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Preliminaries



“Imagine that you are the leader of a colonial expedition from Earth to an extrasolar planet. Luckily, this planet

is habitable and has a fair amount of vegetation suitable for feeding your group. Impor- tantly, the most

abundant source of food comes from a plant whose fruits are sometimes smooth and round, but sometimes

bumpy and irregular.”

“The physicians assure you that the shape of a fruit is the only feature that seems related to its safety. The

problem, though, is that a wide variety of fruit shapes from these plants exist: almost a continuous range from

round to irregular. Since the colony has essential uses for both safe and noxious fruits, you want to be able to

classify them as accurately as possible. ”

Source: [Settles, 2012].
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■ We know that smoother fruits are (monotonically) safer, but we don’t know where to set the threshold.

■ In other words, we want to learn a threshold function:

fθ(x) =

{
1 if xirreg < θ

−1 otherwise

where x are measurements of fruit features and xirreg captures its shape “irregularity”.
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Idea: use regular supervised learning

• Collect a large enough training set S = {(x, y)}, fit threshold classifier fθ on S

• If maximum % errors is ϵ ∈ (0, 1), enough to collect O( 1
ϵ
) examples [Shalev-Shwartz and Ben-David, 2014]

■ We want to find θ as quickly and as economically as possible, by requiring fewer tests.
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■ Can we do better?

Key features:

• Fruits x are plentiful and easy to harvest and measure

• Obtaining y incurs a cost: person that eats the fruit may get sick

So we definitely want to minimize the number of needed labels.
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Idea: gather large set of unlabeled fruits U = {xi} and arrange them by roughness.

Then use binary search (as in the illustration) to figure out the threshold θ. This only requires O(log2
1
ϵ
) tests!
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Idea: gather large set of unlabeled fruits U = {xi} and arrange them by roughness, then use binary search:

ϵ 1
ϵ

log2
1
ϵ

0.1 10 3.321

0.001 1000 9.966

0.00001 100000 16.610

■ In this (cleverly designed illustrative) scenario, there is an exponential improvement in sample complexity
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Active vs Passive

“The key hypothesis is that if the learner is allowed to choose the data from which it learns — to be active,

curious, or exploratory, if you will — it can perform better with less training.” [Settles, 2012]
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Preconditions:

• Collecting unlabelled instances x is cheap

• Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what’s in an

image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Example: Recommendation

There are millions of products on online catalogues (think Amazon), but in order to discover what are the

tastes of a user, you have to actually convince them to score the items. This information is personalized, so

this is the only way to obtain supervision.
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Example: Scientific Discovery

■ Adam, the “robot scientist” [King et al., 2009]

■ The learner obtains labels by operating an automated testing machine.
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Example: Scientific Discovery

■ Similar strategies used in chemical engineering, material engineering, etc.
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Notation

A summary of frequently used terms:

• Instances x ∈ Rd are unlabelled d-dimensional vectors of observations

• Examples z = (x, y) are instances annotated by a label y ∈ {0, 1} or y ∈ {1, . . . , c}

• A classifier f : Rd → {0, 1} maps instances to labels

• F = {fθ} is a family of classifiers parameterized by θ

■ The meaning of θ depends on the model class, e.g., for neural nets with a fixed architecture, θ represents

their weights; for random forests, θ represents the structure and leaves of all trees.
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Assumptions

■ We assume the data to be distributed according to a ground-truth data generating process p∗(Y ,X), and

use p∗(Y | X) and p∗(X) to indicate the prior and class likelihood of this process, i.e.,

p∗(Y ,X) ≡ p∗(Y | X) · p∗(X) (1)

The data may be corrupted by label noise, but we explicitly avoid adversarial settings.

■ We also assume to deal with probabilistic classifiers:

pθ(Y = y | X = x) (2)

Predictions are computed as:

fθ(x) := argmax
y=1,...,c

pθ(Y = y | X = x) (3)

This includes, e.g., logistic regression, Gaussian processes, and neural nets with a top softmax activation.

■ Predictors that only output a score (e.g., Support Vector Machines output the distance to the separating

hyperplane) can often be adapted (via, e.g., calibration or Platt scaling). This is not necessary to leverage AL.
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The Labeling Oracle

■ The labeling oracle label : Rd → {0, 1} returns:

label(x) := argmax
y∈{0,1}

p∗(Y = y | X = x) (4)

where p∗(Y | X) is the ground-truth distribution.

■ Invoking the oracle comes at a cost, which is usually non-negligible, instance- and class-dependent, and

possibly unknown [Herde et al., 2021].1

For simplicity, we assume the cost to be unitary: querying any instance x ∈ Rd costs the same.

