Support vector machines

In a nutshell
* Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)
* Solution only depends on a small subset of training examples (support vectors)
* Sound generalization theory (bounds or error based on margin)

 Can be easily extended to nonlinear separation (kernel machines)

Maximum margin classifier



Maximum margin classifier

Classifier margin

» Given a training set D, a classifier confidence margin is:

p =ming ) epy f(x)

e It is the minimal confidence margin (for predicting the true label) among training examples



* A classifier geometric margin is:

yf(x)
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Maximum margin classifier

Canonical hyperplane
 There is an infinite number of equivalent formulation for the same hyperplane:

wle+wy = 0
a(wlz+wy)) = 0 Ya#0

* The canonical hyperplane is the hyperplane having confidence margin equal to 1:
p = min(g y)epyf(x) =1

* Its geometric margin is:
0 1

lwl| - [Jew]]

Maximum margin classifier



Hard margin SVM

Theorem 1 (Margin Error Bound). Consider the set of decision functions f(x) = signw’x with ||w|| < A and
||Ix|| < R, for some R,A > 0. Moreover, let p > 0 and v denote the fraction of training examples with margin smaller
than p/||w||, referred to as the margin error.

For all distributions P generating the data, with probability at least 1 — § over the drawing of the m training
patterns, and for any p > 0 and § € (0,1), the probability that a test pattern drawn from P will be misclassified is



bound from above by

2\2
v+ \/; (Rp2 In?m + ln(l/é)).

Here, c is a universal constant.

Hard margin SVM

Margin Error Bound: interpretation

2)\2
v+ \/ﬂi (Rp2 In*m + ln(1/6)>.

The probability of test error depends on (among other components):

* number of margin errors v (examples with margin smaller than p/||w]||)

o . 2
* number of training examples (error depends on 1’“7’”)

* size of the margin (error depends on 1/p?)

Note
If p is fixed to 1 (canonical hyperplane), maximizing margin corresponds to minimizing ||w||

Hard margin SVM

Learning problem

minw.u, gl
subject to:
yi(w'z; +w) > 1
V(xi y:) €D

Note
* constraints guarantee that all points are correctly classified (plus canonical form)
* minimization corresponds to maximizing the (squared) margin

* quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Hard margin SVM

Learning problem

minw.u, Il

subject to:
yi(w@; +wo) > 1
V(zi,yi) € D

Note



* constraints guarantee that all points are correctly classified (plus canonical form)
* minimization corresponds to maximizing the (squared) margin

* quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Digression: constrained optimization
Karush-Kuhn-Tucker (KKT) approach

* A constrained optimization problem can be addressed by converting it into an unconstrained problem with the
same solution

* Let’s have a constrained optimization problem as:
min, f(z)
subject to:
gi(z) > 0 Vi

» Let’s introduce a non-negative variable o; > 0 (called Lagrange multiplier) for each constraint and rewrite the
optimization problem as (Lagrangian):

min, maxao f(2) = Y aigi(z)

Digression: constrained optimization
Karush-Kuhn-Tucker (KKT) approach

min, maxa>o f(z) — Z @;gi(z)
The optimal solutions z* for this problem are the same as the optimal solutions for the original (constrained)
problem:

« If for a given 2’ at least one constraint is not satisfied, i.e. g;(z") < 0 for some ¢, maximizing over «; leads to
an infinite value (not a minimum, unless there is no non-infinite minimum)

« If all constraints are satisfied (i.e. g;(z’) > 0 for all 4), maximization over the c will set all elements of the
summation to zero, so that 2z’ is a solution of min, f(z).

