ADVANCED TOPICS IN MACHINE LEARNING

Learning Disentangled and Structured representations:
A Causal Perspective

Emanuele Marconato ${ }^{\text {* }}$

* DISI, University of Trento, *DI, University of Pisa

December 14, 2022

Tabel of Contents:

- Motivation
- Learning Representations:
- Popular methods
- Disentanglement as a special case
- Causal Disentanglement
- Disentangled Mechanism
- Disentangled Representation
- Learning Disentangled Representations
- Disentanglement in other frameworks
- Non-linear Independent Component Analysis
- Group-theory Disentanglement
- Interpretability

Main Message:

The importance of the interventional formulation[^0]What is the world?

What is the world?

It's made of things, atoms, information.

What is the world?

It's made of things, atoms, information.

Humans are incredibly good at understanding information in coarser ways, denoting objects with names/symbols, and abstracting them.

What is the world?

It's made of things, atoms, information.

Humans are incredibly good at understanding information in coarser ways, denoting objects with names/symbols, and abstracting them.

We shift to semantic content when communicating.

What is the world?

It's made of things, atoms, information.

Humans are incredibly good at understanding information in coarser ways, denoting objects with names/symbols, and abstracting them.

We shift to semantic content when communicating.

When describing the world we provide models of it.

Levels of modelization

Model	Predict in i.i.d. setting	Predict under distr. shift//intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
Mechanistic/physical	yes	yes	yes	yes	$?$
Structural causal	yes	yes	yes	$?$	$?$
Causal graphical	yes	yes	no	$?$	$?$
Statistical	yes	no	no	no	yes

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

Levels of modelization

Model	Predict in i.i.d. setting	Predict under distr. shift/intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
Mechanistic/physical	yes	yes	yes	yes	$?$
Structural causal	yes	yes	yes	$?$	$?$
Causal graphical	yes	yes	no	$?$	$?$
Statistical	yes	no	no	no	yes

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

- Statistical: associations like $p(\mathbf{X}, \mathbf{Y}) \rightarrow p(\mathbf{Y} \mid \mathbf{X}) \cdot p(\mathbf{X})$

Levels of modelization

Model	Predict in i.i.d. setting	Predict under distr. shift//intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
Mechanistic/physical	yes	yes	yes	yes	$?$
Structural causal	yes	yes	yes	$?$	$?$
Causal graphical	yes	yes	no	$?$	$?$
Statistical	yes	no	no	no	yes

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

- Statistical: associations like $p(\mathbf{X}, \mathbf{Y}) \rightarrow p(\mathbf{Y} \mid \mathbf{X}) \cdot p(\mathbf{X})$
- Causal Graphical: causal decomposition $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} p\left(X_{i} \mid \mathbf{P A}_{i}\right)$

Levels of modelization

Model	Predict in i.i.d. setting	Predict under distr. shift/intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
Mechanistic/physical	yes	yes	yes	yes	$?$
Structural causal	yes	yes	yes	$?$	$?$
Causal graphical	yes	yes	no	$?$	$?$
Statistical	yes	no	no	no	yes

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

- Statistical: associations like $p(\mathbf{X}, \mathbf{Y}) \rightarrow p(\mathbf{Y} \mid \mathbf{X}) \cdot p(\mathbf{X})$
- Causal Graphical: causal decomposition $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} p\left(X_{i} \mid \mathbf{P A}_{i}\right)$
- Structural Causal: Structural Causal Models (SCMs) $X_{i} \leftarrow f_{i}\left(\mathbf{P A}_{i} ; U_{i}\right)$ where $U_{i} \Perp U_{j}$

Levels of modelization

Model	Predict in i.i.d. setting	Predict under distr. shift/intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
Mechanistic/physical	yes	yes	yes	yes	$?$
Structural causal	yes	yes	yes	$?$	$?$
Causal graphical	yes	yes	no	$?$	$?$
Statistical	yes	no	no	no	yes

Figure 1: Credits: Towards Causal Representation Learning - Schölkopf et al. (2021)

- Statistical: associations like $p(\mathbf{X}, \mathbf{Y}) \rightarrow p(\mathbf{Y} \mid \mathbf{X}) \cdot p(\mathbf{X})$
- Causal Graphical: causal decomposition $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} p\left(X_{i} \mid \mathbf{P A}_{i}\right)$
- Structural Causal: Structural Causal Models (SCMs) $X_{i} \leftarrow f_{i}\left(\mathbf{P A}_{i} ; U_{i}\right)$ where $U_{i} \Perp U_{j}$
- Physical: differential equations $i \hbar \partial_{t} \psi=\hat{H} \psi$

Levels of Reality

In many cases, we can refer to a finer and to a coarser level of representation

$$
T_{b} \rightarrow T_{t}
$$

T_{b} : bottom theory, fine-grained, referred to low-level objects T_{t} : top theory, coarse-grained, associated with high-level entities De Haro, Towards a theory of emergence for the physical sciences (2019)

Example: Ising Model of Ferromagnets

Figure 2: T_{c} denotes a coarse-level parameter of control of low-level configurations.