1Although it could be estimated from interaction data.
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Active Learning (Pool-based). Given:

• a family of classifiers F ,

• a set of unlabelled instances U = {x1, . . . , xm} ⊆ Rd sampled i.i.d. from p∗(X),

• a (costly) labeling oracle label : Rd → {0, 1},

Find a classifier f̂ ∈ F that achieves low risk on p∗(X,Y ) while keeping annot. cost low
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Active Learning (Query Synthesis). Given:

• a family of classifiers F ,

• a generator of instances synthesize(region) 7→ x,

• a (costly) labeling oracle label : Rd → {0, 1},

Find a classifier f̂ ∈ F that achieves low risk on p∗(X,Y ) while keeping annot. cost low
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Active Learning (Selective Sampling). Given:

• a family of classifiers F ,

• a sequence of unlabelled instances x1, x2, x3, . . . ,

• a (costly) labeling oracle label : Rd → {0, 1}

Find a classifier f̂t ∈ F that achieves low risk on future data xt+1, xt+2, . . . while keeping annot. cost low
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Query Sampling vs. Query Synthesis

■ Left to right:

• Pool-based: moderate control over queries, requires memory to store U

• Query synthesis: maximum control over queries, can generate uninterpretable queries [Baum and Lang, 1992],

although deep generative models can help somehow [Nguyen et al., 2016].

• Selective sampling: little control over the distribution of queries, often solved under tight memory con-

straints (online learning)

■ We will focus on pool-based AL.
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Strategies



Template

Input: models F , examples L, pool U, query budget T ≥ 1

Output: selected model f ∈ F
1: f ← fit(F , L) ▷ initialize the model

2: for t = 1, 2, . . . ,T do ▷ until the budget is exhausted

3: x← argmaxx∈U acq(f , x) ▷ select a query instance

4: obtain label y of x from annotator

5: U ← U \ {x} ▷ remove unlabeled instance from pool

6: L← L ∪ {(x, y)} ▷ update training set

7: f ← fit(F , L) ▷ update the model
return f

■ fit performs training (e.g., trains for a fixed # of epochs)

■ acq scores instances based on their “informativeness”

■ What instance x ∈ U should be selected so to convey as much information as possible to f ?
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Uncertainty Sampling

What’s the point of asking the label of instances on which the classifier is already certain?2

■ Left: two Gaussians (40 points each)

■ Middle: picking points completely at random (ignoring the class label!)

■ Right: picking points based on uncertainty

2There is a point to doing so, as we will see later.
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Uncertainty Sampling

■ Idea: pick x ∈ U on which the classifier is most uncertain.

■ How should uncertainty be defined?
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Uncertainty Sampling

■ Define uncertainty using the confidence, i.e., distance from certainty:

acq(θ, x) := 1− pθ(ŷ | x) (5)

where ŷ is the predicted label:

ŷ := fθ(x) = argmax
y

pθ(y | x) (6)
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Uncertainty Sampling

■ Define uncertainty using the margin, i.e., difference in (conditional) likelihood:

acq(θ, x) := pθ(ŷ
′ | x)− pθ(ŷ | x) (7)

where ŷ is the predicted label and ŷ ′ is the 2nd best label:

ŷ = argmax
y

pθ(y | x) (8)

ŷ ′ := argmax
y ̸=ŷ

pθ(y | x) (9)
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Uncertainty Sampling

■ Define uncertainty using the Shannon entropy of the label:

acq(θ, x) := Hθ(Y | X = x) (10)

where Hθ is defined as:

Hθ(Y | X = x) := −
∑
y∈[c]

pθ(y | x) log2 pθ(y | x) (11)

• It achieves a minimum on dead certain distributions:

pθ(Y | x) = (0, 1, 0, . . . , 0)

• and a maximum on the uniform distribution:

pθ(Y | x) = (
1

c
, · · · ,

1

c
)
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Confidence vs. Margin vs. Entropy

■ Left: confidence considers prob. of top class only

■ Middle: margin considers prob. of top & runner up classes

■ Right: entropy considers prob. of all classes

If c = 2, they are equivalent. If c > 2, no obvious best

choice, it really depends on the task and loss (e.g., cross-

entropy vs.accuracy)

Example: for classifiers with a sigmoid

top layer:

uncertainty depends on distance from

separating hyperplane of predicted vs.

top two vs. all classes
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Uncertainty Sampling

■ Uncertainty sampling is very easy to implement.

■ Margin & Confidence can be defined even in terms of unnormalized scores.

■ Usually performs reasonably well (though not optimally) in practice: a useful baseline/starting point.
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Example: Structured Output

Consider an LSTM that takes a sequence of MNIST images X = [x1, . . . , xn] that composes a word and

outputs the word itself y = (y1, . . . , yn).

• Computing the most likely output ŷ can be done efficiently.

• Computing the entropy amounts to:

Hθ(Y | X = x) := −
∑

y∈{1,...,26}n
pθ(y | X ) log2 pθ(y | X ) (12)

This involves summing over 26n possible outputs, which takes time exponential in n.

■ Computing the most likely output can be NP-hard. For instance, if y is molecular structure that mast satisfy

specific hard constraints (chemical validity), then finding the best structure amounts to solving a hard

combinatorial problem.

