
Support vector machines

In a nutshell

• Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

• Solution only depends on a small subset of training examples (support vectors)

• Sound generalization theory (bounds or error based on margin)

• Can be easily extended to nonlinear separation (kernel machines)

Maximum margin classifier
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Maximum margin classifier

Classifier margin

• Given a training set D, a classifier confidence margin is:

ρ = min(x,y)∈Dyf(x)

• It is the minimal confidence margin (for predicting the true label) among training examples
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• A classifier geometric margin is:
ρ

||w||
= min(x,y)∈D

yf(x)

||w||

Maximum margin classifier

Canonical hyperplane

• There is an infinite number of equivalent formulation for the same hyperplane:

wTx+ w0 = 0

α(wTx+ w0) = 0 ∀α 6= 0

• The canonical hyperplane is the hyperplane having confidence margin equal to 1:

ρ = min(x,y)∈Dyf(x) = 1

• Its geometric margin is:
ρ

||w||
=

1

||w||

Maximum margin classifier
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Hard margin SVM

Theorem 1 (Margin Error Bound). Consider the set of decision functions f(x) = signwTx with ||w|| ≤ Λ and
||x|| ≤ R, for some R,Λ > 0. Moreover, let ρ > 0 and ν denote the fraction of training examples with margin smaller
than ρ/||w||, referred to as the margin error.

For all distributions P generating the data, with probability at least 1 − δ over the drawing of the m training
patterns, and for any ρ > 0 and δ ∈ (0, 1), the probability that a test pattern drawn from P will be misclassified is
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bound from above by

ν +

√
c

m

(
R2Λ2

ρ2
ln2m+ ln(1/δ)

)
.

Here, c is a universal constant.

Hard margin SVM

Margin Error Bound: interpretation

ν +

√
c

m

(
R2Λ2

ρ2
ln2m+ ln(1/δ)

)
.

The probability of test error depends on (among other components):

• number of margin errors ν (examples with margin smaller than ρ/||w||)

• number of training examples (error depends on
√

ln2m
m )

• size of the margin (error depends on 1/ρ2)

Note
If ρ is fixed to 1 (canonical hyperplane), maximizing margin corresponds to minimizing ||w||

Hard margin SVM

Learning problem

minw,w0

1

2
||w||2

subject to:
yi(w

Txi + w0) ≥ 1

∀(xi, yi) ∈ D

Note

• constraints guarantee that all points are correctly classified (plus canonical form)

• minimization corresponds to maximizing the (squared) margin

• quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Hard margin SVM

Learning problem

minw,w0

1

2
||w||2

subject to:
yi(w

Txi + w0) ≥ 1

∀(xi, yi) ∈ D

Note
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• constraints guarantee that all points are correctly classified (plus canonical form)

• minimization corresponds to maximizing the (squared) margin

• quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Digression: constrained optimization
Karush-Kuhn-Tucker (KKT) approach

• A constrained optimization problem can be addressed by converting it into an unconstrained problem with the
same solution

• Let’s have a constrained optimization problem as:

minz f(z)

subject to:
gi(z) ≥ 0 ∀i

• Let’s introduce a non-negative variable αi ≥ 0 (called Lagrange multiplier) for each constraint and rewrite the
optimization problem as (Lagrangian):

minz maxα≥0 f(z)−
∑
i

αigi(z)

Digression: constrained optimization
Karush-Kuhn-Tucker (KKT) approach

minz maxα≥0 f(z)−
∑
i

αigi(z)

The optimal solutions z∗ for this problem are the same as the optimal solutions for the original (constrained)
problem:

• If for a given z′ at least one constraint is not satisfied, i.e. gi(z′) < 0 for some i, maximizing over αi leads to
an infinite value (not a minimum, unless there is no non-infinite minimum)

• If all constraints are satisfied (i.e. gi(z′) ≥ 0 for all i), maximization over the α will set all elements of the
summation to zero, so that z′ is a solution of minzf(z).