Levels of Reality

In many cases, we can refer to a finer and to a coarser level of representation

$$
T_{b} \rightarrow T_{t}
$$

T_{b} : bottom theory, fine-grained, referred to low-level objects T_{t} : top theory, coarse-grained, associated with high-level entities De Haro, Towards a theory of emergence for the physical sciences (2019)

Our case study:

1. We consider high-level entities which originate a lower-level representation

Example: Ising Model of Ferromagnets

Figure 2: T_{c} denotes a coarse-level parameter of control of low-level configurations.

Levels of Reality

In many cases, we can refer to a finer and to a coarser level of representation

$$
T_{b} \rightarrow T_{t}
$$

T_{b} : bottom theory, fine-grained, referred to low-level objects T_{t} : top theory, coarse-grained, associated with high-level entities De Haro, Towards a theory of emergence for the physical sciences (2019)

Our case study:

1. We consider high-level entities which originate a lower-level representation
2. We require that such a map exists and can be inferred

Example: Ising Model of Ferromagnets

$T \gg T_{C} \quad T=T_{C}$

Figure 2: T_{c} denotes a coarse-level parameter of control of low-level configurations.

Levels of Reality

In many cases, we can refer to a finer and to a coarser level of representation

$$
T_{b} \rightarrow T_{t}
$$

T_{b} : bottom theory, fine-grained, referred to low-level objects T_{t} : top theory, coarse-grained, associated with high-level entities De Haro, Towards a theory of emergence for the physical sciences (2019)

Our case study:

1. We consider high-level entities which originate a lower-level representation
2. We require that such a map exists and can be inferred
3. We try to learn from data high-level entities/representations, but in cases where we have control

Example: Ising Model of Ferromagnets

$\mathrm{T} \gg \mathrm{T}_{\mathrm{C}} \quad \mathrm{T}=\mathrm{T}_{\mathrm{C}}$

Figure 2: T_{c} denotes a coarse-level parameter of control of low-level configurations.

Generative Models

A small dive into Generative Models

Figure 3: Credits: Dall'Asen N., SML-Journal Club presentation.

Our focus: Variational Autoencoders (VAEs)

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathrm{z} \in \mathbb{R}^{k}
$$

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathrm{z} \in \mathbb{R}^{k}
$$

ELBO from likelihood:

$$
\log p_{\theta}(\mathrm{x})=\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}
$$

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathrm{z} \in \mathbb{R}^{k}
$$

ELBO from likelihood:

$$
\begin{aligned}
\log p_{\theta}(\mathrm{x}) & =\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) \mathrm{d} \mathbf{z} \\
& =\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) \frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z}
\end{aligned}
$$

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathrm{z} \in \mathbb{R}^{k}
$$

ELBO from likelihood:

$$
\begin{aligned}
\log p_{\theta}(\mathrm{x}) & =\log \int p_{\theta}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z} \\
& =\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) \frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z} \\
& \geq \int q_{\phi}(\mathbf{z} \mid \mathrm{x}) \log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathrm{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z}
\end{aligned}
$$

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathrm{z} \in \mathbb{R}^{k}
$$

ELBO from likelihood:

$$
\begin{aligned}
\log p_{\theta}(\mathrm{x}) & =\log \int p_{\theta}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z} \\
& =\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathrm{z}) \frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z} \\
& \geq \int q_{\phi}(\mathbf{z} \mid \mathbf{x}) \log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathrm{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z} \\
& =\mathbb{E}_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]-\operatorname{KL}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)
\end{aligned}
$$

VAEs learn a generative model through latent variables. This method follows from lower-bounding the log-likelihood of the observed data and introducing variational inference.
Kingma and Welling, Autoencoding Variational Bayes (2014)

$$
p(\mathrm{x})=\int p^{*}(\mathrm{x} \mid \mathbf{z}) p(\mathrm{z}) \mathrm{d} \mathbf{z}=\mathbb{E}_{p(\mathrm{z})}\left[p^{*}(\mathrm{x} \mid \mathbf{z})\right] \quad \text { where } \mathrm{x} \in \mathbb{R}^{D} \text { and } \mathbf{z} \in \mathbb{R}^{k}
$$