Hard margin SVM
Karush-Kuhn-Tucker (KKT) approach

minw, gl
subject to:
yi(w z; +wo) > 1
V(xi y:) €D
¢ The constraints can be included in the minimization using Lagrange multipliers c; > 0 (m = |D|):
o, 0) = glIWIP = et o)~ 1)

* The Lagrangian is minimized wrt w, wy and maximized wrt oy; (solution is a saddle point)



Hard margin SVM

Dual formulation

1 m
L(w,wo, ) = §||W|\2 > i(y(whxi+ wo ) — 1)
=1

* Vanishing derivatives wrt primal variables we get:

a m
a—wOL(w,wo,a) =0 = ;aiyi =0

a m
%L(w,wo, a)=0 = w= ;aiyixi

Hard margin SVM

Dual formulation

* Substituting in the Lagrangian we get:

m

1
§HW||2 - Zai(yi(WTXi + wo)—1) =

=1

DN =

m m
T T
E QO YiY X X5 — E QiQ5YiYX; X5 —
i,j=1 i,j=1

m m
E a;Y; wo + E Q; =
i=1 i=1

——
=0

m 1 m

Zaz‘ —3 Z aiajyiyx; x; = L)

i=1 i,j=1

e which is to be maximized wrt the dual variables o

Hard margin SVM
Dual formulation
m 1 m
T
i= i,j=

subject to a; >0 i=1,....m

m

> iy =0
i=1

* The resulting maximization problem including the constraints

* Still a quadratic optimization problem



Hard margin SVM

Note

* The dual formulation has simpler contraints (box), easier to solve

* The primal formulation has d + 1 variables (number of features +1):
. 1
minu, o 5 ||

* The dual formulation has m variables (number of training examples):
m 1 m
T
i= i,j=

* One can choose the primal formulation if it has much less variables (problem dependent)

Hard margin SVM

Decision function
* Substituting w = > | o;y;%; in the decision function we get:
m
f(x) =wix+wy = Z Qiyix; X + wo
i=1
* The decision function is linear combination of dot products between training points and the test point
¢ dot product is kind of similarity between points

* Weights of the combination are o;y;: large «; implies large contribution towards class y; (times the similarity)

Hard margin SVM

Karush-Khun-Tucker conditions (KKT)

1 m
L(w,wo, a) = [lw][* = Y ai(yi(wxi + wy ) 1)
i=1

At the saddle point it holds that for all ¢:
ai(yi(whx; + wo ) —1) =0
* Thus, either the example does not contribute to the final f(x):
a; =0
* or the example stays on the minimal confidence hyperplane from the decision one:

yi(whx; + wo ) =1



Hard margin SVM

Support vectors

* points staying on the minimal confidence hyperplanes are called support vectors

* All other points do not contribute to the final decision function (i.e. they could be removed from the training
set)

* SVM are sparse i.e. they typically have few support vectors

Hard margin SVM
Decision function bias
* The bias wq can be computed from the KKT conditions

* Given an arbitrary support vector x; (with o; > 0) the KKT conditions imply:

yiwlx; + wo ) =1
yiw! x; + yiwo = 1

1—yiwlx
wyg = ———
Yi

 For robustness, the bias is usually averaged over all support vectors



Soft margin SVM

Soft margin SVM

Slack variables
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. Lo e
min §||w|| +CZ§Z-

weX, wo R, EER™ p
subject to
yi(wix; +wg) >1-¢& i=1,....m
>0 i=1,...,m

* A slack variable &; represents the penalty for example x; not satisfying the margin constraint
* The sum of the slacks is minimized together to the inverse margin

¢ The regularization parameter C' > 0 trades-off data fitting and size of the margin

Soft margin SVM

Regularization theory

. 1
min -
WEX, woER, EER™ 2

Wl + €D el £ (x0)

* Regularized loss minimization problem
¢ The loss term accounts for error minimization

* The margin maximization term accounts for regularization i.e. solutions with larger margin are preferred

Note

» Regularization is a standard approach to prevent overfitting

* It corresponds to a prior for simpler (more regular, smoother) solutions

Soft margin SVM
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11—y f(x)|+

Hinge loss
yi, [(xi) = 1 —yif(xi) [+ = |1 — yz‘(WTXi + wo) |+
* |z|4+ = z if z > 0 and O otherwise (positive part)

* it corresponds to the slack variable &; (violation of margin costraint)

* all examples not violating margin costraint have zero loss (sparse set of support vectors)