Hence, the confidence and margin can also be very hard.
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Uncertainty in Regression

■ When considering regression models with Y ∈ R, uncertainty at x can be implemented as differential entropy:

Hθ(Y | X = x) := E[− log2 pθ(y | x) | x] (13)

= −
∫
R
pθ(y | x) log2 pθ(y | x) (14)

■ As an alternative heuristic, use the variance:

Varθ(Y | x) := E[(Y − E[Y | x]︸ ︷︷ ︸
µθ(Y |x):=

)2 | x] (15)

=

∫
R
(y − µθ(Y | x))2pθ(y | x)dy (16)

µθ(Y | x) =
∫
R
y pθ(y | x)dy (17)

■ How to compute them?
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Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (18)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: 1-dimensional Gaussian Output

Consider one-dimensional output y ∈ R and a neural net:

nn : x 7→ (µ, σ), y ∼ N (µ, σ) (19)

In this case, it is well known3 that:

Varθ(Y | x) = σ2, Hθ(Y | x) =
1

2
log(2πσ2) +

1

2
(20)

Notice that Varθ(Y | x) ∝ expHθ(Y | x), so they change monotonically.

3See https://en.wikipedia.org/wiki/Normal_distribution.
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Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (21)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: k-dimensional Gaussian Output

Consider one-dimensional output y ∈ Rk and a neural net:

nn : x 7→ (µ, S), Σ← SST , y ∼ N (µ,Σ) (22)

with Σ PSD by construction. In this case, it is well known4 that:

Varθ(Y | x) ∝ trΣ Hθ(Y | x) ∝ log detΣ (23)

where the trace is cheap to compute but the determinant is more challenging.
4See https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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Illustration
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■ Synthetic dataset: 25 clusters of red points arranged in a 5× 5 grid, surrounded by a sea of blue points
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■ After 10 iterations of uncertainty sampling.
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■ After 70 iterations of uncertainty sampling.
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■ After 140 iterations of uncertainty sampling. Not nice!
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Over-confidence

■ Discriminative models are over-confident:

Uncertainty does not decrease with distance from

the training set.

■ Bayesian generative models not so much:

Uncertainty does decrease with distance from the

training set.
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Aleatoric vs Epistemic [Hüllermeier and Waegeman, 2021]

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL [Sharma and Bilgic, 2017]
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Uncertainty Sampling for Streaming Data

Input: models F , bootstrap training set L, threshold τ

Output: selected model f ∈ F
1: f ← fit(F , L) ▷ initialize the model

2: for t = 1, 2, 3, . . . , do

3: receive instance x

4: if unc(f , x) > τ then ▷ if f is uncertain about x

5: obtain label y of x from annotator

6: L← L ∪ {(x, y)} ▷ update training set

7: f ← fit(F , L) ▷ update the model
return f

■ The tricky bit is setting τ . Many algorithms update it dynamically by, e.g, starting from a large τ and

lowering it as new data is received and the model improves
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■ For some problems, US converges to the right thing – because it is uncertain enough
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■ If you are unluckly, US becomes over-confident: in this example, the model becomes confident that the

regions inside the black blob cannot be white, so it does not sample them and converges to the wrong shape.

40



■ Uncertainty sampling is quite heuristic. Are there more principled approaches?
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Version Space

■ Consider a hypothesis space F = {fθ : Rd → [c]} and a data set S = {(xi , yi )}

Consistency

A hypothesis f ∈ F is consistent with S, written f |= S , iff it makes zero mistakes on it, that is:

(f |= S) ⇐⇒
(∑

(x,y)∈S 1{f (x) ̸= y}
)
= 0 (24)

Version Space

The version space VSF (S) of F given S is the set of hypotheses f ∈ F that is consistent with S, that is:

VSF (S) = {f ∈ F : f |= S} (25)

■ VSF (L) contains those hypotheses that have not yet been ruled out by the acquired examples L: they are all

just as good w.r.t. S
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Version Space

Version Space

The version space VSF (S) of F given S is the set of hypotheses f ∈ F that is consistent with S, that is:

VSF (S) = {f ∈ F : f |= S} (26)

■ If S is not separable w.r.t. F , i.e., if there is no hypothesis f ∈ F that is constent with it, then the version

space is empty (VSF (S) = ∅). This happens because:

• F is not expressive enough. Example: no f ∗ ∈ F that correctly labels the data.

• S is noisy. Example: S contains the same instance twice but annotated with different labels – e.g., (x, 1)

and (x, 3) – so no f ∈ F can classify both correctly.

■ We assume the realizable case: ∃f ∗ ∈ F s.t. y = f ∗(x) for all x and no noise.

This implies that f ∗ ∈ VSF (L) for all choices of labeled examples L, because the supervision (x, y) is always

consistent with f ∗. In addition, VSF (L) ̸= ∅.
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Version Space ↔ Disagreement Region

Disagreement Region

Given F and S , the disagreement region is the set of points x ∈ Rd such that there exist two classifiers f , f ′

in the version space VSF (S) that produce different predictions for them:

DISF (S) = {x ∈ Rd : ∃f , f ′ ∈ VSF (S) . f (x) ̸= f ′(x)} (27)

■ If x ̸∈ DISF (S), then all candidate classifiers f in the version space classify it the same: acquiring its label is

pointless.

