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Overview

Part 1: Why automate machine learning?

Part 2: How AutoML works

Part 3: Learning how to do AutoML

High-level goals

The machinery

Closing the loop



#1 Democratization of Machine Learning

Scientific challenge

Large team of experts

99.09% match

Solution

Expert - AutoML teams

Allow many more scientists to apply machine learning much more easily 



Doing machine learning requires lots of expertise and exploration

Cleaning, preprocessing, feature selection/engineering features, model 
selection, hyperparameter tuning, adapting to concept drift,…



Machine learning pipelines / models have an infinite range of possibilities (many still unknown)

cleaning, 
preprocessing, 
featurization, 
selection,…

Model selection

Neural architecture design

Transfer / continual learning  
Small data, few-shot learning

pretrain

Can we automate this process 
and share implicit knowledge?

Requires implicit knowledge

Data Solution

Why is Machine Learning labor-intensive?
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• Numeric 

• e.g. learning rate 

• Categorical 

• e.g. classi!er 

• Conditional 

• SVM -> kernel?

Hyperparameters
Every design decision usually made by the user (architecture, operators, tuning,…)

too small too large

RBF kernel -> gamma?



Automatic Machine Learning (AutoML)

Scientific challenge

ModelsModelsModels
trial

error

automated, data-driven 
efficient search

scientists

ModelsModelsModels
trial

error

task

solutions ModelsModels

Learning across tasks

Replace manual trial and error with automated search (based on prior experience)

Ideally, AutoML systems learn 
across tasks to leverage prior 
experience with similar tasks

memory

scientists



> Antenna broken. No communication with Earth.
Sigh… I’ll have to learn this by myself

#2 Robust autonomous systems



A (key) part of the wider AI challenge
We’re only in the pioneering age

Talwalkar, 2018

1903: first powered controlled flight 1910: cultural acceptance, only for elites 1952: democratized flight

Efficiency, automation, safety 
(Science + engineering)

Many challenges remain to democratize AI 
• Efficiency: efficient algorithms (transfer, continual), hardware

• Automation: efficient, adaptive AutoML

• Safety: explainability, fairness, causal analysis

• Human-in-the-loop, domain knowledge, real-world constraints

https://www.oreilly.com/content/toward-the-jet-age-of-machine-learning/


What drove progress?

Hand-designed architectures
Repeated cells, normalisation, adaptive optimizers 
(eg. Adam), skip connections,…

Auto-designed architectures
Based on lessons learned



Overview

Part 2: How AutoML works
The machinery



Structure of AutoML systems

AutoML Systemdataset / stream best models



Representation Search strategy Loss function
Λ

λ

Structure of AutoML systems

dataset / stream best models

AutoML system as a learning system

Hypothesis space 
(hyperparameters instead  

of model parameters)
hypothesis

lossWhat are  
possible models?

How to find the  
best model?

Model evaluation



Representation Search strategy Evaluation strategy
Λ

λ

Structure of AutoML systems

ML Libraries 
e.g. sklearn

dataset / stream best models

λ (architecture + hyperparameters)
score

train(sample)

AutoML system

model search space
configuration

scorePipelines,  
neural architectures,…

evolution, 
Bayesian Opt.

subsampling,  
successive halving



Search strategy Evaluation strategy
Λ

λ

Structure of learning AutoML systems
ML Libraries 

e.g. sklearn

dataset / stream best models,  
score

λ (architecture + hyperparameters)
score

train(sample)

AutoML system

model search space

score

Meta-learner

priors

Repository 
e.g. OpenML

X,y

ML (meta) 
knowledge



• Model search space Λ: represent all pipelines or neural architectures

• Pipeline operators, neural layers, interconnections,…

• Defines a (complex) search space

AutoML: subproblems

make_pipeline(
OneHotEncoder(), 
Imputer(), 
StandardScaler(), 
SVC())

model.add(Conv2D(32, (3, 3))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3))



• Model search space: represent all possible architectures

• Optimization: 

• What is the best architecture? Which hyperparameters are important? 

