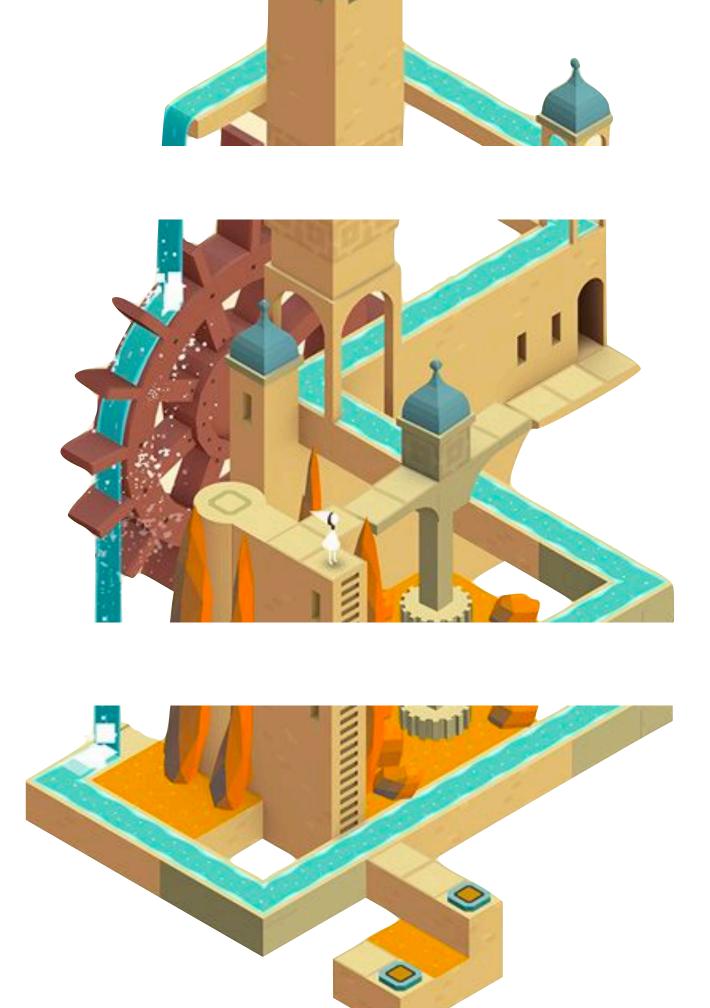


2 December, 2021

Joaquin Vanschoren Eindhoven University of Technology

Automated Machine Learning

image credit: ustwo



Overview

Part 1: Why automate machine learning? **High-level goals**

Part 2: How AutoML works

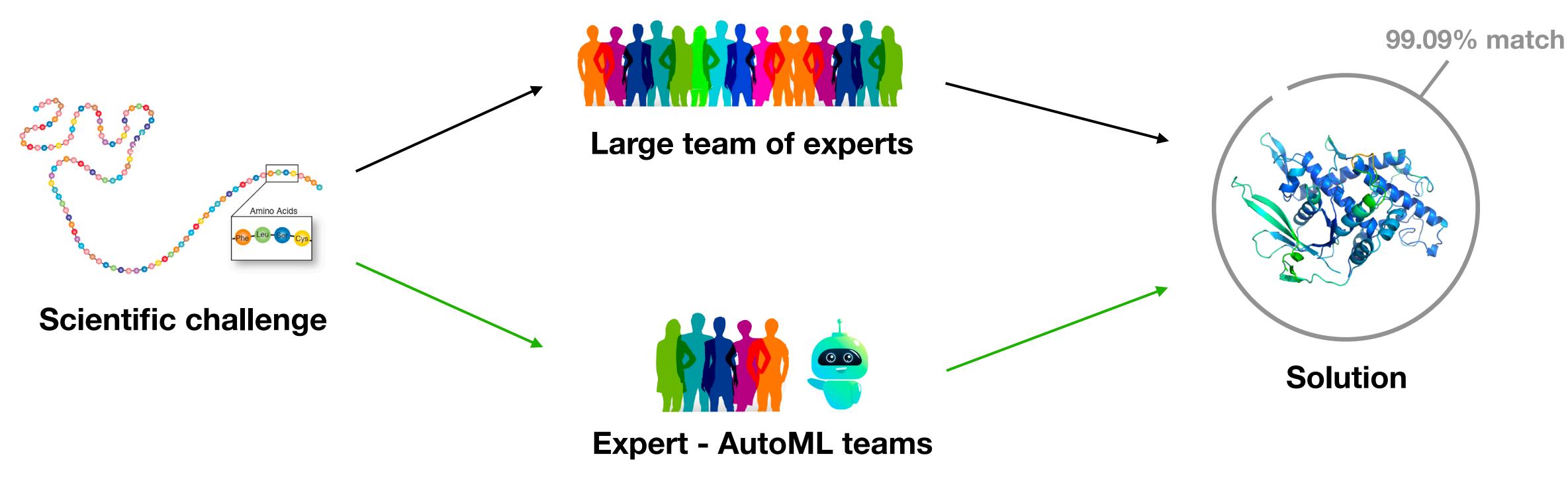
The machinery

Part 3: Learning how to do AutoML