■ If x ∈ DISF (S), then at least one f in the version space classifies it differently: acquiring its label is useful.
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Left: input space Rd , data set S of red crosses vs blue circles. Right: hypothesis space F , each f is a point;

the ground-truth f ∗ is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

The version space VSF (S) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

The disagreement region DISF (S) is the space enclosed between these two rectangles.
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Streaming AL

Input: models F
Output: selected model f ∈ F
1: L← ∅
2: V ← F ▷ implements the version space VSF (L)

3: for t = 1, 2, 3, . . . , do

4: receive instance x

5: if x ∈ DIS(V) then ▷ if x falls in the disagreement region

6: obtain label y of x

7: update V ← {f ∈ V : f (x) = y} ▷ update version space

8: return any f ∈ V

■ If x ∈ DISF (L), then there are two f , f ′ ∈ VSF (L) that disagree on how x should be labeled. Getting its label

allows us to get rid of either f or f ′, so VSF (S) and DISF (S) both shrink.

■ Recall that f ∗ is always compatible with examples (x, y), so it is always in V → algorithm zooms into it!

■ This algorithm makes no useless queries! . . . can we do better if we can choose x?
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Pool-based AL

Input: models F
Output: selected model f ∈ F
1: L← ∅
2: V ← F ▷ implements the version space VSF (L)

3: for t = 1, 2, . . . ,T do

4: x← argmaxx∈U acqVS (V,F , x)
5: obtain label y of x

6: update V ← {f ∈ V : f (x) = y} ▷ update version space

7: return any f ∈ V

■ We can always ensure that x ∈ DISF (L) – as long as VSF (S) ̸= ∅, in which case we can simply terminate.

Problem: how do we define the acquisition function?
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Consider the homogeneous linear classifiers:

F =
{
fθ(x) = 1

{
θ⊤x > 0

}
: θ ∈ Rd , ∥θ∥2 = 1

}
(28)

The version space of S is essentially the set of direction vectors θ that classify all points correctly.
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■ Classifiers are hyperplanes in instance space and instances are hyperplanes in hypothesis space (duality)
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■ Pick the point x ∈ U that (greedily) restricts the version space as much as possible. In this special case, x it

passes close to the center of VSF (S).

50



Idea: pick x ∈ U that reduces the volume of the version space VSF (S) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (29)

So computing a volume in general requires integration.

■ Pick x that minimizes Vol (VSF (S ∪ {(x, y)})). However, we don’t know the label y of x → marginalize it:

argmin
x∈U

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] (30)
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Question: how to encode the version space?

■ If F is finite, can explicitly store f |= S. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] =
∑
y∈[c]

pθ(y | x) ·Vol (VSF (S ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(31)

• If F is “simple” and/or S is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VSF (S) of known volume:

{θ̃i ∼ Uniform(B) : i ∈ [s]}, Vol
(
VSF (S ′)

)
≈

1

Vol (B)
·
1

s

∑
i∈[s]

1

{
θ̃i ∈ VSF (S ′)

}
(32)

To check, 1{θi ∈ VSF (S ′)}, check that fθ classifies all examples in S correctly.

• Otherwise (think CNN on ImageNet), can be extremely challenging

52



Question: how to encode the version space?

■ If F is finite, can explicitly store f |= S. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] =
∑
y∈[c]

pθ(y | x) ·Vol (VSF (S ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(31)

• If F is “simple” and/or S is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VSF (S) of known volume:

{θ̃i ∼ Uniform(B) : i ∈ [s]}, Vol
(
VSF (S ′)

)
≈

1

Vol (B)
·
1

s

∑
i∈[s]

1

{
θ̃i ∈ VSF (S ′)

}
(32)

To check, 1{θi ∈ VSF (S ′)}, check that fθ classifies all examples in S correctly.

• Otherwise (think CNN on ImageNet), can be extremely challenging

52



Question: how to encode the version space?

■ If F is finite, can explicitly store f |= S. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] =
∑
y∈[c]

pθ(y | x) ·Vol (VSF (S ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(31)

• If F is “simple” and/or S is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VSF (S) of known volume:

{θ̃i ∼ Uniform(B) : i ∈ [s]}, Vol
(
VSF (S ′)

)
≈

1

Vol (B)
·
1

s

∑
i∈[s]

1

{
θ̃i ∈ VSF (S ′)

}
(32)

To check, 1{θi ∈ VSF (S ′)}, check that fθ classifies all examples in S correctly.

• Otherwise (think CNN on ImageNet), can be extremely challenging

52



Question: how to encode the version space?

■ If F is finite, can explicitly store f |= S. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] =
∑
y∈[c]

pθ(y | x) ·Vol (VSF (S ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(31)

• If F is “simple” and/or S is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VSF (S) of known volume:

{θ̃i ∼ Uniform(B) : i ∈ [s]}, Vol
(
VSF (S ′)

)
≈

1

Vol (B)
·
1

s

∑
i∈[s]

1

{
θ̃i ∈ VSF (S ′)

}
(32)

To check, 1{θi ∈ VSF (S ′)}, check that fθ classifies all examples in S correctly.

• Otherwise (think CNN on ImageNet), can be extremely challenging

52



Question: how to encode the version space?

■ If F is finite, can explicitly store f |= S. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

Ey∼pθ(Y |x) [Vol (VSF (S ∪ {(x, y)}))] =
∑
y∈[c]

pθ(y | x) ·Vol (VSF (S ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(31)

• If F is “simple” and/or S is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VSF (S) of known volume:

{θ̃i ∼ Uniform(B) : i ∈ [s]}, Vol
(
VSF (S ′)

)
≈

1

Vol (B)
·
1

s

∑
i∈[s]

1

{
θ̃i ∈ VSF (S ′)

}
(32)

To check, 1{θi ∈ VSF (S ′)}, check that fθ classifies all examples in S correctly.