• How to optimize them? What is the (multi-) objective function?

AutoML: subproblems

hyper_space = {'SVC__C': expon(scale=100), 
                            ‘SVC__gamma': expon(scale=.1)}
RandomizedSearchCV(pipe, param_distributions=hyper_space, n_iter=200)



• Architecture search space: represent all possible architectures

• Optimization: optimize architecture and hyperparameters

• Meta-learning: how can we transfer experience from previous tasks?

• Don’t start from scratch (search space is too large)

• Transfer learning: reuse good architectures/configurations/weights

• Warm starting: start from promising architectures/configurations/initializations

AutoML: subproblems

transfer

warm-start



• Architecture search: represent all possible architectures

• Optimization: optimize architecture and hyperparameters

• Meta-learning: how can we transfer experience from previous tasks?

AutoML: subproblems

Many combinations are possible!

They can be done consecutively, simultaneously or interleaved

Search space 
design

Architecture 
search strategy

Performance 
estimation strategy

score

Λ
λ



Architecture search space



Parameterized architectures
autosklearn Feurer et al. 2015 

autoWEKA Thornton et al. 2013 
hyperopt-sklearn Komer et al. 2014

• Manual bias: most successful pipelines have a similar structure

+ smaller search space 

- you can’t learn entirely new architectures

• Fix architecture, encode all choices as extra hyperparameters 

• Architecture search becomes hyperparameter optimization

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf
https://arxiv.org/abs/1208.3719
http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf


Ensembling
autosklearn Feurer et al. 2015 

GAMA Gijsbers & Vanschoren, 2020 
AutoGluon-Tabular, Erikson et al. 2020  

H2O AutoML, LeDell et al.

• Build ensembles of multiple pipelines to avoid over!tting 

• RandomForests (Auto-sklearn, GAMA,…) 

• Stacking (AutoGluon-Tabular, H2O AutoML,…)

Multi-level stacking

https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf
https://arxiv.org/abs/1208.3719
https://arxiv.org/abs/2003.06505
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Parameterized neural architectures

Parameterized Sequential Parameterized Graph

Choose:

• number of layers

• type of layers

• dense

• convolutional

• max-pooling

• …


• hyperparameters of 
layers


+ easier to search 

- sometimes too simple

Choose:

• branching

• joins

• skip connections

• types of layers

• hyperparameters of 

layers


+ more flexible 

- much harder to search

Elsken et al. 2019

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter3.pdf


Manual bias: successful deep networks have repeated motifs (cells) 
e.g. Inception v4:

Cell search spaces



Google NASNet Zoph et al 2018

Compositionality: learn hierarchical building blocks to simplify the task

• learn parameterized building 
blocks (cells)

• stack cells together in macro-

architecture


+ smaller search space 

+ cells can be learned on a small 
dataset & transferred

- strong domain priors, doesn’t 

generalize well 

Cell search space

Cell search spaces

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf


Hierarchical Search Spaces
Liu et al. 2018

• De!ne a number of primitive operations (e.g. convolution, max-pooling,…) 

• Build small motifs of primitives (o1, o2, o3,…) 

• Choose a graph structure Gi, replace edges with motifs, repeat

https://arxiv.org/pdf/1806.09055.pdf


Di"erentiable Search Spaces
Liu et al. 2018

• Fixed (one-shot) structure, each edge can be any primitive operation

•Give all operators a weight   -> pure numeric/differentiable search space!  
• Each edge output: weighted sum of outputs of all operators

αi

https://arxiv.org/pdf/1806.09055.pdf


Di"erentiable Search Spaces
Liu et al. 2018

•Optimize operator weights  and model weights  using bilevel optimizationαi ωj

α

https://arxiv.org/pdf/1806.09055.pdf


convolution 
max pooling 
zero

One-shot model operator weights αi interleaved optimization 
of  and  with SGDαi ωj

argmax αi

Di"erentiable Search Spaces (DARTS)
Liu et al. 2018

•Optimize  and model weights  using bilevel programming

• After convergence, make the model sparse by keeping only the largest weights

• This ‘weight sharing’ between possible models speeds up the search dramatically