ELBO from likelihood:

$$
\begin{aligned}
\log p_{\theta}(\mathrm{x}) & =\log \int p_{\theta}(\mathrm{x} \mid \mathbf{z}) p(\mathbf{z}) \mathrm{d} \mathbf{z} \\
& =\log \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) \frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z} \\
& \geq \int q_{\phi}(\mathbf{z} \mid \mathbf{x}) \log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathbf{x})}{q_{\phi}(\mathbf{z} \mid \mathbf{x})} \mathrm{d} \mathbf{z} \\
& =\mathbb{E}_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]-\operatorname{KL}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)
\end{aligned}
$$

where $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is our generative ansatz, $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ is the approximate posterior, and $p(\mathbf{z})$ is the prior for the model. Learning parameters θ and ϕ.

$$
\text { factorization : } \quad p_{\theta}(\mathbf{x} \mid \mathbf{z})=\frac{q_{\phi}(\mathbf{z} \mid \mathbf{x}) p(\mathrm{x})}{p(\mathbf{x})} \quad \text { variational : } \quad q_{\phi}(\mathbf{z} \mid \mathbf{x})=\mathcal{N}(\mathbf{z} \mid \mu, \sigma)
$$

VAEs in Deep Learning

We can sample from $p(z)$ and create new examples.ELBO only lower-bounds the log-likelihood, but it has good properties when $\mathbf{z} \in \mathbb{R}^{D}$
Reizinger: Embracing the gap: VAEs perform independent mechanisms analysis (2022)Endless number of variants:

- β-VAEs
- Info-VAEs
- Total-Correlation VAEs
- DIP-VAEs
- Regularized-AEs
- Factor-VAE
- HVAEs
- JL1-VAEs
- ..

Disentangled mechanisms

1. Hypothesis on the world

For each datum x , we can associate a set of elements g (even stochastic) which describe it in an approximate way.

Figure 4: Example of a datum to which we associate a sets of concepts which describe it.

$$
\text { binding : } \quad i: \mathbf{X} \rightarrow \mathbf{G}
$$

2. The generative mechanism

In simple cases, all possible variations on \mathbf{X} can be reconducted to changes on $\mathbf{G}+$ noise. E.g., synthetic datasets, robotic systems, virtual world, etc.

generative process: $\mathbf{g}:(\mathbf{G}, \mathbf{N}) \rightarrow \mathbf{X}$
where \mathbf{N} is a noise term (or nuissance). \mathbf{G} are called generative factors.

Independent Mechanisms

\square We ground our construction on a Causal Perspective - Schölkopf et al. (2021) We look at DAGs: $p(\mathbf{G})=\prod_{i} p\left(G_{i} \mid \mathbf{P A}_{i}\right)$

The decomposition of a DAG implies a structure of statistical independence among variables $(i \neq j)$:

$$
P\left(G_{i} \mid \mathbf{P A}_{i}\right) \Perp P\left(G_{j} \mid \mathbf{P A}_{j}\right)
$$

Independent Mechanisms

\square We ground our construction on a Causal Perspective - Schölkopf et al. (2021)
We look at DAGs: $p(\mathbf{G})=\prod_{i} p\left(G_{i} \mid \mathbf{P A}_{i}\right)$
The decomposition of a DAG implies a structure of statistical independence among variables $(i \neq j)$:

$$
P\left(G_{i} \mid \mathbf{P A}_{i}\right) \Perp P\left(G_{j} \mid \mathbf{P A}_{j}\right)
$$

1. no influence: changing one mechanism $P\left(G_{i} \mid \mathbf{P A}_{i}\right)$ does not change other mechanisms $P\left(G_{j} \mid \mathbf{P A}_{j}\right)$;

Independent Mechanisms

\square We ground our construction on a Causal Perspective - Schölkopf et al. (2021)
We look at DAGs: $p(\mathbf{G})=\prod_{i} p\left(G_{i} \mid \mathbf{P A}_{i}\right)$

The decomposition of a DAG implies a structure of statistical independence among variables $(i \neq j)$:

$$
P\left(G_{i} \mid \mathbf{P A}_{i}\right) \Perp P\left(G_{j} \mid \mathbf{P A}_{j}\right)
$$

1. no influence: changing one mechanism $P\left(G_{i} \mid \mathbf{P A}_{i}\right)$ does not change other mechanisms $P\left(G_{j} \mid \mathbf{P A}_{j}\right)$;
2. no information: knowing some other mechanisms $P\left(G_{i} \mid \mathbf{P A}_{i}\right)$ does not give us information about a mechanism $P\left(G_{j} \mid \mathbf{P A}_{j}\right)$.