• Otherwise (think CNN on ImageNet), can be extremely challenging

52



53



■ These approaches make two assumptions:

• Disagreement is measures using all hypotheses in the version space VSF (S).

• Disagreement is binary: it is only 0 if all hypotheses fully agree on x ∈ U.

■ Let’s relax both of them → speed-up!

■ Moreover, version space is only non-empty in the realizable case. How do we deal with this?
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Query By Committee (QBC)

Idea:

• Subsample k representatives C ⊂ VSF (S), k ≫ 1

• Measure disagreement efficiently between representatives in C

■ How to generate C?

• Sample C := {cj : j ∈ [k]} k∼ VSF (S), as done previously (i.e., we don’t gain much)

• Define a distribution p(θ | L), very Bayesian → can be challenging to sample from the posterior

• Bagging: sample k subsets of L, train one classifier cj on each.

• Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.
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■ How to measure disagreement of C on x ∈ U?

■ “Hard” Voting + Entropy:

argmax
x∈U

−
∑
y

n(y , x)

k
log

n(y , x)

k
, n(y , x) :=

∑
c∈C

1{c(x) = y} (33)

Each classifiers votes either 0 or 1.

■ “Soft” Voting + Entropy:

argmax
x∈U

−
∑
y

pC(y | x) log pC(y | x), pC(y | x) :=
1

k

∑
c∈C

pc (y | x) (34)

Output probabilities of each c ∈ C taken into account.

■ Average Kullback-Liebler divergence:

argmax
x∈U

1

k

∑
c∈C

KL(pc (Y | x)∥pC(Y | x)) (35)

KL(p(Y | x)∥q(Y | x)) :=
∑
y

p(y | x) log
p(y | x)
q(y | x)

(36)

Very expressive, measures difference between whole distributions.
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argmax
x∈U

−
∑
y

pC(y | x) log pC(y | x), pC(y | x) :=
1

k

∑
c∈C

pc (y | x) (34)

Output probabilities of each c ∈ C taken into account.

■ Average Kullback-Liebler divergence:

argmax
x∈U

1

k

∑
c∈C

KL(pc (Y | x)∥pC(Y | x)) (35)

KL(p(Y | x)∥q(Y | x)) :=
∑
y

p(y | x) log
p(y | x)
q(y | x)

(36)

Very expressive, measures difference between whole distributions.
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Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of pθ on example z = (x, y) is denoted ℓ(θ, z). For instance, cross-entropy loss:

ℓ(θ, z) := −
∑

j 1{j = y} log pθ(j | x) = − log pθ(y | x) (37)

The true risk L∗ of θ w.r.t. the ground-truth distribution p∗(X,Y ) is:

L∗(θ) := Ez∼p∗ [ℓ(θ, z)] (38)

It measures the true quality of the model, unobserved.

The empirical risk L̂S of θ w.r.t. data set S = {z1, . . . , zm} sampled i.i.d. from p∗ is:

L̂S (θ) :=
1

|S |
∑
z∈S

ℓ(θ, z) (39)

It estimates the quality of the model from a sample S , optimized during training.
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Model Improvement

Let θ̂ be the parameters obtained by training on S and θ̂+z those obtained by training on S ∪ {z}, i.e.,

θ̂ := argmin
θ

L̂S (θ) θ̂+z := argmin
θ

L̂S∪{z}(θ) (40)

where optimization is possibly approximate, e.g., based on SGD.

Model Improvement

The model improvement (MI) given by a new example z ̸∈ S is the decrease in true risk:

acq(x) := L∗(θ̂)− L∗(θ̂+z) (41)

The higher, the better −→ pick the x ∈ U that maximizes the improvement.
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Model Improvement as Greedy Optimization

■ MI amounts to solving:

argmax
x∈U

L∗(θ̂)− L∗(θ̂+z) = argmin
x∈U

L∗(θ̂+z) (42)

It is guaranteed to find the best next candidate!

■ MI is essentially a greedy strategy for solving:5

argmin
S⊆U

L∗(θ̂) (43)

s.t. |S| ≤ query budget (44)

In this view, AL is a subset optimization problem, and MI solves it directly.

■ Compare this to uncertainty sampling, which is not as sound

5Note: MI is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they

are ignored in the AL literature.
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■ We want to solve:

argmin
x∈U

L∗(θ̂+z ) (45)

Problem: L∗(·) is an integral over x′ ∈ Rd :

L∗(θ̂+z ) = Ez′∼p∗ [ℓ(θ̂
+z , z ′)] =

∫
Rd

ℓ(θ̂+z , (x′, y ′))dx′ (46)

which is intractable → approximate using empirical average over U:6

L∗(θ̂+z ) ≈ L̂U(θ̂+z ) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (47)

Example: if ℓ is the 0–1 loss, then this amounts to:

1

|U|
∑
x′∈U

1
{
f
θ̂+z (x

′) ̸= y ′} (48)

6The unlabeled set U is ideally pretty large, so the approximation is reasonable.
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■ We already decided on this approximation:

