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Deep Learning

@ Efficient processing of high-dimensional data
@ Robust to noise and ambiguity

@ Does not require extensive background knowledge and
feature engineering

@ Data hungry (large training sets needed)

@ Non-interpretable models and predictions
@ Hard to incorporate complex domain knowledge




Symbolic Reasoning

@ Expressive, can formalize complex domain knowledge

@ Interpretable, inference can be explained in terms
reasoning steps (proofs)

@ Can generalize from few examples

@ Inefficient, inference is typically expensive

@ No support for noise or ambiguity
@ Difficult to deal with high-dimensional data




Neuro-Symbolic Integration (NeSy)

Q: How many objects are both right of the green cylinder
and have the same material as the small blue ball?
A:3

Best of both worlds

@ Deep networks for low-level data processing and “atomic”
predictions

@ Symbolic approaches for reasoning on top of atomic
predictions

@ Probabilities (or scores) for dealing with uncertainty

v

Image from Mao et al. 2019



Dimensions: directed vs undirected models

Directed models Undirected models

@ Generalize Bayesian @ Generalize Markov
Networks to deal with Networks to deal with
(first-order) logic (first-order) logic

@ Generalize Logic Programs @ Enforce logical constraints
to deal with probabilities over neural predictions

@ Incorporare Neural @ Relax logical constraints to
“primitives” (e.g., predicates) deal with uncertainty




Dimensions: integration vs regularization

Integration Regularization

@ Neural primitives inside
reasoning framework
(typically logic program)

@ Differentiability via
probability of worlds or
proof score.

@ Logical Constraints are
used as regularizers for
neural network training

@ Differentiability by relaxed

constraints or consistency
in expectation




Dimensions: semantics

Probabisi semantis

@ Extends Boolean logic with
probabilities

@ Defines a probability
distribution over possible
worlds

@ Allows to perform inference
under uncertainty
(expensive)

@ Relax Boolean variables in
[0,1] interval

@ Relies on t-norms for
relaxing Boolean
connectives

@ Efficient inference,
Boolean semantics not
preserved




Semantic-based Regularization

@ Model problems with multiple related predictions

@ Incorporate knowledge as constraints over related
predictions

@ Model each prediction task with a statistical learner (kernel
machine, neural network)

@ Represent constraints over predictions in fuzzy logic

@ Combine regularization with loss on fuzzy constraint
satisfaction (including label supervision)




Semantic-based Regularization: Fuzzy logic
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Fuzzy logic

@ Boolean variables relaxed into real variables in [0, 1].

@ Conjunction relaxed using t-norm
@ Disjunction relaxed using t-conorm
@ Existential quantifier relaxed as maximum (over dataset)

@ Universal quantifier relaxed as minimum (over dataset,
usually replaced by average)




Semantic-based Regularization: formulation

|f] ||
L(f,®) = Z [1fiel[? + Z An(1 = ®p(F))
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Objective function

@ fis a vector of parameterized predictors (one per task)

@ ¢ is a set of logic formulas (the constraints)

@ ||f|| is the norm of f (e.g. norm of the weights for kernel
machines)

@ )\, is a weight associated to constraint h
@ &, is the fuzzy version of formula &y,




Semantic-based Regularization: example

ositive supervision . -~
P P manifold regularisation
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Fr = VdVd R(d,d) = ((A(d) NA(d)) V (~A(d) A —A(d))) Groundings
C = {di,dy} Pa(dy) =1
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tp(Pa(dy), fa(dy))
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Image adapted from Diligenti et al., 2017



Semantic-based Regularization: learning
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Gradient-based learning

@ wy ; is a parameter of a predictor f,
@ [y, is a grounding of formula ¢4

Learning problem is convex if:

@ f, are kernel machines (or similar)
@ A convex fragment of the tukasiewicz logic is used




Semantic-based Regularization: MAP inference

L(FX). 1(2) = SIFX) — ()2 + th( — dy(f()))

Gradient-based MAP inference

@ X set of (related) test examples
@ f(X) set of independent predictions over test examples

@ f(X) set of collective predictions over test examples
(accounting for constraints)