αi ωj

https://arxiv.org/pdf/1806.09055.pdf


Optimization



Random search
Bergstra & Bengio, JMLR 2012  

• Handles unimportant dimensions be2er than grid search 

• Easily parallelizable, but uninformed (no learning) 



Successive Halving
• Train on small data subsets, infer which regions may be interesting to evaluate in more depth 

• Randomly sample candidates and evaluate on a small data sample 

• Retrain the 50% best candidates on twice the data, repeat

Jamieson & Talwalkar 2016 

1/16 1/8 1/4 1/2

sample size

http://proceedings.mlr.press/v51/jamieson16.pdf
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Successive halving risks killing good models too early 
• Repeat in multiple, decreasingly aggressive iterations (brackets) 
• Strong anytime performance, easy to implement, scalable, parallelizable

Li et al. 2017 

Hyperband

https://openreview.net/pdf?id=ry18Ww5ee
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Successive halving risks killing good models too early 
• Repeat in multiple, decreasingly aggressive iterations (brackets) 
• Strong anytime performance, easy to implement, scalable, parallelizable

Li et al. 2017 

Hyperband

https://openreview.net/pdf?id=ry18Ww5ee


• Start with a few (random) hyperparameter con!gurations 
• Fit a surrogate model to predict other con!gurations 

• Probabilistic regression (e.g. Gaussian Processes): mean  and standard deviation  (blue band) 

• Use an acquisition function to trade o" exploration and exploitation, e.g. Expected 
Improvement (EI) 

• Sample for the best con!guration under that function

μ σ

Bayesian Optimization
Mockus [1974]

μ
μ + σ

μ − σ

value of λi

pe
rfo

rm
an

ce

https://link.springer.com/chapter/10.1007/3-540-07165-2_55


• Repeat until some stopping 
criterion: 
• Fixed budget 
• Convergence 
• EI threshold 

• Theoretical guarantees 

• Also works for non-convex, 
noisy data 

• Used in AlphaGo

Srinivas et al. 2010, Freitas et al. 
2012, Kawaguchi et al. 2016

Bayesian Optimization

https://arxiv.org/ftp/arxiv/papers/1206/1206.6457.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf


Bayesian Optimization (surrogate: random forests)

animation by Jeroen van Hoof

Hutter et al. 2011 

Feurer et al. 2015

• Use random forest 
variance 

• Scales well to many 
hyperparameters 

• Used in Auto-sklearn 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiNy56j1fneAhWSLlAKHRpCCI4QFjAAegQICRAC&url=https://ml.informatik.uni-freiburg.de/papers/11-LION5-SMAC.pdf&usg=AOvVaw0zyi9pt9TwWRHtHjabpSeb
https://ml.informatik.uni-freiburg.de/papers/15-NIPS-auto-sklearn-preprint.pdf


Bayesian Optimization (surrogate: gradient boosting)
van Hoof & Vanschoren 2020

• Let gradient boosting predict 
the mean + upper and lower 
quantile 
• Faster 
• More robust to concept drift

https://arxiv.org/abs/2101.02289


Grid Random

Bayesian
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• Start with initial pipeline 

• Best pipelines evolve: cross-over or mutation 

• No !xed pipeline length: adapts to complexity of the problem 

• Used in GAMA, TPOT,…

TPOT - Olson & Moore 2016
GAMA - Gijsbers & Vanschoren 2018Evolution

(TPOT)

(GAMA)

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter8.pdf
http://joss.theoj.org/papers/10.21105/joss.01132
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• Gene>c programming 

• Muta>ons: add, mutate/tune, remove HP 

• Par>cle swarm op>miza>on  

• Covariance matrix adapta>on evolu>on (CMA-ES) 