L∗(θ̂+z ) −→ L̂U(θ̂+z ) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (49)

Problem: we don’t have access to the ground-truth label z = (x, y) → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (50)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

This averages over the unknown labels y ′ of the instances in x′ ∈ U.
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■ We already decided on this approximation:

L∗(θ̂+z ) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (52)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[ 1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(53)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U,

(b) Is the average expected oss of the updated model on all of U,

(c) Is the above averaged over the possible updated models θ̂+(x,y).
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■ We already decided on this approximation:
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[ 1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(54)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1{fθ(x) ̸= y}. Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
{
f
θ̂+

(x′) ̸= y ′}] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (55)

= 1− p
θ̂+

(ŷ ′ | x′) (56)

Hence, the above can be rewritten as ( 1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[ 1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

) ]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p
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■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U
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■ In uncertainty sampling, we pick x that minimizes model’s estimate of current uncertainty w.r.t. itself, this is

myopic

■ In expected model improvement, we pick x that minimizes model’s estimate of expected future uncertainty

w.r.t. unlabeled set, this is less myopic
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■ We already decided on this approximation:

L∗(θ̂+z ) −→ Ey∼p
θ̂
(Y |x)

[ 1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(62)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).
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Expected Model Change

■ Unless a candidate (x, y) induces a large change in the model θ̂ upon retraining, then it cannot reduce the

model’s risk by much: change is a prerequisite for improvement.

Inituition:

ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′) ≤ |ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′)| ≤ c · ∥θ̂ − θ̂+z∥, c > 0 (63)

where ∥·∥ is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions ℓ.

■ Large change also occurs when the loss increases – hence the absolute value in the second step of Eq. 63.

All in all, EMC looks for examples x ∈ U that “make a difference” one way or the other.

But once (x, y) is acquried it is added to the training set L on which θ̂ is fit, so loss is likely to go down rather

than up.
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Expected Model Change

■ The trick is that if θ̂ is obtained via gradient descent, the difference θ̂ − θ̂+z is easy to compute:

θ̂ − θ̂+z = η · ∇θℓ(θ, z) (64)

where η is the learning rate. This gives expected gradient length:

acqEGL(x) := Ey∼pθ(Y |x)

[
∥∇θℓ(θ̂, (x, y))∥2

]
(65)

The square does not change ranking of examples & avoids computing a square root.

• Quite cheap to compute using automatic differentiation packages (using Jacobian to parallelize over U)

• Assuming η is constant across examples and GD, the computation is exact. For other optimizers, it is an

approximation
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Are Uncertain Points Representative?
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Diversity-based Selection

Idea: pick instances x ∈ U that are both locally informative and also similar to as many other unlabeled points

as possible:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β (66)

where:

• acq(f , x) is a “standard” acquisition function based on, e.g., pointwise uncertainty.

• sim(x, x′) measures the similarity between x and x′, e.g., a Gaussian kernel, Pearson’s correlation coeffi-

cient, Spearman’s rank correlation. Application specific.

• β > 0 is a hyper-parameter

Intuitively, x’s label conveys information about the label on the other points in U
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Example
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■ We optimize:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β (67)

Properties:

• Tends to work better than pure more “local” acquisition functions [Settles, 2012]

• Even when uncertainty sampling is worse than random, information density performs well

• Similarity computation can be sped-up using caching: “simply” store similarity matrix Sij = [sim(xi , xj )]

for all xi , xj ∈ U (only needs to be done once)

• Approximate using clustering: cluster U so that points within cluster are similar and points across clusters

are not → block-diagonal similarity matrix, lowers storage requirement from O(|U|2) to O(
∑

i |clusteri |2)
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■ Do we gain anything by “summarizing” the data using clustering?

Idea:

• Cluster unlabeled data set U → {Ci ⊂ U : i ∈ [k]}

• Treat each Ci as a separate problem, e.g., query cluster centroids

Problems:

• U may not have a good clustering structure or sim(·, ·)
may not be able to capture it

• How many clusters and at what granularity?

• Clusters of x’s may not correlate well with label y .

Figure: the swiss roll dataset has no

obvious clustering structure.
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Unified Derivation

WRITEME
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Extensions



■ Consider a neural network fθ : Rd → [c]:

fθ(x) = argmax
y∈[c]

pθ(y | x)

pθ(y | x) = softmax(Wϕω(x))y

where:

• θ = {W , ω} are parameters

• ϕω : Rd → Rk is an embedding function (e.g., convolutions + pooling layers)

• W ∈ Rc×k are the parameters of the top dense layer
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Deep Architectures

■ Deep NNs have a number of quirks:

• Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

• Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

• Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

• Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance
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ensure responsivity

• Quite insensitive to the addition of a single example → what’s the point of querying individual instances?
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Overconfidence

Problem: Deep NNs tend to be very overconfident even away from the training set → their uncertainty cannot
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Credit: [Kristiadi et al., 2020].
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Aleatoric vs Epistemic [Hüllermeier and Waegeman, 2021]

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL [Sharma and Bilgic, 2017]
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Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

• This gives poor epistemic uncertainty

• Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

• Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

• Replace parameters θ with distribution over alternative parameters p(θ | L)
• Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (68)

• Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (69)

Not trivial! Is there an efficient approximation?
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Dropout

■ Randomly set nodes to 0 with a fixed probability.

