Gj |PAj );

2. no information: knowing some other mechanisms P(Gi |PAi ) does not give us information about a

mechanism P(Gj |PAj ).
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Disentangled Mechanisms

• We refer to the simpler, non-trivial case of single disentangled generative factors.

• It is represented as a set of independent factors G = (G1, ...,GK )

• We also assume that exist confounders C = (C1, ...,CL) which allow for statistical dependencies on G

generative process : C→ G→ X

Credits: Suter et al., Robustly Disentangled Causal Mechanisms (2019)
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What are the disentangled factors?

□ 3D-Shapes dataset.

G1= floor hue: 10 values linearly spaced in [0, 1]

G2= wall hue: 10 values linearly spaced in [0, 1]

G3 = object hue: 10 values linearly spaced in [0, 1]

G4 = scale: 8 values linearly spaced in [0, 1]

G5 = shape: 4 values in [0, 1, 2, 3]

G6 = orientation: 15 values linearly spaced in [-30, 30]
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Formal Model: Disentangled Causal Mechanism

□ Several generative factors G = (G1, . . . ,GK )

Structural causal model (SCM), adapted from Suter et al.

(2019).
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□ Factors G may be correlated because of confounds

C, but are disentangled in the sense that they can be

independently manipulated

□ Model acquires latent factors Z1, . . . ,Zk

□ SCM formulation:

C← Nc

Gi ← fi (PA
C
i ,Ni ), PAC

i ⊂ {C1, . . . ,CL}, i = 1, . . . ,K

X← g(G,Nx )

Zj ← ej (X, (Nz )j )

Structural causal model (SCM), adapted from Suter et al.

(2019).
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Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. p(x|g) describes a causal mechanism invariant to changes in the distribution of p(gi )

2. In general, the latent factors can be dependent

Gi ⊥/⊥ Gj , i ̸= j

Only if we condition on the confounders in the data generation they are independent

Gi ⊥⊥ Gj |C ∀i ̸= j

3. There is no total causal effect from Gi to Gj , for i ̸= j ; i.e., intervening on Gj does not change Gi , i.e.,

∀g△
j , p(gj |do(Gj ← g△

j )) = p(gi )
(
̸= p(gi |g△

j )
)

4. The remaining components of G, i.e. G−j , are a valid adjustment set to estimate interventional effects

from Gj to X based on observational data, i.e.,

p(x|do(Gj ← g△
j )) =

∫
p(x|g△

j , g−j )p(g−j )dg−j

5. If there is no confounding, conditioning is sufficient to obtain the post-interventional distribution of X:

p(x|do(Gj ← g△
j )) = p(x|g△

j )

18
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A remark on do-calculus

p(G−j ,C|do(Gj ← gj )) ̸= p(G−j ,C|gj )
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A remark on do-calculus

p(G−j ,C|do(Gj ← gj )) ̸= p(G−j ,C|gj )

Intervened Conditioned
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Disentangled Representations
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Disentangled Representations

We define the interventional effect of a group of generative factors GI on the implied latent space encodings ZJ

with proxy posterior qϕ(z|x) from a VAE (or variant), where I ⊂ {1, . . . ,K} and J ⊂ {1, . . . , k} as:

p(zJ |do(GI ← G△
I )) =

∫
qϕ(zJ |x)p(x|do(GJ ← g△J ))dx

Meaning of a disentangled representation:

■ Variations of a single latent factor Zj depends on at most one

generative factor Gi variations:

Zj ← αj (gπ(j),Nj )

Entangled representations.
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■ Variations of a single latent factor Zj depends on at most one

generative factor Gi variations:

Zj ← αj (gπ(j),Nj )

■ There can be different copies of the same generative factor Gi , but

disentanglement still holds.

where αj is a general (non-linear) function for j = 1, . . . , d ,

π : {1, . . . , d} → {1, . . . ,K} ∪ ∅ an element-wise correspondence,

αj (g∅,Nj ) = αj (Nj ),

and Nj are independent noise terms.

Disentangled representations.
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How to measure Disentanglement of the representations

There have been many proposals to measure it, but none of them is optimal
Do and Tran, Theory and Evaluation for Learning Disentangled Representations (2020);

Carbonneau et al., Measuring Disentanglement: A Review of Metrics (2022).

Figure 5: Taxonomy of (some) known metrics.
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How to measure Disentanglement of the representations

A quick look at IRS (Interventional Robustness Score), from Suter et al. (2019):

PIDA(l |i , j) := d
(
E[zl |do(Gi ← gi )], E[zl |do(Gi ← gi ), do(Gj ← gj )]

)

and when:

PIDA→ 0 ∀l =⇒ IRS → 0
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Learning Disentangled Representations

Can we learn disentangled representations in unsupervised settings? No, (i) without implicit bias or (ii) without

supervision.