Disentangled Mechanisms

- We refer to the simpler, non-trivial case of single disentangled generative factors.

Disentangled Mechanisms

- We refer to the simpler, non-trivial case of single disentangled generative factors.
- It is represented as a set of independent factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$

Disentangled Mechanisms

- We refer to the simpler, non-trivial case of single disentangled generative factors.
- It is represented as a set of independent factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$
- We also assume that exist confounders $\mathbf{C}=\left(C_{1}, \ldots, C_{L}\right)$ which allow for statistical dependencies on \mathbf{G}

Disentangled Mechanisms

- We refer to the simpler, non-trivial case of single disentangled generative factors.
- It is represented as a set of independent factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$
- We also assume that exist confounders $\mathbf{C}=\left(C_{1}, \ldots, C_{L}\right)$ which allow for statistical dependencies on \mathbf{G}

[^1]
What are the disentangled factors?

3D-Shapes dataset.
$G_{1}=$ floor hue: 10 values linearly spaced in $[0,1]$
$G_{2}=$ wall hue: 10 values linearly spaced in $[0,1]$
$G_{3}=$ object hue: 10 values linearly spaced in $[0,1]$
$G_{4}=$ scale: 8 values linearly spaced in $[0,1]$
$G_{5}=$ shape: 4 values in $[0,1,2,3]$
$G_{6}=$ orientation: 15 values linearly spaced in [-30, 30]

Formal Model: Disentangled Causal Mechanism

\square Several generative factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$

Structural causal model (SCM), adapted from Suter et al. (2019).

Formal Model: Disentangled Causal Mechanism

Several generative factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$They jointly give rise to a datum \mathbf{X}

Structural causal model (SCM), adapted from Suter et al. (2019).

Formal Model: Disentangled Causal Mechanism

Several generative factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$They jointly give rise to a datum \mathbf{X}Factors G may be correlated because of confounds C, but are disentangled in the sense that they can be independently manipulated

Structural causal model (SCM), adapted from Suter et al. (2019).

Formal Model: Disentangled Causal Mechanism

Several generative factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$They jointly give rise to a datum \mathbf{X}Factors G may be correlated because of confounds C, but are disentangled in the sense that they can be independently manipulatedModel acquires latent factors Z_{1}, \ldots, Z_{k}

Structural causal model (SCM), adapted from Suter et al. (2019).

Formal Model: Disentangled Causal Mechanism

Several generative factors $\mathbf{G}=\left(G_{1}, \ldots, G_{K}\right)$They jointly give rise to a datum \mathbf{X}Factors G may be correlated because of confounds C, but are disentangled in the sense that they can be independently manipulatedModel acquires latent factors Z_{1}, \ldots, Z_{k}SCM formulation:$\mathbf{C} \leftarrow \mathbf{N}_{c}$
$G_{i} \leftarrow f_{i}\left(\mathbf{P A}_{i}^{C}, N_{i}\right), \quad \mathbf{P A}_{i}^{C} \subset\left\{C_{1}, \ldots, C_{L}\right\}, i=1, \ldots, K$
$\mathbf{X} \leftarrow g\left(\mathbf{G}, N_{x}\right)$
$Z_{j} \leftarrow e_{j}\left(\mathbf{X},\left(N_{z}\right)_{j}\right)$

Structural causal model (SCM), adapted from Suter et al. (2019).

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. $p(\mathrm{x} \mid \mathbf{g})$ describes a causal mechanism invariant to changes in the distribution of $p\left(g_{i}\right)$

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. $p(\mathrm{x} \mid \mathbf{g})$ describes a causal mechanism invariant to changes in the distribution of $p\left(g_{i}\right)$
2. In general, the latent factors can be dependent

$$
G_{i} \not \Perp G_{j}, i \neq j
$$

Only if we condition on the confounders in the data generation they are independent

$$
G_{i} \Perp G_{j} \mid \mathbf{C} \forall i \neq j
$$

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. $p(\mathrm{x} \mid \mathbf{g})$ describes a causal mechanism invariant to changes in the distribution of $p\left(g_{i}\right)$
2. In general, the latent factors can be dependent

$$
G_{i} \not \Perp G_{j}, i \neq j
$$

Only if we condition on the confounders in the data generation they are independent

$$
G_{i} \Perp G_{j} \mid \mathbf{C} \forall i \neq j
$$

3. There is no total causal effect from G_{i} to G_{j}, for $i \neq j$; i.e., intervening on G_{j} does not change G_{i}, i.e.,

$$
\forall g_{j}^{\triangle}, \quad p\left(g_{j} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=p\left(g_{i}\right)\left(\neq p\left(g_{i} \mid g_{j}^{\triangle}\right)\right)
$$