• Purely con>nuous, expensive 

• Compe>>ve to op>mize deep neural nets

Mantovani et al 2015

Hansen 2015

           [Loshilov, Hu-er 2016]

Evolution

change

insert

shrink

TPOT Olson 2016
GAMA Gijsbers 2020

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7280664
https://arxiv.org/abs/1604.00772
https://openreview.net/pdf?id=xnrA4qzmPu1m7RyVi38Z
https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter8.pdf
http://joss.theoj.org/papers/10.21105/joss.01132


Real et al 2017
Miikkulainen et al 2017

• learn the neural architecture through evolution

• mutations: add, change, remove layer

alive, killed

Wistuba et al 2018
Neuro-evolution

http://proceedings.mlr.press/v70/real17a/real17a.pdf
https://arxiv.org/pdf/1703.00548.pdf
http://www.ecmlpkdd2018.org/wp-content/uploads/2018/09/108.pdf


Optimization: Reinforcement learning
Zoph & Le 2017

Actions: 

add pipeline component, tune,…

add layer, change filter size,…

Reward: 

Model performance after training

After trajectory  of actions, adjust policy based on 
total reward R( )

τ
τ

Build pipeline or network step-by-step, learn general strategy (policy)

States: 

Possible pipelines/networks


policy gradient estimate (H steps, m samples)

Levine 2018

r

https://openreview.net/pdf?id=r1Ue8Hcxg
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_4_policy_gradient.pdf


1-layer LSTM (PPO), cell space search

• State of the art on ImageNet

• 450 GPUs, 3-4 days, 20000 architectures

Zoph et al 2018

NAS with Reinforcement learning

• Cell construction:

• Select existing layers (hidden states, e.g. cell input)  to build on

• Add operation (e.g. 3x3conv) on 

• Combine into new hidden state (e.g. concat, add,…)

• Iterate over B blocks


Hi
Hi

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf


If you constrain the search space enough, you can get SOTA results with random search!

Li & Talwalkar 2019

Sidenote: NAS with random search? Yu et al. 2019
Real et al. 2019

https://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1802.01548


In many real-word cases, the data evolves over time 

Celik & Vanschoren, 2021

Handling concept drift

Requires adaptation strategies
Gradual Drift 

 Warm-start from (set of ) last good solutions, where possible 

High Abrupt Drift 

 Re-optimize pipelines from scratch after drift detection.  
Replace with better models when found. 

E"ect of Drift Type: High Gradual Drift 

Retrain (don’t reoptimize) pipelines from scratch 
Incremental learning also works quite well 

  
E"ect of Drift Type: High Mixed Drift 

Re-optimize pipelines on new data (D&RS) performs best 
overall. 

https://arxiv.org/pdf/2006.06480.pdf


• Easy to parallelize, and quickly adapts to changes in the data 

• Easy warm-star>ng: if the data changes, re-start AutoML but start with best prior pipelines

Evolution: bene!ts



Overview

Part 3: Learning how to do AutoML
Closing the loop



Task 1

Learning

Task 2

Learning

Task 3

Learning

Tasknew

Learning

What can we learn to learn?

1. architectures / pipelines  
(hyper-parameters) 

Clune 2019

new tasks  
(of own choosing)

experience

2. learning algorithms  
(model parameters) 

3. learning environments 
(task generation)

inductive bias

49

3 pillars

https://cims.nyu.edu/~brenden/papers/LakeEtAl2017BBS.pdf


Meta-learning for AutoML: how?

Learning hyperparameter priors (what works usually?)

Warm starting (what works on similar tasks?)

start randomly

start with 

good candidates

Meta-models (learn and predict useful models/components)

Complex 

hyperparameter space

Simple 

hyperparameter space

Vanschoren 2018

Task

λ, scores

λ, scores

Learner

Learnermetadata

hyperparameters = architecture + hyperparameters

Task

λ, scores
LearnermetadataTaskTask

https://arxiv.org/abs/1810.03548


Observation:  
current AutoML strongly depends on learned priors

Complex 

hyperparameter space

Simple 

hyperparameter space

observation



Can we learn good hyperparameter priors?