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (2019)

Figure 6: Drastical variations of the obtained disentangled (a) upon changing the VAE variant and (b) the regularization

strength.

24



Learning Disentangled Representations

Can we learn disentangled representations in unsupervised settings? No, (i) without implicit bias or (ii) without

supervision.

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (2019)

Figure 6: Drastical variations of the obtained disentangled (a) upon changing the VAE variant and (b) the regularization

strength.

24



Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

• Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled

representations;

• Match pairing, saying on couples (x , x ′) which generative factors coincide;

• Rank pairing, saying for a couple (x , x ′) the order relation, such as (gi > g ′
i ) =True.

• Transferring properties, changing in a datum x some factors based on x ′, and matching the reconstruction.

Hungry for Theorems? Check Shu et al., Weakly Supervised Disentanglement with Guarantees (2020).
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Other formulations
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Formal definitions of disentangled representations:

□✓ Causal Disentanglement

□ Identifiability in Non-linear Independent Component Analysis (ICA)

□ Group-based Disentanglement

27



Identifiability in ICA

Identifiability =⇒ retrieving the independent component generating the input

Definition 1.(Identifiability) Independent component analysis in (F ,P) is identifiable up to S if for functions

f , f ′ ∈ F and distributions P,P′ ∈ P the relation

f (s) =D f ′(s′) where s ∼ P and s′ ∼ P′

implies that there is h ∈ S that h = f ′−1 ◦ f on the support of P.
Buchholz et al., Function Classes for Identifiable Nonlinear Independent Component Analysis (2022).

Causal Disentanglement and Identifiability in non-linear ICA have been reconciled:

• Theorem 11 in Wang and Jordan, Desiderata for Representation Learning: a Causal Perspective (2021).

Identifiability up to permutations h ∈ Sperm.

28



Identifiability in ICA

Identifiability =⇒ retrieving the independent component generating the input

Definition 1.(Identifiability) Independent component analysis in (F ,P) is identifiable up to S if for functions

f , f ′ ∈ F and distributions P,P′ ∈ P the relation

f (s) =D f ′(s′) where s ∼ P and s′ ∼ P′

implies that there is h ∈ S that h = f ′−1 ◦ f on the support of P.
Buchholz et al., Function Classes for Identifiable Nonlinear Independent Component Analysis (2022).

Causal Disentanglement and Identifiability in non-linear ICA have been reconciled:

• Theorem 11 in Wang and Jordan, Desiderata for Representation Learning: a Causal Perspective (2021).

Identifiability up to permutations h ∈ Sperm.

28



Identifiability in ICA

Identifiability =⇒ retrieving the independent component generating the input

Definition 1.(Identifiability) Independent component analysis in (F ,P) is identifiable up to S if for functions

f , f ′ ∈ F and distributions P,P′ ∈ P the relation

f (s) =D f ′(s′) where s ∼ P and s′ ∼ P′

implies that there is h ∈ S that h = f ′−1 ◦ f on the support of P.
Buchholz et al., Function Classes for Identifiable Nonlinear Independent Component Analysis (2022).

Causal Disentanglement and Identifiability in non-linear ICA have been reconciled:

• Theorem 11 in Wang and Jordan, Desiderata for Representation Learning: a Causal Perspective (2021).

Identifiability up to permutations h ∈ Sperm.

28



Group-based Disentanglement

There exist a product group G = G1 × . . .× GK acting on G. Condition for disentanglement:

• The learned map implicitly defines a group H acting on the representation Z

• The map e ◦ g : G→ Z is equivariant between the actions on G and Z, and

• There is a decomposition Z = Z1 ⊕ . . .⊕ Zd such that each Zi is fixed by the action of all Gk , k ̸= j and

affected only by Gj .

Higgins et al., Towards a Definition of Disentangled Representations (2018).

□ The group acting on Gi can be complicated.

□ There is no statistical notion in this formulation (yet).
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Interpretability of the representations

We proposed a definition of Interpretability as alignment between generative factors and the representations:

□ Variations of a single latent factor Zj depends on at most one generative factor Gi variations:

Zj ← αj (gπ(j)) + Nj
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Marconato, Passerini, and Teso, Glancenets: Interpretable, Leak-proof Concept-based Models

Identifiability (up to permutations) =⇒ Alignment =⇒ Disentanglement
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New directions

■ Disentanglement in OOD scenarios: (1) combinatiorial generalization and (2) concept leakage.

■ Disentanglement in Real-World scenarios: ViT and stuff like that.

■ Learning Causal Mechanisms: integration of interventions in learning.

■ Equivariance in representations: Geometric Deep Learning.
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Thank you for the attention!

Interested in a thesis?

• Project works in this field

• Connection between causal and group-based disentanglement

• Unsupervised discovery of concepts through Neuro-Symbolic integration

emanuele.marconato@unitn.it
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