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. $p(\mathrm{x} \mid \mathbf{g})$ describes a causal mechanism invariant to changes in the distribution of $p\left(g_{i}\right)$
2. In general, the latent factors can be dependent

$$
G_{i} \not \Perp G_{j}, i \neq j
$$

Only if we condition on the confounders in the data generation they are independent

$$
G_{i} \Perp G_{j} \mid \mathbf{C} \forall i \neq j
$$

3. There is no total causal effect from G_{i} to G_{j}, for $i \neq j$; i.e., intervening on G_{j} does not change G_{i}, i.e.,

$$
\forall g_{j}^{\triangle}, \quad p\left(g_{j} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=p\left(g_{i}\right)\left(\neq p\left(g_{i} \mid g_{j}^{\triangle}\right)\right)
$$

4. The remaining components of \mathbf{G}, i.e. \mathbf{G}_{-j}, are a valid adjustment set to estimate interventional effects from G_{j} to \mathbf{X} based on observational data, i.e.,

$$
p\left(\mathrm{x} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=\int p\left(\mathrm{x} \mid g_{j}^{\triangle}, \mathbf{g}_{-j}\right) p\left(\mathrm{~g}_{-j}\right) \mathrm{d} \mathbf{g}_{-j}
$$

Some Properties of the Disentangled Causal Mechanism

Proposition 1 (from Suter et al. (2019)): A disentangled causal process fulfills the following properties:

1. $p(\mathrm{x} \mid \mathbf{g})$ describes a causal mechanism invariant to changes in the distribution of $p\left(g_{i}\right)$
2. In general, the latent factors can be dependent

$$
G_{i} \not \Perp G_{j}, i \neq j
$$

Only if we condition on the confounders in the data generation they are independent

$$
G_{i} \Perp G_{j} \mid \mathbf{C} \forall i \neq j
$$

3. There is no total causal effect from G_{i} to G_{j}, for $i \neq j$; i.e., intervening on G_{j} does not change G_{i}, i.e.,

$$
\forall g_{j}^{\triangle}, \quad p\left(g_{j} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=p\left(g_{i}\right)\left(\neq p\left(g_{i} \mid g_{j}^{\triangle}\right)\right)
$$

4. The remaining components of \mathbf{G}, i.e. \mathbf{G}_{-j}, are a valid adjustment set to estimate interventional effects from G_{j} to \mathbf{X} based on observational data, i.e.,

$$
p\left(\mathrm{x} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=\int p\left(\mathrm{x} \mid g_{j}^{\triangle}, \mathbf{g}_{-j}\right) p\left(\mathrm{~g}_{-j}\right) \mathrm{d} \mathbf{g}_{-j}
$$

5. If there is no confounding, conditioning is sufficient to obtain the post-interventional distribution of \mathbf{X} :

$$
p\left(\mathrm{x} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}^{\triangle}\right)\right)=p\left(\mathrm{x} \mid g_{j}^{\triangle}\right)
$$

A remark on do-calculus

$$
p\left(\mathbf{G}_{-j}, \mathbf{C} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}\right)\right) \neq p\left(\mathbf{G}_{-j}, \mathbf{C} \mid g_{j}\right)
$$

A remark on do-calculus

$$
p\left(\mathbf{G}_{-j}, \mathbf{C} \mid \operatorname{do}\left(G_{j} \leftarrow g_{j}\right)\right) \neq p\left(\mathbf{G}_{-j}, \mathbf{C} \mid g_{j}\right)
$$

Disentangled Representations

Disentangled Representations

We define the interventional effect of a group of generative factors $\mathbf{G}_{/}$on the implied latent space encodings \mathbf{Z}_{J} with proxy posterior $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ from a VAE (or variant), where $I \subset\{1, \ldots, K\}$ and $J \subset\{1, \ldots, k\}$ as:

$$
p\left(\mathbf{z}_{J} \mid \operatorname{do}\left(\mathbf{G}_{I} \leftarrow \mathbf{G}_{I}^{\triangle}\right)\right)=\int q_{\phi}\left(\mathbf{z}_{J} \mid \mathbf{x}\right) p\left(\mathbf{x} \mid \operatorname{do}\left(\mathbf{G}_{J} \leftarrow \mathbf{g}_{J}^{\triangle}\right)\right) \mathrm{d} \mathbf{x}
$$

Meaning of a disentangled representation:

- Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}, N_{j}\right)
$$

Entangled representations.