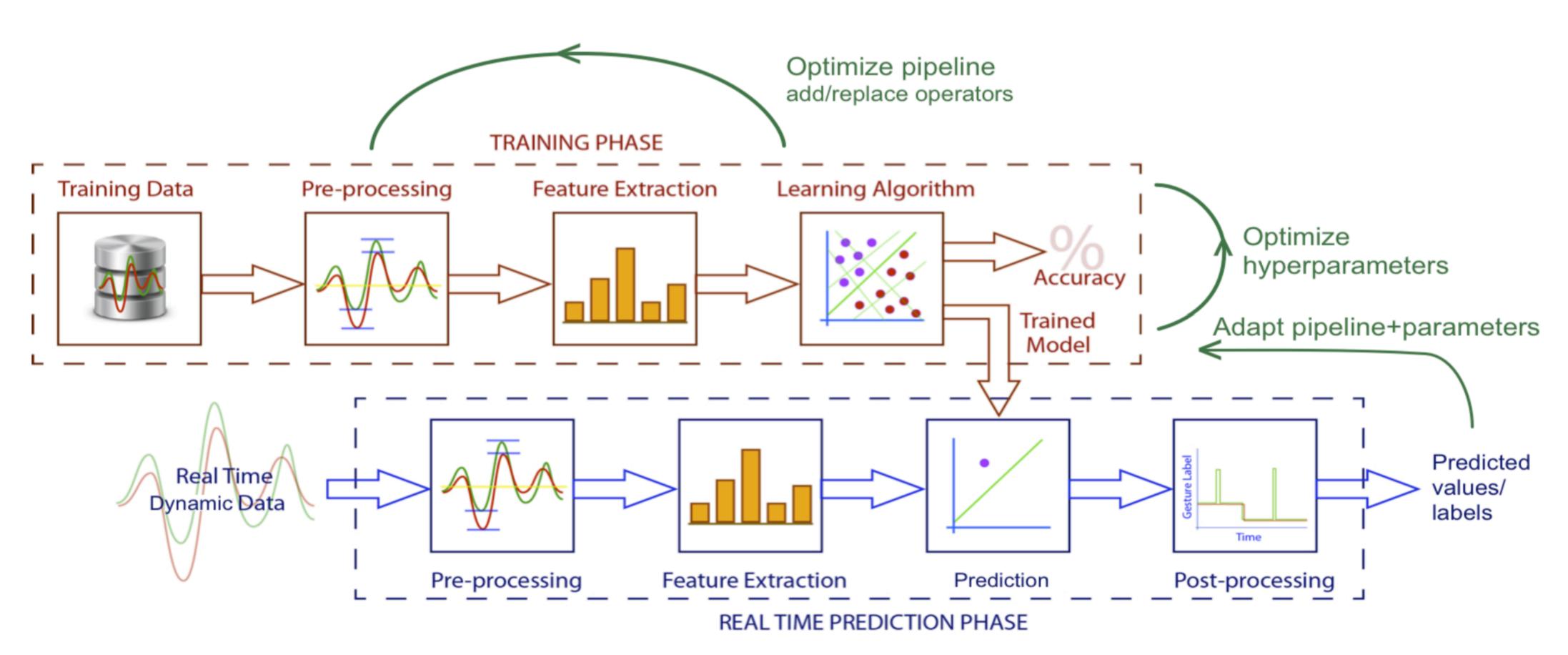
Closing the loop

#1 Democratization of Machine Learning

Allow many more scientists to apply machine learning much more easily



Doing machine learning requires lots of expertise and exploration



Cleaning, preprocessing, feature selection/engineering features, model selection, hyperparameter tuning, adapting to concept drift,...