Soft margin SVM

Lagrangian

L=CY &+ —||w||2 Zaz yilw'x; + wy ) — 1+ &) Zﬁza
=1 =1

e where a; > 0and 3; > 0

* Vanishing derivatives wrt primal variables we get:

a m
=0 i =0
For = Za y

a m
8—WL—O = W:Zaiyixi
0

L= — Oy ;=0
ac; 0 = a; — B
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Soft margin SVM

Dual formulation

* Substituting in the Lagrangian we get

m

m 1 m
CY &+ §||w||2 =Y aly(wxi+ wo ) =1+ &) =Y Bi&i =
i=1

i=1 i=1

m m m
1
Eﬁ%c—%—&ﬂgi GOGYYX] X = D Ciagyyx] X —
. | S———
i=1

~ ij=1 ij=1

m m
Zaiyiwo +Za¢ =
i=1

i=1
———
=0
m 1 m
Z =g Z iayyix; x; = L)
i=1 i,5=1

Soft margin SVM

Dual formulation

ané%vf(m ZO” D) Zl azozjylij X
i,j
subject to OgaigC i=1,....,m

m
> iy =0
=1

¢ The box constraint for «; comes from C' — «; — 3; = 0 (and the fact that both «; > 0 and 3; > 0)

Soft margin SVM
Karush-Khun-Tucker conditions (KKT)

L:CZ& 7Hw||2 Zaz yz w Xz+ Wo _1+€z Zﬂzgz
=1

i=1

* At the saddle point it holds that for all ¢:

ai(y,»(wai +wy)—14&)=0
Bi& =0

* Thus, support vectors (c; > 0) are examples for which (y;(wlx; + wg ) < 1

13



Soft margin SVM
Support Vectors

ai(yi(whixy + wo ) —1+&)=0
Bi& =0

e Ifa; <C,C—0a; —53;,=0 andﬁlfi = 0 imply that&; =0
— These are called unbound SV ((y;(wTx; + wg ) = 1, they stay on the confidence one hyperplane

e If a; = C (bound SV) then &; can be greater the zero, in which case the SV are margin errors

Support vectors
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Large-scale SVM learning
Stochastic gradient descent

2y

min 2wl + Zu — yalw, )|

* Objective for a single example (x;, y;):

A
E(w; (xi,yi)) = §|\W||2 + 1 — i {w, x) [+

15

margin errors (§; > 0)




* Subgradient:
VwBE(w; (x5,9:)) = Aw — 1[yi(w, x;) < 1]yix;

Large-scale SVM learning
Note

e Indicator function ( >
1 if Yi (W, X;) < 1
Lyi{w, x;) <1] = { 0 otherwise

¢ The subgradient of a function f at a point xg is any vector v such that for any x:

f(x) = f(x0) > v (x — x0)

Large-scale SVM learning
Pseudocode (pegasus)

1. Initialize wq = 0

2. fort=1t0T:

(a) Randomly choose (x;,,y;,) from D
(b) Setn; = &
(c) Update w:
Wi = Wi — 0 VwE(w; (xi,,9i,))

3. Return wr

Note

The choice of the learning rate allows to bound the runtime for an e-accurate solution to O(d/Ae) with d maximum
number of non-zero features in an example.
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e svmmodule in scikit-learnhttp://scikit-learn.org/stable/index.html
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16


http://scikit-learn.org/stable/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

APPENDIX

Appendix
Additional reference material

Large-scale SVM learning

Dual version
* Itis easy to show that:

t
1
Wit1 = E E l[ylt <Wt7xit> < 1]yitxit
i=1

e We can represent w1 implicitly by storing in vector cv;1 the number of times each example was selected and
had a non-zero loss, i.e.:

avli] = [{t <t ip = G Ayylwerx;) < 1]

Large-scale SVM learning

Pseudocode (pegasus dual)
1. Initialize ¢y = 0
2. fort=1t0T:

(a) Randomly choose (x;,,y;, ) from D

(b) Setayy1 = oy

© Wyi, 55 35y culilys (x5, %i,) < 1
Loappafie) = apglie] + 1

3. Return v

Note
This will be useful when combined with kernels.
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