Disentangled Representations

We define the interventional effect of a group of generative factors $\mathbf{G}_{/}$on the implied latent space encodings \mathbf{Z}_{J} with proxy posterior $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ from a VAE (or variant), where $I \subset\{1, \ldots, K\}$ and $J \subset\{1, \ldots, k\}$ as:

$$
p\left(\mathbf{z}_{J} \mid \operatorname{do}\left(\mathbf{G}_{I} \leftarrow \mathbf{G}_{I}^{\triangle}\right)\right)=\int q_{\phi}\left(\mathbf{z}_{J} \mid \mathbf{x}\right) p\left(\mathbf{x} \mid \operatorname{do}\left(\mathbf{G}_{J} \leftarrow \mathbf{g}_{J}^{\triangle}\right)\right) \mathrm{d} \mathbf{x}
$$

Meaning of a disentangled representation:

- Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}, N_{j}\right)
$$

- There can be different copies of the same generative factor G_{i}, but disentanglement still holds.

Disentangled representations.

Disentangled Representations

We define the interventional effect of a group of generative factors $\mathbf{G}_{/}$on the implied latent space encodings \mathbf{Z}_{J} with proxy posterior $q_{\phi}(\mathbf{z} \mid \mathrm{x})$ from a VAE (or variant), where $I \subset\{1, \ldots, K\}$ and $J \subset\{1, \ldots, k\}$ as:

$$
p\left(\mathbf{z}_{\jmath} \mid \operatorname{do}\left(\mathbf{G}_{I} \leftarrow \mathbf{G}_{I}^{\triangle}\right)\right)=\int \boldsymbol{q}_{\phi}\left(\mathbf{z}_{J} \mid \mathbf{x}\right) p\left(\mathbf{x} \mid \operatorname{do}\left(\mathbf{G}_{J} \leftarrow \mathbf{g}_{J}^{\triangle}\right)\right) \mathrm{d} \mathbf{x}
$$

Meaning of a disentangled representation:

- Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}, N_{j}\right)
$$

- There can be different copies of the same generative factor G_{i}, but disentanglement still holds.
where α_{j} is a general (non-linear) function for $j=1, \ldots, d$, $\pi:\{1, \ldots, d\} \rightarrow\{1, \ldots, K\} \cup \varnothing$ an element-wise correspondence, $\alpha_{j}\left(g_{\varnothing}, N_{j}\right)=\alpha_{j}\left(N_{j}\right)$, and N_{j} are independent noise terms.

How to measure Disentanglement of the representations

There have been many proposals to measure it, but none of them is optimal Do and Tran, Theory and Evaluation for Learning Disentangled Representations (2020);
Carbonneau et al., Measuring Disentanglement: A Review of Metrics (2022).

Figure 5: Taxonomy of (some) known metrics.

How to measure Disentanglement of the representations

A quick look at IRS (Interventional Robustness Score), from Suter et al. (2019):

$$
\operatorname{PIDA}(I \mid i, j):=d\left(\mathbb{E}\left[z_{l} \mid \operatorname{do}\left(G_{i} \leftarrow g_{i}\right)\right], \mathbb{E}\left[z_{l} \mid \operatorname{do}\left(G_{i} \leftarrow g_{i}\right), \operatorname{do}\left(G_{j} \leftarrow g_{j}\right)\right]\right)
$$

How to measure Disentanglement of the representations

A quick look at IRS (Interventional Robustness Score), from Suter et al. (2019):

$$
\operatorname{PIDA}(I \mid i, j):=d\left(\mathbb{E}\left[z_{l} \mid \operatorname{do}\left(G_{i} \leftarrow g_{i}\right)\right], \mathbb{E}\left[z_{l} \mid \operatorname{do}\left(G_{i} \leftarrow g_{i}\right), \operatorname{do}\left(G_{j} \leftarrow g_{j}\right)\right]\right)
$$

and when:

$$
\text { PIDA } \rightarrow 0 \quad \forall I \Longrightarrow I R S \rightarrow 0
$$

Learning Disentangled Representations

Can we learn disentangled representations in unsupervised settings? No, (i) without implicit bias or (ii) without supervision.
Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (2019)

Learning Disentangled Representations

Can we learn disentangled representations in unsupervised settings? No, (i) without implicit bias or (ii) without supervision.
Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (2019)

Figure 6: Drastical variations of the obtained disentangled (a) upon changing the VAE variant and (b) the regularization strength.