Machine learning pipelines / models have an **infinite** range of possibilities (many still unknown) Requires implicit knowledge

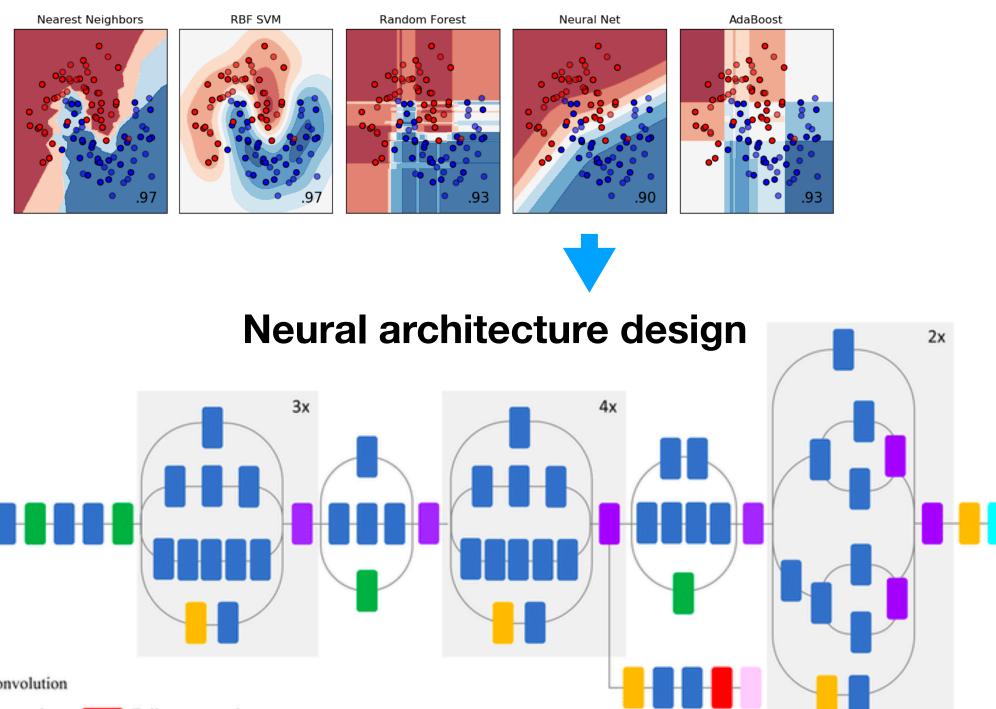
Softmax

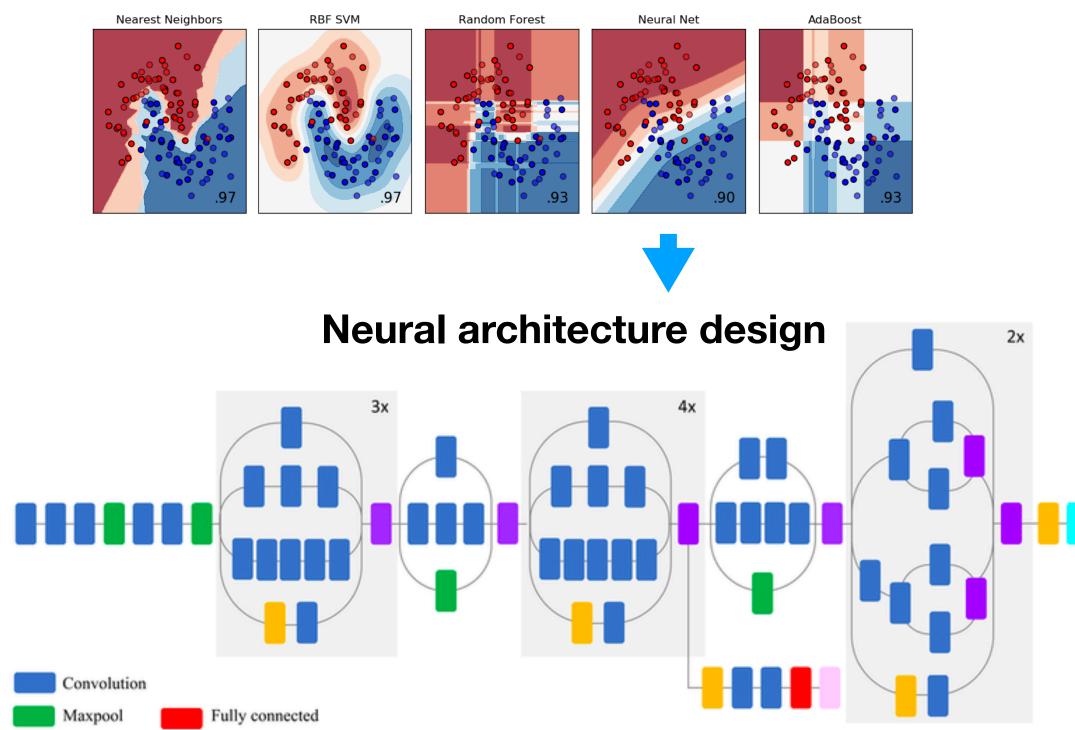
Dropout

featurization, selection,...

cleaning,

preprocessing,

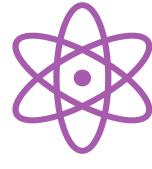




Can we automate this process and share implicit knowledge?

Why is Machine Learning labor-intensive?