@ Inference of f(X') is performed by gradient descent:

f e g 1 — dy(F(X))
W = Fr (X)) fk(X/)"‘; Ah (8?k(Xi) >




Semantic-based Regularization: dimensions

dimensions

@ Undirected model: constraints as set of FOL formulas
(probabilistc variant as deep Markov Logic Network exists)

@ Regularization approach: soft consistency is a
regularization term in training loss

@ Fuzzy semantics: fuzzy logic is employed as relaxation

v




Knowledge distillation

teacher network construction rule knowledge distillation
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Teacher-student distillation
@ Student learns to fit data and satisfy rules

@ Teacher “shows” student how to change predictions to
satisfy rules (projection in feasible space)

@ Student should learn to implicitly satisfy rules (no rule
enforcement at prediction time)

y




Knowledge distillation: learning

LD;®)= > (1 =m)UYn, fo(Xn)) + 7L(fa(Xn), fo(Xn))
(Xn.Y,)eD

lterative procedure

@ f»(xn) are the student predictions for x, (i.e., according to

2 0)
@ fy(xn) is the teacher projection of those predictions in the
feasible space ¢ (i.e., according to q(y|xn))

@ w is a parameter trading-off data fitting and constraint
satisfaction (possibly on unlabelled data too)

@ At each iteration 6 is updated minimizing the loss




Knowledge distillation: teacher projection

rgign KL(q(Y1X)[IPe(YIX)) + C>2p > géng

s.t. An(1 = Eg[®h4(X, V)]) < €ng

Projection as constrained optimization

@ KL divergence between student and teacher predictions

° &)h,g(X, Y) is the g-th grounding of a fuzzy version of
formula ¢, on (X, Y).

° Eq[éh,g(x, Y)] is satisfaction of &Jh,g(X? Y) in expectation
over q(Y|X).

@ )\ is the weight of formula &,

@ &p g is a slack variable to penalize unsatisfied constraints

@ Cis a parameter trading-off divergence with student
prediction and satisfaction of formulas




Knowledge distillation: teacher projection

q (YIX) o< pp(Y[X) - exp (Z > Can(1 = Bng(X, Y)))
h

g

Closed form solution

@ The constrained otimization problem has a closed form
solution.

@ The normalization term is computed by dynamic

programming if relationship between constraints allows for
it, or approximated with sampling approaches otherwise.

<




Knowledge distillation: dimensions

@ Undirected model: constraints as set of FOL formulas

@ Regularization approach: projection on consistent
predictions is a regularization term in training loss

@ Fuzzy semantics: fuzzy logic is employed as relaxation




Semantic Loss Regularization
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@ ¢ is a propositional formula (a constraint that should hold)

@ pis a vector of probabilities associated to Y variables (e.g.
outputs of a neural network)

@ The semantic loss is proportional to the negative logarithm
of the probability that sampling Y according to p produces
a value y satisfying the constraint ¢.




Semantic Loss Regularization

o Class1 e Class1
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Regularizing with semantic Loss

Lreg = traning_loss + \ semantic_loss

@ Semantic loss as regularizer of training loss (encourages
predictions satisfying constraints)




Semantic Loss Regularization
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End-to-end training with semantic Loss

@ Semantic loss can be compiled into an algebraic circuit

@ Partial derivatives can be computed on the circuit (see e.g.
Deep ProbLog)




Semantic Loss Regularization: dimensions

dimensions

@ Undirected model: constraints as set of propositional
formulas

@ Regularization approach: semantic loss is additional
term to training loss

@ Probabilistic semantics: constraints are enforced in
expectation over probabilities of possible worlds




Deep ProbLog

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

From ProbLog to Deep ProbLog

@ Introduce neural networks to process low-level data
(softmax output layer)

@ neural annotated disjunction (nAD) maps inputs to
distributions over candidate outputs

@ nn is a reserved word (stands for neural network)

@ m_digit is the identifier of a neural network (CNN
classifying digit images)

@ digit is a neural predicate evaluated via m_ digit.