■ Used as a regularization technique: by randomly removing neurons, prevents them from relying on each

other “too much”
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Dropout as Bayesian Approximation

■ Computing class probabilities:

p(y | x, L) =
∫

p(y | x,θ)p(θ | L)dθ (70)

≈
∫

p(y | x,θ)pdropout(θ)dθ (71)

≈
1

R

R∑
r=1

p(y | x, θ̂r ), θ̂r ∼ pdropout(θ) (72)

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class

probabilities.

■ Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a

mixture of two Gaussians [Gal and Ghahramani, 2016]. The approximation is independent of L → no training

required.

■ Immediately leads to more calibrated output probabilities!
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BALD [Gal et al., 2017]

Question: does dropout help with query selection too?

Yes.

■ Uncertainty sampling:

acqUNC (x) = −
∑
y∈[c]

p(Y = y | x, L) log p(Y = y | x, L) (73)

Application is immediate.

■ Mutual information between predictions and model posterior (BALD):

acqBALD(x) = H(Y | x, L)− Eθ∼p(θ|L)[H(Y |x,θ)] (74)

• Left: entropy of the prediction → high when the model’s prediction is uncertain

• Right: expected entropy of the prediction over the posterior of the model parameters → low when the

model is overall certain for each draw of model parameters from the posterior.

High when model has many possible ways to explain the data, i.e., the posterior draws are disagreeing among

themselves.
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■ BALD can be computed as:

H(Y | x, L)− Eθ∼p(θ|L)[H(Y |x,θ)]

= −
∑
y∈[c]

p(y | x, L) log p(y | x, L) + Eθ∼p(θ|L)[
∑
y∈[c]

p(y | x,θ) log p(y | x,θ)]

= −
∑
y∈[c]

∫
p(y | x,θ)p(θ | L)dθ · log

∫
p(y | x,θ)p(θ | L)dθ + Eθ∼p(θ|L)[

∑
y∈[c]

p(y | x,θ) log p(y | x,θ)]

≈ −
∑
y∈[c]

∫
p(y | x,θ)pdrop(θ)dθ · log

∫
p(y | x,θ)pdrop(θ)dθ + Eθ∼pdrop(θ)

[
∑
y∈[c]

p(y | x,θ) log p(y | x,θ)]

≈ −
∑
y∈[c]

(
1

R

∑
r

p̂ry

)
log

(
1

R

∑
r

p̂ry

)
+

1

R

∑
y,r

p̂ry log p̂
r
y ,

where p̂ry = p(y | x,θr ) is the output of the NN’s softmax for class y and randomized parameters θr ∼ pdrop(θ).

■ Only need to compute p̂r once per r ∈ [R], for a modest R times increase in runtime; could be parallelized.

■ As R →∞, this approximates the original mutual information.
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Illustration

■ For all choices of acquisition function, the dropout-based uncertainty helps!
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■ Let us look at batch-based active learning.

Batch Selection

Given L, U and a classifier f ∈ F trained on L, find a batch B ⊆ U of b ≫ 1 unlabeled instances that brings

maximal information to the model:

argmax
B⊆U

acqBALD(f ,B) (75)

s.t. |B| = b (76)

Advantages:

• Only retrain the model after ever b examples, meaning that supervision has an effect.

• Retraining is less frequent, leading to faster overall execution (at the expense of possibly instance selec-

tion, because b examples depend on a fixed f ).

• Supports parallel annotation for, e.g., crowd-sourcing scenarios.

Question: can regular acquisition function (like BALD) be extended to this setting?
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■ Natural generalization of instance-level strategies:

acq(f ,B) =
∑
x∈B

acq(f , x) (77)

How well does this work?

■ This ignores correlation between instances in x:

• Even if all of them are informative, they may carry the same information

• We want B to be informative as a whole!
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Illustration

(Credit: [Kirsch et al., 2019].)
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BatchBALD

■ The problem with the “natural generalization”:

acq(f ,B) =
∑
x∈B

acq(f , x) (78)

is that the sum doesn’t consider the overlap between the information carried by different x ∈ b.

Idea: don’t break the acquisition function into a sum! For BALD, this means replacing:∑
x∈B

{
H(Y | x, L)− Eθ∼p(θ|L)[H(Y |x,θ)]︸ ︷︷ ︸

MI (Y ,Θ|x,L)

}
(79)

with

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb}, L) (80)

■ In other words, don’t assume independence between the elements of B!
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Problem: batch selection amounts to solving

argmax
B⊆U:|B|=b

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb}, L) (81)

How can we solve this?

Submodular Function [Krause and Guestrin, 2008]

Let S be a set. A function f that maps subsets of S to real values is submodular if for every B ⊂ A ⊆ S and

any x ∈ S \ A it holds that:

f (A ∪ {x})− f (A) ≤ f (B ∪ {x})− f (B) (82)

f enjoys a diminishing returns property: adding an element x to a smaller set B “adds more” than adding the

same element to a superset A ⊃ B.

Maximizing a Submodular Functions

Let f (A) be submodular and S the domain. Then, the greedy algorithm:

• A1 ← ∅.