Model selection



Solution

pretrain

Transfer / continual learning Small data, few-shot learning

Hyperparameters

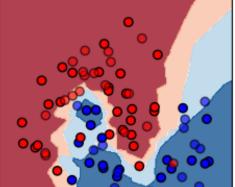
Every design decision usually made by the user (architecture, operators, tuning,...)

- Numeric
 - e.g. learning rate

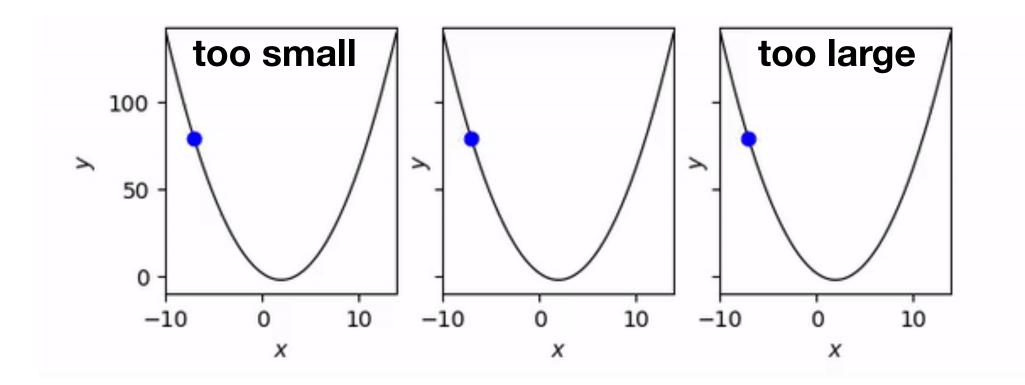
- Categorical
 - e.g. classifier

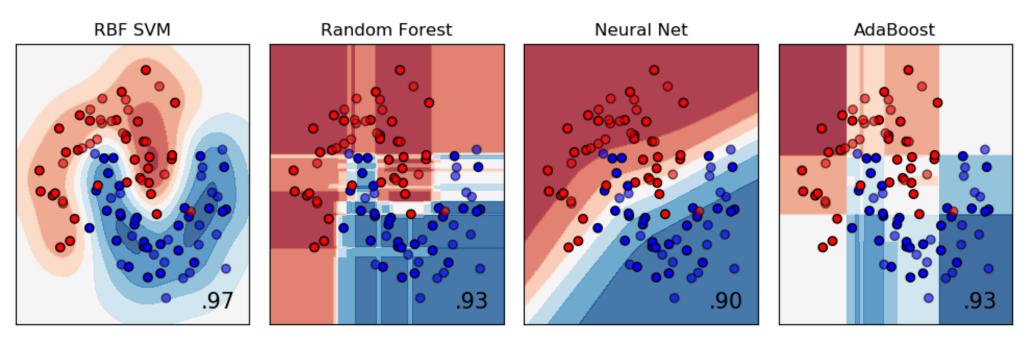
- Conditional
 - SVM -> kernel? RBF kernel -> gamma?