Deep ProbLog: nAD example

nn(m_digit,[X],Y,[0,...,9]):digit(X,Y).

ground on
\j
nn(m_digit, [EJ,0)::digit(E],0); ... ; nn(m_digit, [EJ,9)::digit(E],9).

evaluate m_digit on

\J
po::digit(EL0); ... ;pe::digit(E] 9).



Deep ProbLog: inference

Inference by knowledge compilation

@ Ground relevant part of the program to answer query
(including nADs).

© Run forward step in neural nets to turn ground nAD into
ground AD.

© Compile resulting formula (same as ProbLog)
© convert into AC (same as ProbLog)
@ evaluate AC (same as ProbLog)




Deep ProblLog: grounding example

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y). DeepProbLog
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2. program
query
addition A 1
groundon @ ol B
nn(m_digit, [J&J1,0) : :digit(Jd,0) ;nn(m_digit, [J1, 1)::digit(@d,1). ground
nn(m_digit, (J§]1,0)::digit(M,0) ;nn(m_digit, [, 1)::digit(H1,1). DeepProbLo
addition(fg,M.1) :- digit(fd,0), digit(H.1). Frjo ram 9
addition(@, 1) :- digit(@,1), digit(,0). prog
forward step of nn
0.8 :: digit(Jd,0); 0.1 :: digit(Jgd,1).
0.2 :: digit(fJ,0); 0.6 :: digit( . 1). lfr';’gﬂ;j
addition(@,J,1) :- digit(@,0), digit(f¥.1). 9
addition(g,Il.1) :- digit(@,1), digit(H,0). program

Image adapted from Manhaeve et al., 2019



Deep ProbLog: learning

Learning by gradient descent in ProbLog

@ Gradient computation can be done over algebraic circuit
used for inference.

@ Need to replace probability semiring used for inference
with gradient semiring (algebraic Problog)

@ Gradient update followed by normalization to get valid
probabilities




Deep ProbLog: probability vs gradient semiring

probability gradient

adb=a+b (aav)®(bby)=(a+b,ayv+ by)
a®b=ab (a,av) ® (b,by) = (ab,aby + bay)

e? =0 e® =(0,0v)

e¥ =1 e® =(1,0v)

L(f)=p L(f) = (p,0v) (fixed p)

L(f;) = pi L(f;) = (pi,ei) (learnable p;)

L(=f)=1—p L(=f)=(1—-p,—Vp) (with L(f) = (p,VP))



ProbLog: gradient semiring example

0.2::earthquake. } 0.2::earthquake.
0.1::burglary. AN 0.1::burglary.
0.5::hears_alarm(mary) . AN grounding for ~ 0.5::hears_alarm(mary) .
0.4::hears_alarm(john). AN
alarm :- earthquake. M. calls(mary) alarm :- earthquake.
alarm :- burglary. AN alarm :- burglary.
calls(X):-alarm,hears_alarm(X). \\\ calls(mary) : -alarm,hears_alarm(mary) .
\\
\\
. nal:le N compilation using
N . )
parameters ~ gradient semiring
N
N
N
N
\\
a
0.14, [0.45,0.4]
0.5,0
0.08, [ ]

[—-earthquakeJ[ burglary J[ hears_alarm(mary) J[earthquakeJ
0.8, [-1,0] 0.1, [0,1] 0.5, [0,0] 0.2, [1,0]

NeSy



Deep ProbLog: learning
Learning by gradient descent in DeepProbLog

@ Use gradient semiring as for ProbLog (considering outputs
of neural predicates as abstract parameters).

@ Backpropagate gradient from abstract parameters into the
corresponding neural network

L _ Z dP( q) api

@ L is aloss function
@ P(q) is the probability of a traning example g (query)

@ mis the number of outputs of a neural network
(alternatives)

@ p; is the i-th output of the network for example q.
@ 6 is the k-th parameter of a neural network




Query
addition(a,b,1)

DeepProbLog Program

t(0.2) :: noisy.
nn(classifier, [X], ..

addition(X,Y,2) - -

T

grounding

DeepProblog Program
t(8.2) :: noisy.
nn(classifier, [a],0);..
nn(classifier, [b],8) ..