Complex 

hyperparameter space

Simple 

hyperparameter space

λ, scores
Learner



1 van Rijn & Hutter 2018

ResNets for image classification

• Functional ANOVA 1                                                                                                                          
• Select hyperparameters that cause 

variance in the evaluations.        
• Useful to speed up black-box 

optimization techniques                          

Learn hyperparameter importance

Figure source: van Rijn & Hutter, 2018

https://arxiv.org/pdf/1710.04725.pdf


• Tunability 1,2,3                                                                                                                       
Learn good hyperparameter defaults. Is tuning to given task still needed? 
Learn symbolic defaults based on data properties 4

1 Probst et al. 2018
2 Weerts et al. 2018

3 van Rijn et al. 2018
Learn defaults + hyperparameter importance

Learned defaults Tuning risk

4 Gijsbers et al. 2021

https://arxiv.org/abs/1802.09596
https://arxiv.org/abs/2007.07588
http://metalearning.ml/2018/papers/metalearn2018_paper70.pdf
https://arxiv.org/abs/2106.05767


prior tasks

Surrogate model transfer
Manolache & Vanschoren 2019

new task

• If task j is similar to the new task, its surrogate model Sj  will likely transfer well 

• Sum up all Sj  predictions, weighted by task similarity 

• Build combined surrogate, weighted by current performance on new task2

http://metalearning.ml/2019/papers/metalearn2019-manolache.pdf


• Use a neural net to learn a simpler hyperparameter search space 

• Used in SageMaker AutoML

Deep learning models for hyperparameter spaces
Perrone et al. 2018

P

Bayesian Linear surrogate

φz(λ)iλ
Gaussian Processes surrogate

(λi, P) data (e.g. from OpenML)

https://arxiv.org/abs/1712.02902


Warm starting  
(what works on similar tasks?)

start randomly

start with 

good candidates

Task

λ, scores
Learnermetadata



How to measure task similarity?
• Hand-designed (statistical) meta-features that describe (tabular) datasets 1 

• Task2Vec: task embedding for image data 2 

• Optimal transport: similarity measure based on comparing probability distributions 3 

• Metadata embedding based on textual dataset description 4 

• Dataset2Vec: compares batches of datasets 5 

• Distribution-based invariant deep networks 6

1 Vanschoren 2018
2 Achille et al. 2019

3 Alvarez-Melis et al. 2020
4 Drori et al. 2019

5 Jooma et al. 2020
6 de Bie et al. 2020

Figure source: Alvarez-Melis et al. 2020

https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1902.03545
https://www.microsoft.com/en-us/research/publication/geometric-dataset-distances-via-optimal-transport/
https://arxiv.org/abs/1910.03698
https://www.ismll.uni-hildesheim.de/pub/pdfs/jomaa2019c-nips.pdf
https://arxiv.org/abs/2006.13708


• Find k most similar tasks, warm-start search with best λi (instead of random points)    

• Auto-sklearn: warm-started Bayesian optimization (SMAC) 

• Meta-learning yield better models, faster 

• Winner of several AutoML Challenges

Tasks

ModelsModelsModels

performance

LearningLearningLearning

New Task

meta-learner

ModelsModelsModels

performance
Pi,j

}

Warm-starting with kNN

λ1..k

mj

best λi  on 
similar tasks

 Feurer et al. 2015

λi

Bayesian optimization

λ

P
λ1

λ3

λ2

λ4

Figure source: Feurer et al., 2015

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning


Fusi et al. 2017

Pi,j

λi

TL

λL

tj

tnew warm-started  
with λ1..k

. . .. .   .  .. .  . . . 