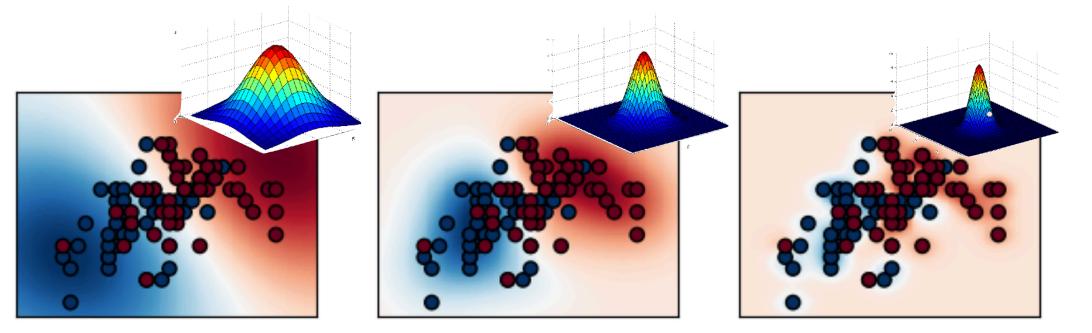
7



Nearest Neighbors

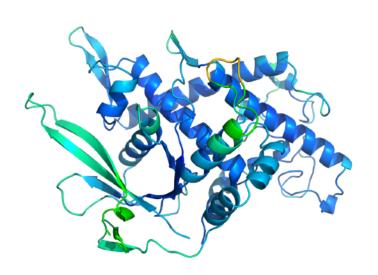




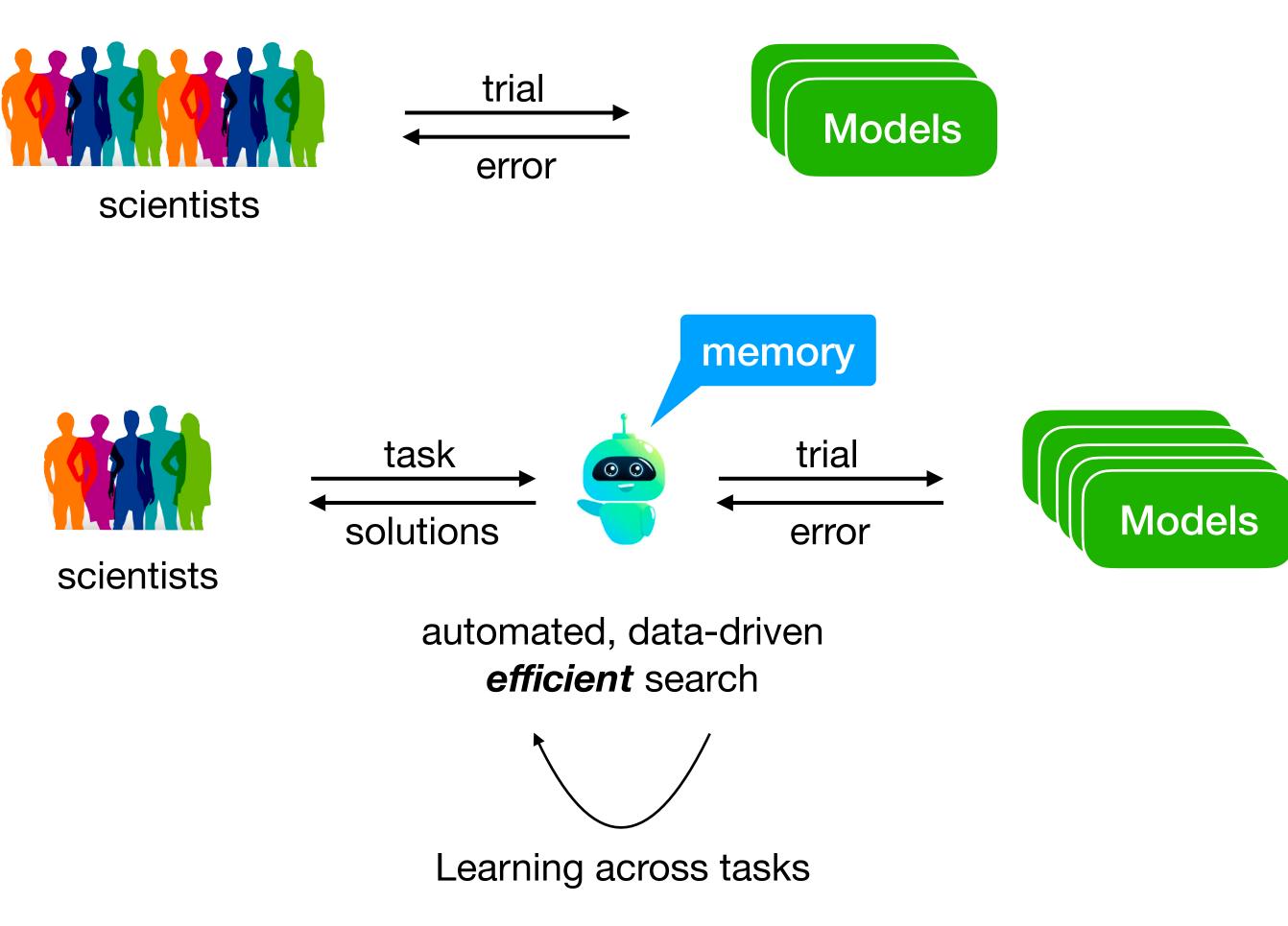


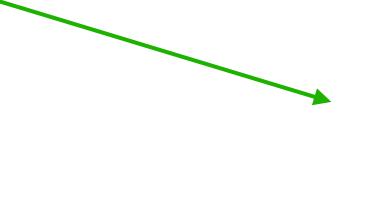
Automatic Machine Learning (AutoML)