addition(a,b,1):- .

compilation

Deep ProbLog: learning pipeline

O ¢

H—! H= 5
I

digit(a,N1) 0.8 :: digit(a,0);
8.1 :: digit(a,1);

digit(b,N2)

rewrite /

p,Vp

L, VL




Deep ProbLog: dimensions

dimensions

@ Directed model: probabilistic logic program (definite
clauses)

@ Integration approach: probabilistic logic program
enriched with neural predicates

@ Probabilistic semantics: constraints are enforced in
expectation over probabilities of possible worlds




Neural Theorem Proving

@ Theorem proving allows to infer novel facts entailed by a
KB, but fails with noisy or ambiguous knowledge (e.g.
slightly different names for the same relation)

@ Neural models are robust to noise and ambiguity but have
limited reasoning capabilities

@ Neural theorem proving aims at combining the best of both
worlds




Neural Theorem Proving

In a nutshell

@ End-to-end differentiable deductive reasoner
@ Use Prolog backward-chaining algorithm for proving goals

@ Replace symbolic unification between atoms with a
differantiable similarity between their embeddings

@ Collect the highest scoring proof as the goal proof

@ Embeddings are learned by gradient descent over goal
proofs for true (positive) and false (negative) facts.




Neural Theorem Proving: Prolog backward chaining

grandfatherOf (X, Y) :- fatherOf(X, Z), fatherOf(z, Y).
grandfatherOf (X, Y) :- fatherOf(X, Z), motherOf(z, Y).
fatherOf (tom, ann).
motherOf (ann, bart).

OR / AND search
@ OR iterates over all rules and unifies the rule head with the
goal (one rule suffice)
@ AND iterates over all atoms in the body of the rule (all
atoms should be proved)
@ ORis recursively applied to each atom in the body




Prolog backward chaining: example

grandfatherOf(X, Y) :- fatherOf(X, Z), fatherOf(Z, Y).
grandfatherOf(X, Y) :- fatherOf(X, Z), motherOf(Z, Y)

fatherOf(tom, ann)

[grandfatherOf,Q,bart]

motherOf(ann, bart)

grandfatherOf(X, Y) :-
fatherOf(X, Z), fatherOf(Z, Y)

grandfatherOf(X, Y) :-
motherOf(X, Z), fatherOf(Z, Y).

X/Q, Y/bart X/Q, Y/bart

fatherOf(X, 2), fatherOf(Z, Y)

AND fatherOf(X, Z) motherOf(Z, Y)

AND

[fatherOf,Q,Z] [fatherOf,ann,bart]
OR OR

[fatherOf,Q,Z] [motherOf,ann,bart]
OR OR

fatherOf(tom, ann) fatherOf(tom, ann) motherOf(ann, bart)

Q/tom, Z/ann FALSE

Q/tom, Z/ann




Neural Theorem Proving: unification

previous variable
unifications

previous soft
unifications (neural)

\‘ ’ .

\

\ .

1 .

\ z

\\ .

\

v s~
unifyg([grandpa0f, ABE, BART], [s, Q, ], (&, p)) = (S}, S}) =

1

({Q/ABE}7 min (P7 exp(fuegrandpa()f: - 05: H2)7 eXp(fHeBART: - 01 ”2)))
3 * b 4

N
\

s
\

\

\

’ N
1 ‘\//,
variable unification

soft unifications ~ embeddings
Soft unification

@ Variables unify with variables or symbols as in Prolog

@ Constants and predicates unify softly via similarity of their
embeddings




Neural Theorem Proving: OR

grandfatherOf(X, Y) :- fatherOf(X, Z), parentOf(Z, Y).
/’ ‘\

current state A

(possible unifications)

body matching head unification

‘i 1’/
org([s,Q,4],d,S) = [S'|S" € andg([[father0f, X, Z], [parentOf,
13

\
\

\
\

L)

2, YN d, ({X/Q, Y /i, 5p)). - ]
N e’

max pr(;of depth

resultof Unify

[y
OR module

other rules
matching the goal

@ The goal is (soft) unified with the head of a rule (for all
possible rules that soft unify)