λi

λLi

P

p(P|λLi)

latent representation

• Learn  latent representation for 
tasks T and con!gurations λ 

• Use meta-features to warm-start 
on new task 

• Returns probabilistic predictions 
for Bayesian optitmization 

• Used in Azure AutoML

• Collaborative !ltering: con!gurations λi are `rated’ by tasks tj

Probabilistic Matrix Factorization

Figure source: Fusi et al., 2017

http://papers.nips.cc/paper/7595-probabilistic-matrix-factorization-for-automated-machine-learning


Meta-models  
(learn how to build models/components)

Task

λ, scores
LearnermetadataTaskTask

Meta-learning = how to learn better for speci!c types of (real world) tasks



• Learn direct mapping between meta-features and Pi,j 

• Zero-shot meta-models: predict best λi  given meta-features 1 

• Ranking models: return ranking λ1..k  2 

• Predict which algorithms / con!gurations to consider / tune 3 

• Predict performance / runtime for given "i  and task 4 

• Can be integrated in larger AutoML systems: warm start, guide search,…

meta-learner

Algorithm selection models

λbest

1 Brazdil et al. 2009, Lemke et al. 2015
2 Sun and Pfahringer 2013, Pinto et al. 2017

meta-learner λ1..k

mj

mj

meta-learner

Pijmj, λi

3 Sanders and C. Giraud-Carrier 2017

meta-learner

Λmj

4 Yang et al. 2018

https://books.google.ca/books?hl=en&lr=&id=-Gsi_cxZGpcC&oi=fnd&pg=PA1&dq=Metalearning:+Applications+to+Data+Mining.&ots=wj0FrYpzNf&sig=60R5Bp5mhf1z5xncfukBDwcvA2w
https://link.springer.com/article/10.1007/s10462-013-9406-y
https://link.springer.com/article/10.1007/s10994-013-5387-y
https://arxiv.org/abs/1706.09367
https://ieeexplore.ieee.org/abstract/document/8215600/
https://arxiv.org/abs/1808.03233


• Learn nonlinearities: RL-based search of space of likely useful activation functions 1 

• E.g. Swish can outperform ReLU 

1 Ramachandran et al. 2017

• Learn optimizers: RL-based search of space of likely useful update rules 2 

• E.g. PowerSign can outperform Adam, RMPprop

2 Bello et al. 2017Learning model components

PowerSign : esign(g)sign(m)g

Swish : x
1 + e−βx

g: gradient, m:moving average

• Learn acquisition functions for Bayesian optimization 3

3 Volpp et al. 2020

Figure source: Ramachandran et al., 2017 (top), Bello et al. 2017 (bottom)

https://arxiv.org/pdf/1710.05941.pdf
https://arxiv.org/pdf/1709.07417.pdf
https://openreview.net/pdf?id=ryeYpJSKwr


Monte Carlo Tree Search + reinforcement learning
MOSAIC [Rakotoarison et al. 2019] 

AlphaD3M [Drori et al. 2019]

• Self-play:  

• Game actions: insert, delete, replace components in a pipeline 

• Monte Carlo Tree Search builds pipelines given action probabilities 

• Neural network (LSTM) Predicts pipeline performance

Figure source: Drori et al., 2019

https://arxiv.org/pdf/1906.00170.pdf
https://arxiv.org/pdf/1905.10345.pdf


Meta-Reinforcement Learning for NAS
• Train an agent how to build a neural net, across tasks

• Should transfer but also adapt to new tasks

Actions: add/remove certain 
layers in certain locations

Gomez & Vanschoren, 2019

https://arxiv.org/abs/1911.03769


omniglot vgg_flower dtd

Image classifiers for increasingly difficult tasks:

• Initially slower than normal RL techniques, 

but faster after a few tasks

• Policy entropy (agent predictability) shows 

learning, forgetting, re-learning,….