Replace manual trial and error with automated search (based on prior experience)



Scientific challenge

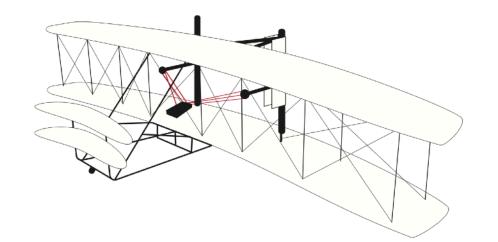


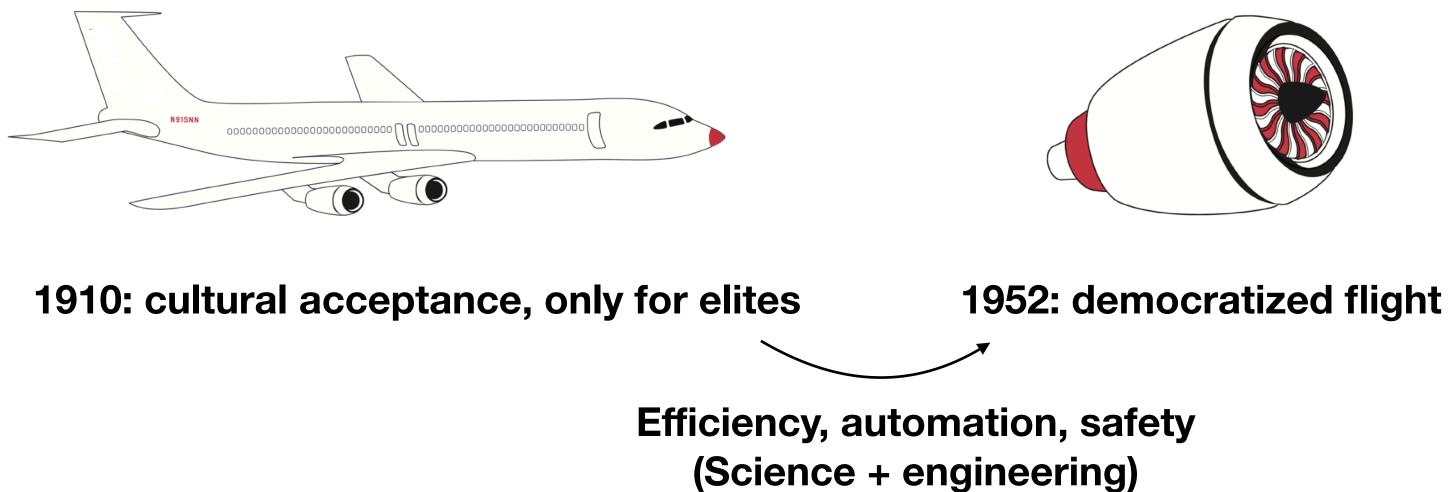


Ideally, AutoML systems learn across tasks to leverage prior experience with similar tasks