@ The AND module is called for all atoms in the body




Neural Theorem Proving: AND

and§ ([[father0f, X, Z], [parent0f, Z, Y]], d, ({X/Q, Y /i}, 5’,,)) =
—_———
result of Unify in 0T

[S”|S” € andg([[parent0f, Z, Y]], d, ") for S’ € org([father0f, Q,Z],d — 1, ({X/Q, Y/i}, 5,))]

i‘ [} result of substitute [} result (,funify inoT
1 ‘\ ‘\
1 v \
AND called OR called max depth is
on remaining atoms on first atom reduced

AND module

@ The AND module fails if the maximum depth is reached (or
the upstream OR failed)

@ The AND module succeeds if it reaches the end of the list
of atoms

@ Otherwise it recurs over the atoms substituting variables
wherever possible and calling OR




Neural Theorem Proving: Proof

ntps (G, d) = arg max Sy
S € or§(G,d,(@,1))
S#FAIL

Proof with maximal score

@ The search is initialized with an empty substitution set and
a score of 1

@ The maximization is over all possible goal proofs

@ The score of a proof is the minimal score of all soft
unifications in the proof




Neural Theorem Proving: proof example

. org([s,i.j].2.(2,1)) 3
— 2. —
unifyg([father0f, ABE, HOMER], [s, i, j], (@, 1)) + unifye([grandfather0f, X, Y], [s,i, ], (2,1))
Si=@.p) 0.0 B = (X0 Y[ hp0) Eimple Knowidas Base:” ™
fatherOf (ABE, HOMER). |
3 b =T . parentOf (HOMER, BART). |
andj ([[father0f, X, Z]. [parent0f. Z, V]|, 2, 5) : {;mdfatfmuf(x_’\v) ™ i
Ysubstitute father0f(X,Z), ;
orj([father0f,i,7],1.8;)
unifyg([father0Of, ABE, HOMER], [fatherOf, i, Z], S3) ... unifyg([parentOf, HOMER, BART], [fatherOf, i, 7], S3)
Ss1 = ({X/i,Y/j,Z/HOMER}, p31) S33 = FAIL Ss2 = ({X/i,Y/j,Z/BART}, p32)
\
andf ([parent0f,Z, Y],2, S31) andf ([parent0f, Z, Y], 2, S32)
¥ substitute ¥substitute
org([parentOf, HOMER, j], 1, S3;) org([parentOf, BART. j], 1, S32)
P < >
Ssi1 = ({X/i.Y/j.7/noMER} /’m)* Sy = FAIL Syzg = FAIL ; Ssor = ({X/i. Y/, 7/BART}. psy1)
Ss12 = ({X/i, Y /j,7Z/HOMER}, p312) Ssg0 = ({X/i, Y /j,Z/BART}, p3os)

Image from Rocktéschel and Riedel, 2017



Neural Theorem Proving: prediction examples

part_of (CONGO.N.03,AFRICA.N.01)
Score  Proofs

0.995 partof(X, Y) :— haspart (Y, X)
has_part (AFRICA.N.01, CONGO.N.03)
0.787 part_of (X, Y) :— instance_hyponym(Y, X)

instance_hyponym (AFRICAN COUNTRY.N.0l1l, CONGO.N.03)

<

hyponym (EXTINGUISH.V.04, DECOUPLE.V.03)

Score  Proofs
0.987 hyponym (X, Y) :- hypernym(Y, X)
hypernym (DECOUPLE.V.03, EXTINGUISH.V.04)




Neural Theorem Proving: dimensions

dimensions

@ Directed model: logic program (definite clauses)

@ Integration approach: logic program enriched with neural
similarity in place of symbolic unification

@ “Fuzzy” semantics: a score is associated to a proof, no
explicit probabilistic interpretation
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Software Libraries

@ Semantic-based regularization (SBR)
[https://sites.google.com/site/
semanticbasedregularization/home/software]

@ Deep ProblLog [https://bitbucket.org/problog/
deepproblog/src/master/]

@ Greedy Neural Theorem Provers (GNTP)
[https://github.com/uclnlp/gntp]
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