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

- Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled representations;

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

- Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled representations;
- Match pairing, saying on couples $\left(x, x^{\prime}\right)$ which generative factors coincide;

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

- Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled representations;
- Match pairing, saying on couples $\left(x, x^{\prime}\right)$ which generative factors coincide;
- Rank pairing, saying for a couple $\left(x, x^{\prime}\right)$ the order relation, such as $\left(g_{i}>g_{i}^{\prime}\right)=$ True.

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

- Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled representations;
- Match pairing, saying on couples $\left(x, x^{\prime}\right)$ which generative factors coincide;
- Rank pairing, saying for a couple $\left(x, x^{\prime}\right)$ the order relation, such as $\left(g_{i}>g_{i}^{\prime}\right)=$ True.
- Transferring properties, changing in a datum x some factors based on x^{\prime}, and matching the reconstruction.

Learning Disentangled Representations

In turn, we can include (weak)-supervision, such as:

- Generative Factors supervision, only small amounts are sufficient to achieve better-disentangled representations;
- Match pairing, saying on couples $\left(x, x^{\prime}\right)$ which generative factors coincide;
- Rank pairing, saying for a couple $\left(x, x^{\prime}\right)$ the order relation, such as $\left(g_{i}>g_{i}^{\prime}\right)=$ True.
- Transferring properties, changing in a datum x some factors based on x^{\prime}, and matching the reconstruction.

Hungry for Theorems? Check Shu et al., Weakly Supervised Disentanglement with Guarantees (2020).

Other formulations

Formal definitions of disentangled representations:

\checkmark Causal DisentanglementIdentifiability in Non-linear Independent Component Analysis (ICA)Group-based Disentanglement

Identifiability in ICA

Identifiability \Longrightarrow retrieving the independent component generating the input

Identifiability in ICA

Identifiability \Longrightarrow retrieving the independent component generating the input

Definition 1.(Identifiability) Independent component analysis in $(\mathcal{F}, \mathcal{P})$ is identifiable up to \mathcal{S} if for functions $f, f^{\prime} \in \mathcal{F}$ and distributions $\mathbb{P}, \mathbb{P}^{\prime} \in \mathcal{P}$ the relation

$$
f(s)={ }^{\mathcal{D}} f^{\prime}\left(s^{\prime}\right) \quad \text { where } s \sim \mathbb{P} \text { and } s^{\prime} \sim \mathbb{P}^{\prime}
$$

implies that there is $h \in \mathcal{S}$ that $h=f^{\prime-1} \circ f$ on the support of \mathbb{P}.
Buchholz et al., Function Classes for Identifiable Nonlinear Independent Component Analysis (2022).

Identifiability in ICA

Identifiability \Longrightarrow retrieving the independent component generating the input

Definition 1.(Identifiability) Independent component analysis in $(\mathcal{F}, \mathcal{P})$ is identifiable up to \mathcal{S} if for functions $f, f^{\prime} \in \mathcal{F}$ and distributions $\mathbb{P}, \mathbb{P}^{\prime} \in \mathcal{P}$ the relation

$$
f(s)={ }^{\mathcal{D}} f^{\prime}\left(s^{\prime}\right) \quad \text { where } s \sim \mathbb{P} \text { and } s^{\prime} \sim \mathbb{P}^{\prime}
$$

implies that there is $h \in \mathcal{S}$ that $h=f^{\prime-1} \circ f$ on the support of \mathbb{P}.
Buchholz et al., Function Classes for Identifiable Nonlinear Independent Component Analysis (2022).

Causal Disentanglement and Identifiability in non-linear ICA have been reconciled:

- Theorem 11 in Wang and Jordan, Desiderata for Representation Learning: a Causal Perspective (2021). Identifiability up to permutations $h \in \mathcal{S}_{\text {perm }}$.