#2 Robust autonomous systems

We're only in the pioneering age





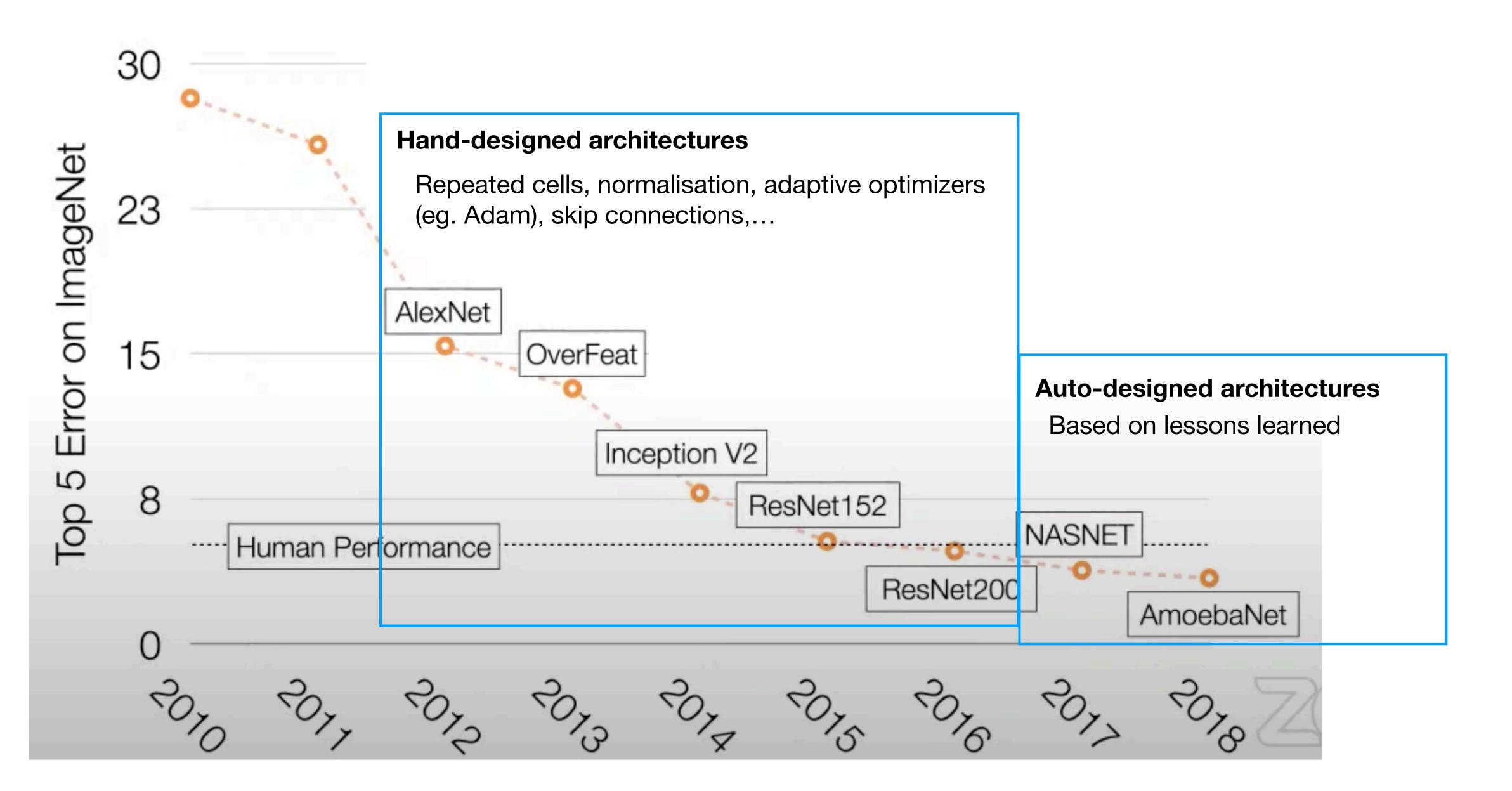
1903: first powered controlled flight

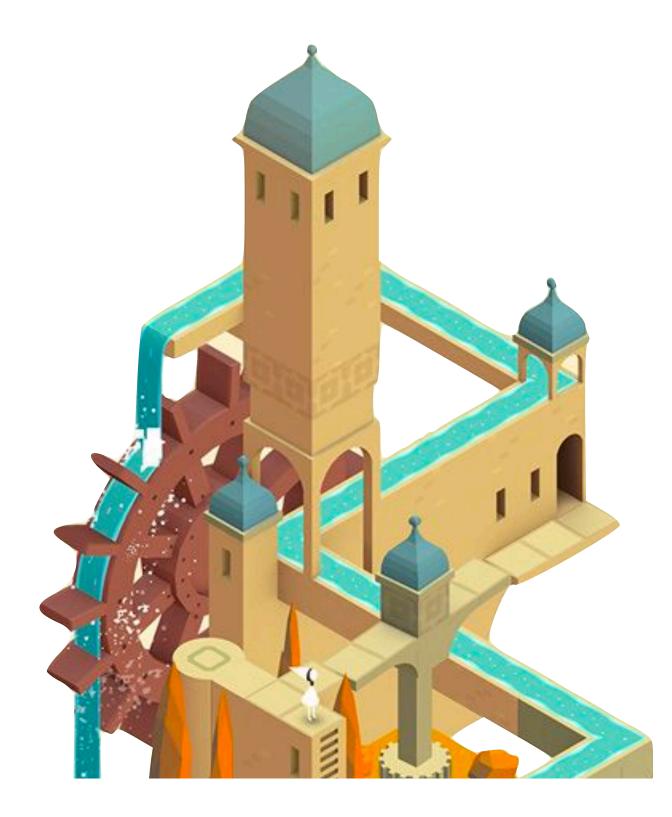
Many challenges remain to democratize AI

- Efficiency: efficient algorithms (transfer, continual), hardware
- Automation: efficient, adaptive AutoML