Gomez & Vanschoren, 2019

Meta-Reinforcement Learning for NAS

starting

learning

adapting 
quickly

unlearning

adapting

https://arxiv.org/abs/1911.03769


• Current initialization ", model f"  

• On i tasks, perform k SGD steps to !nd      , then evaluate                     

• Update task-speci!c parameters: 

• Update " to minimize sum of per-task losses, repeat

Finn et al. 2017

Model agnostic meta-learning (MAML)

ℒTask 1

ℒTask 2

θ

θ

∇θℒ1( fϕ*1 )

θ ∇ℒ2

∇ℒ1

∇ℒ3

ϕ*3

ϕ*1
ϕ*2

Meta-training

Meta-testing

• Training data of new task Dtrain 

• "*: pre-trained parameters

• Finetune:

meta-gradient: second-order gradient + backpropagate

meta-gradient

*, β: learning rates

∇θℒ2( fϕ*2 )

i=3, k=3

∇θℒi( fϕ*i )
ϕi = θ − α∇θℒi( fϕ*i )

ϕ1

ϕ2

θ ← θ − β∇θ ∑i ℒi( f(θ − α∇θℒi( fϕ*i )))
θ ← θ − β∇θ ∑i ℒi( fϕi

)

derivative of test-set loss  

ϕ = θ* − α∇θℒ( fθ)

compute how changes in " affect the gradient at new "

θ1

θ2

θ3 = ϕ*2

θ1

θ2

θ3 = ϕ*1

ϕ*i

67

https://arxiv.org/abs/1703.03400


MetaNAS: meta-learning + NAS
Elsken et al., 2020

• Use meta-learning (MAML) to learn a good weight initialization for the network

convolution 
max pooling 
zero

Meta-learn initial operator weights  
from previous tasks

αi

interleaved optimization 
of  and  with SGDαi ωj

argmax αi

https://arxiv.org/abs/1911.11090


Meta-learning AutoML in practice
• We need a meta-data repository of prior machine learning datasets (tasks) and experiments 

• e.g. OpenML.org 
• Ideally, a shared memory that all AutoML tools can access

http://OpenML.org


new dataset

similar 
datasets

meta-data

Automated ML toolbox

best new models

Meta-learning with OpenML

datasets
models

architectures



AutoML open source tools
Architect. search Operators Hyperpar. search Improvements Metalearning

Auto-WEKA Param. pipeline WEKA Bayesian Opt. (RF)

auto-sklearn Param. pipeline sklearn Bayesian Opt. (RF) Ensemble warm-start

mlr-mbo Param. pipeline mlr Bayesian Opt. multi-obj.

BO-HB Param. pipeline sklearn Tree of Parzen Estim. Ensemble, HB

hyperopt-sklearn Param. pipeline sklearn Tree of Parzen Estim.

skopt Param. pipeline sklearn Bayesian Opt. (GP)

TPOT Evolving pipelines sklearn Population-based

GAMA Evolving pipelines sklearn Population-based Ensemble, ASHA

H2O AutoML Param. pipeline H2O Random search Stacking

AutoGluon-Tabular Param. pipeline Sagemaker Random search multi-level Stacking

OBOE Single algorithms sklearn Low rank approx. Ensembling runtime pred 

Auto-Keras Param. NAS keras Bayesian Opt. Net Morphisms

Auto-pyTorch Param. pipeline pyTorch BO-HB

TensorFlow 2 / keras RS or HB

Talos / keras RS variants

Many other tools for hyperparameter optimization alone

https://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/autoweka.pdf
https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
https://scikit-optimize.github.io/
https://link.springer.com/chapter/10.1007/978-3-319-31204-0_9
http://joss.theoj.org/papers/10.21105/joss.01132
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://arxiv.org/pdf/1808.03233.pdf
https://www.kdd.org/kdd2019/accepted-papers/view/auto-keras-an-efficient-neural-architecture-search-system
https://github.com/automl/Auto-PyTorch


Image: Pesah et al. 2018 

http://metalearning.ml/2018/slides/meta_learning_2018_Pesah.pdf


Further reading
Open access book 
PDF (free): www.automl.org/book  
www.amazon.de/dp/3030053172 

http://www.automl.org/book
https://www.amazon.de/dp/3030053172