• At+1 ← argmaxx∈(S\At )
f (At ∪ {x}).

• Stop when budget T is exhausted.

finds AT ⊆ S that has score (1− 1
e
) ≈ 67% as good as the score of the global optimum A∗ ⊆ S of f .
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• At+1 ← argmaxx∈(S\At )
f (At ∪ {x}).

• Stop when budget T is exhausted.

finds AT ⊆ S that has score (1− 1
e
) ≈ 67% as good as the score of the global optimum A∗ ⊆ S of f .
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Problem: batch selection amounts to solving

argmax
B⊆U:|B|=b

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb}, L) (83)

How can we solve this?

■ The mutual information is submodular! → apply greedy optimization:

• Pick x1 to optimize MI (Y1,Θ | x1, L) (BALD)

• Pick xt+1 to optimize MI (Yt+1 ∪ Y1:t ,Θ | xt+1 ∪ x1:t , L) (BALD over updated MI)

where B = {x1, . . . , xb}.
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(Credit: [Kirsch et al., 2019].)
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(Credit: [Kirsch et al., 2019].)
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Discriminative Active Learning

Idea: we want instances in L to be distributed as ground-truth

• This involves getting p∗(X) right

• It also involves getting all the modes in it right

■ Highly non-trivial: we could train a generative model p̂θ(X,Y ) using density estimation and use that to

guide query selection → hard to train, break down in high dimension (in general)

■ Is there any alternative?

95



Discriminative Active Learning

Idea: we want instances in L to be distributed as ground-truth

• This involves getting p∗(X) right

• It also involves getting all the modes in it right

■ Highly non-trivial: we could train a generative model p̂θ(X,Y ) using density estimation and use that to

guide query selection

→ hard to train, break down in high dimension (in general)

■ Is there any alternative?

95



Discriminative Active Learning

Idea: we want instances in L to be distributed as ground-truth

• This involves getting p∗(X) right

• It also involves getting all the modes in it right

■ Highly non-trivial: we could train a generative model p̂θ(X,Y ) using density estimation and use that to

guide query selection → hard to train, break down in high dimension (in general)

■ Is there any alternative?

95



Discriminative Active Learning

Idea: we want instances in L to be distributed as ground-truth

• This involves getting p∗(X) right

• It also involves getting all the modes in it right

■ Highly non-trivial: we could train a generative model p̂θ(X,Y ) using density estimation and use that to

guide query selection → hard to train, break down in high dimension (in general)

■ Is there any alternative?

95



Discriminative Active Learning

Idea: if we cannot find a classifier f ∈ F that tells L from U apart, and the latter is large enough (i.e., it can be

used to approximate the ground-truth distribution p∗(X)), then L is high-quality.

■ Given x ∈ U, how certain are we that it comes from U rather than from L?

• if indistinguishable, we represented the true distribution using L

• if distinguishable, it looks different from L so labeling it should be informative
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F-divergence
Given two distribution pS (X ) and pT (X ) on X ∈ X and a hypothesis class F also on X , the F-divergence
between pS and pT is:

dF (pS , pT ) = 2 · sup
f∈F

|pS ({x : f (x) = 1})− pT ({x : f (x) = 1})| (84)

■ Measures how different two domains pS and pT are from the perspective of a model class F : the larger the

difference, the more different they look.

■ F-divergence used to identify concept drift and – symmetrically – to estimate how well a classifier trained on

one task will perform on a different, related task
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Idea: use F-divergence to discriminate between L and U

■ The F-divergence is:

dF (pS , pT ) = 2 · sup
f∈F

|pS ({x : f (x) = 1})− pT ({x : f (x) = 1})| (85)

■ Approximate as follows:

• pS (x) :=
1
|L|
∑

x′∈L δ{x′ = x}

• pT (x) :=
1

|U|
∑

x′ inU δ{x′ = x}.

Then F-divergence becomes:

2 sup
f∈F

∣∣∣∣∣∣ 1|L|
∑
x∈L

f (x)−
1

|U|
∑
x∈U

f (x)

∣∣∣∣∣∣ (86)

■ How to compute this? supf∈F can be implemented by learning f from data set:
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F-divergence as learning

■ Given L and U, define binary classification task:

• For all x ∈ L, add (ϕ(x), labeled) to dataset

• For all x ∈ U, add (ϕ(x), unlabeled) to dataset

• Train (simple) classifier pψ(· | ϕ(x)) to distinguish between the two sources by optimizing cross-entropy

loss

This implicitly makes use of the labels y in L through ϕ(x).

■ Pick those instances x ∈ U that have lowest probability pψ(labeled | ϕ(x))

Remark: this is closely related to GANs!
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Conclusion and Further Reading



Take-away

■ AL useful when supervision is expensive high → choose it wisely

■ Many variants: pool-based, streaming, and query synthesis

■ Many practical approaches: uncertainty-based (uncertainty sampling, QBC, expected gradient length),

diversity-based (information density).

Some can be derived from version spaces and model improvement.

■ Deep variants select entire batches and often rely on Bayesian techniques

■ Critique & realistic annotators, costs, etc.: [Herde et al., 2021] [Settles, 2011]

■ Plenty of room for new research ;-)
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