Group-based Disentanglement

There exist a product group $\mathbb{G}=\mathbb{G}_{1} \times \ldots \times \mathbb{G}_{K}$ acting on \mathbf{G}. Condition for disentanglement:

Group-based Disentanglement

There exist a product group $\mathbb{G}=\mathbb{G}_{1} \times \ldots \times \mathbb{G}_{K}$ acting on \mathbf{G}. Condition for disentanglement:

- The learned map implicitly defines a group \mathbb{H} acting on the representation \mathbf{Z}

Group-based Disentanglement

There exist a product group $\mathbb{G}=\mathbb{G}_{1} \times \ldots \times \mathbb{G}_{K}$ acting on \mathbf{G}. Condition for disentanglement:

- The learned map implicitly defines a group \mathbb{H} acting on the representation \mathbf{Z}
- The map $e \circ g: \mathbf{G} \rightarrow \mathbf{Z}$ is equivariant between the actions on \mathbf{G} and \mathbf{Z}, and

Group-based Disentanglement

There exist a product group $\mathbb{G}=\mathbb{G}_{1} \times \ldots \times \mathbb{G}_{K}$ acting on \mathbf{G}. Condition for disentanglement:

- The learned map implicitly defines a group \mathbb{H} acting on the representation \mathbf{Z}
- The map e $\circ g: \mathbf{G} \rightarrow \mathbf{Z}$ is equivariant between the actions on \mathbf{G} and \mathbf{Z}, and
- There is a decomposition $\mathbf{Z}=Z_{1} \oplus \ldots \oplus Z_{d}$ such that each Z_{i} is fixed by the action of all $\mathbb{G}_{k}, k \neq j$ and affected only by \mathbb{G}_{j}.

Higgins et al., Towards a Definition of Disentangled Representations (2018).

There exist a product group $\mathbb{G}=\mathbb{G}_{1} \times \ldots \times \mathbb{G}_{K}$ acting on \mathbf{G}. Condition for disentanglement:

- The learned map implicitly defines a group \mathbb{H} acting on the representation \mathbf{Z}
- The map $e \circ g: \mathbf{G} \rightarrow \mathbf{Z}$ is equivariant between the actions on \mathbf{G} and \mathbf{Z}, and
- There is a decomposition $\mathbf{Z}=Z_{1} \oplus \ldots \oplus Z_{d}$ such that each Z_{i} is fixed by the action of all $\mathbb{G}_{k}, k \neq j$ and affected only by \mathbb{G}_{j}.

Higgins et al., Towards a Definition of Disentangled Representations (2018).The group acting on \mathbf{G}_{i} can be complicated.There is no statistical notion in this formulation (yet).

Interpretability of the representations

We proposed a definition of Interpretability as alignment between generative factors and the representations:
\square Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}\right)+N_{j}
$$

Interpretability of the representations

We proposed a definition of Interpretability as alignment between generative factors and the representations:
\square Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}\right)+N_{j}
$$

The map α is monotonic

Interpretability of the representations

We proposed a definition of Interpretability as alignment between generative factors and the representations:Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}\right)+N_{j}
$$The map α is monotonic

where α_{j} is a monotonic function for $j=1, \ldots, d$,
$\pi:\{1, \ldots, d\} \rightarrow\{1, \ldots, K\} \cup \varnothing$ an element-wise correspondence,
$\alpha_{j}(g \varnothing)=0$
and N_{j} are independent noise terms.
Marconato, Passerini, and Teso, Glancenets: Interpretable, Leak-proof Concept-based Models

Interpretability of the representations

We proposed a definition of Interpretability as alignment between generative factors and the representations:Variations of a single latent factor Z_{j} depends on at most one generative factor G_{i} variations:

$$
Z_{j} \leftarrow \alpha_{j}\left(g_{\pi(j)}\right)+N_{j}
$$The map α is monotonic

where α_{j} is a monotonic function for $j=1, \ldots, d$,
$\pi:\{1, \ldots, d\} \rightarrow\{1, \ldots, K\} \cup \varnothing$ an element-wise correspondence,
$\alpha_{j}(g \varnothing)=0$
and N_{j} are independent noise terms.
Marconato, Passerini, and Teso, Glancenets: Interpretable, Leak-proof Concept-based Models

Identifiability (up to permutations) \Longrightarrow Alignment \Longrightarrow Disentanglement

New directions

\square Disentanglement in OOD scenarios: (1) combinatiorial generalization and (2) concept leakage.

Disentanglement in Real-World scenarios: ViT and stuff like that.
\square Learning Causal Mechanisms: integration of interventions in learning.

Equivariance in representations: Geometric Deep Learning.

Thank you for the attention!

Interested in a thesis?

- Project works in this field
- Connection between causal and group-based disentanglement
- Unsupervised discovery of concepts through Neuro-Symbolic integration
emanuele.marconato@unitn.it

[^0]: Motivation

[^1]: Credits: Suter et al., Robustly Disentangled Causal Mechanisms (2019)