Hard margin SVM
Karush-Kuhn-Tucker (KKT) approach

minw,w0

1

2
||w||2

subject to:
yi(w

Txi + w0) ≥ 1

∀(xi, yi) ∈ D

• The constraints can be included in the minimization using Lagrange multipliers αi ≥ 0 (m = |D|):

L(w, w0,α) =
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1)

• The Lagrangian is minimized wrt w, w0 and maximized wrt αi (solution is a saddle point)
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Hard margin SVM

Dual formulation

L(w, w0,α) =
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1)

• Vanishing derivatives wrt primal variables we get:

∂

∂w0
L(w, w0,α) = 0 ⇒

m∑
i=1

αiyi = 0

∂

∂w
L(w, w0,α) = 0 ⇒ w =

m∑
i=1

αiyixi

Hard margin SVM
Dual formulation

• Substituting in the Lagrangian we get:

1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1) =

1

2

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i=1

αiyi︸ ︷︷ ︸
=0

w0 +

m∑
i=1

αi =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj = L(α)

• which is to be maximized wrt the dual variables α

Hard margin SVM

Dual formulation

max
α∈IRm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj

subject to αi ≥ 0 i = 1, . . . ,m
m∑
i=1

αiyi = 0

• The resulting maximization problem including the constraints

• Still a quadratic optimization problem
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Hard margin SVM

Note

• The dual formulation has simpler contraints (box), easier to solve

• The primal formulation has d+ 1 variables (number of features +1):

minw,w0

1

2
||w||2

• The dual formulation has m variables (number of training examples):

max
α∈IRm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj

• One can choose the primal formulation if it has much less variables (problem dependent)

Hard margin SVM

Decision function

• Substituting w =
∑m
i=1 αiyixi in the decision function we get:

f(x) = wTx + w0 =

m∑
i=1

αiyix
T
i x + w0

• The decision function is linear combination of dot products between training points and the test point

• dot product is kind of similarity between points

• Weights of the combination are αiyi: large αi implies large contribution towards class yi (times the similarity)

Hard margin SVM

Karush-Khun-Tucker conditions (KKT)

L(w, w0,α) =
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1)

• At the saddle point it holds that for all i:

αi(yi(w
Txi + w0 )− 1) = 0

• Thus, either the example does not contribute to the final f(x):

αi = 0

• or the example stays on the minimal confidence hyperplane from the decision one:

yi(w
Txi + w0 ) = 1
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Hard margin SVM

Support vectors

• points staying on the minimal confidence hyperplanes are called support vectors

• All other points do not contribute to the final decision function (i.e. they could be removed from the training
set)

• SVM are sparse i.e. they typically have few support vectors

Hard margin SVM

Decision function bias

• The bias w0 can be computed from the KKT conditions

• Given an arbitrary support vector xi (with αi > 0) the KKT conditions imply:

yi(w
Txi + w0 ) = 1

yiw
Txi + yiw0 = 1

w0 =
1− yiwTxi

yi

• For robustness, the bias is usually averaged over all support vectors
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Soft margin SVM

Soft margin SVM

Slack variables
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min
w∈X ,w0∈IR, ξ∈IRm

1

2
||w||2 + C

m∑
i=1

ξi

subject to
yi(w

Txi + w0) ≥ 1− ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

• A slack variable ξi represents the penalty for example xi not satisfying the margin constraint

• The sum of the slacks is minimized together to the inverse margin

• The regularization parameter C ≥ 0 trades-off data fitting and size of the margin

Soft margin SVM

Regularization theory

min
w∈X ,w0∈IR, ξ∈IRm

1

2
||w||2 + C

m∑
i=1

`(yi, f(xi))

• Regularized loss minimization problem

• The loss term accounts for error minimization

• The margin maximization term accounts for regularization i.e. solutions with larger margin are preferred

Note

• Regularization is a standard approach to prevent overfitting

• It corresponds to a prior for simpler (more regular, smoother) solutions

Soft margin SVM
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Hinge loss

`(yi, f(xi)) = |1− yif(xi)|+ = |1− yi(wTxi + w0)|+

• |z|+ = z if z > 0 and 0 otherwise (positive part)

• it corresponds to the slack variable ξi (violation of margin costraint)

• all examples not violating margin costraint have zero loss (sparse set of support vectors)

Soft margin SVM
Lagrangian

L = C

m∑
i=1

ξi +
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1 + ξi)−

m∑
i=1

βiξi

• where αi ≥ 0 and βi ≥ 0

• Vanishing derivatives wrt primal variables we get:

∂

∂w0
L = 0 ⇒

m∑
i=1

αiyi = 0

∂

∂w
L = 0 ⇒ w =

m∑
i=1

αiyixi

∂

∂ξi
L = 0 ⇒ C − αi − βi = 0
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Soft margin SVM
Dual formulation

• Substituting in the Lagrangian we get

C

m∑
i=1

ξi +
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1 + ξi)−

m∑
i=1

βiξi =

m∑
i=1

ξi (C − αi − βi)︸ ︷︷ ︸
=0

+
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i,j=1

αiαjyiyjx
T
i xj −

m∑
i=1

αiyi︸ ︷︷ ︸
=0

w0 +

m∑
i=1

αi =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj = L(α)

Soft margin SVM

Dual formulation

max
α∈IRm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj

subject to 0 ≤ αi ≤ C i = 1, . . . ,m
m∑
i=1

αiyi = 0

• The box constraint for αi comes from C − αi − βi = 0 (and the fact that both αi ≥ 0 and βi ≥ 0)

Soft margin SVM

Karush-Khun-Tucker conditions (KKT)

L = C

m∑
i=1

ξi +
1

2
||w||2 −

m∑
i=1

αi(yi(w
Txi + w0 )− 1 + ξi)−

m∑
i=1

βiξi

• At the saddle point it holds that for all i:

αi(yi(w
Txi + w0 )− 1 + ξi) = 0

βiξi = 0

• Thus, support vectors (αi > 0) are examples for which (yi(w
Txi + w0 ) ≤ 1

13



Soft margin SVM

Support Vectors

αi(yi(w
Txi + w0 )− 1 + ξi) = 0

βiξi = 0

• If αi < C, C − αi − βi = 0 and βiξi = 0 imply that ξi = 0

– These are called unbound SV ((yi(wTxi + w0 ) = 1, they stay on the confidence one hyperplane

• If αi = C (bound SV) then ξi can be greater the zero, in which case the SV are margin errors

Support vectors
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Large-scale SVM learning

Stochastic gradient descent

min
w∈X

λ

2
||w||2 +

1

m

m∑
i=1

|1− yi〈w,xi〉|+

• Objective for a single example (xi, yi):

E(w; (xi, yi)) =
λ

2
||w||2 + |1− yi〈w,xi〉|+
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• Subgradient:
∇wE(w; (xi, yi)) = λw − 1[yi〈w,xi〉 < 1]yixi

Large-scale SVM learning

Note

• Indicator function

1[yi〈w,xi〉 < 1] =

{
1 if yi〈w,xi〉 < 1
0 otherwise

• The subgradient of a function f at a point x0 is any vector v such that for any x:

f(x)− f(x0) ≥ vT (x− x0)

Large-scale SVM learning

Pseudocode (pegasus)

1. Initialize w1 = 0

2. for t = 1 to T:

(a) Randomly choose (xit , yit) from D
(b) Set ηt = 1

λt

(c) Update w:
wt+1 = wt − ηt∇wE(w; (xit , yit))

3. Return wT+1

Note
The choice of the learning rate allows to bound the runtime for an ε-accurate solution toO(d/λε) with dmaximum

number of non-zero features in an example.
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APPENDIX

Appendix
Additional reference material

Large-scale SVM learning

Dual version

• It is easy to show that:

wt+1 =
1

λt

t∑
i=1

1[yit〈wt,xit〉 < 1]yitxit

• We can represent wt+1 implicitly by storing in vector αt+1 the number of times each example was selected and
had a non-zero loss, i.e.:

αt+1[j] = |{t′ ≤ t : it′ = j ∧ yj〈wt′ ,xj〉 < 1}|

Large-scale SVM learning

Pseudocode (pegasus dual)

1. Initialize α1 = 0

2. for t = 1 to T:

(a) Randomly choose (xit , yit) from D
(b) Set αt+1 = αt

(c) If yit
1
λt

∑t
j=1 αt[j]yj〈xj ,xit〉 < 1

i. αt+1[it] = αt+1[it] + 1

3. Return αT+1

Note
This will be useful when combined with kernels.
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