- Safety: explainability, fairness, causal analysis
- Human-in-the-loop, domain knowledge, real-world constraints

A (key) part of the wider AI challenge

What drove progress?



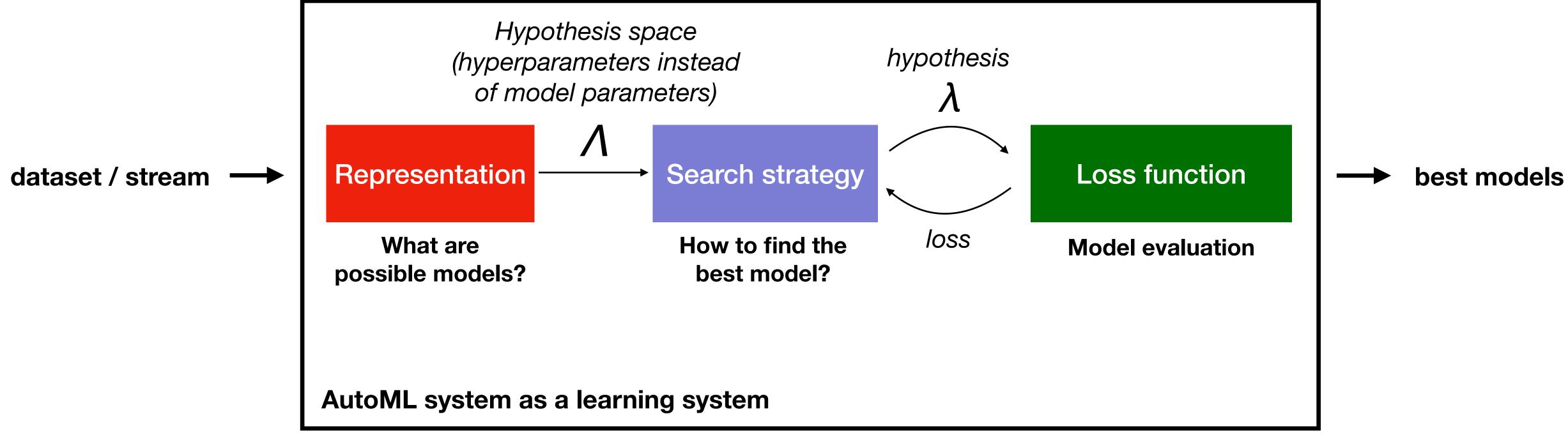


Part 2: How AutoML works The machinery

Overview

Structure of AutoML systems

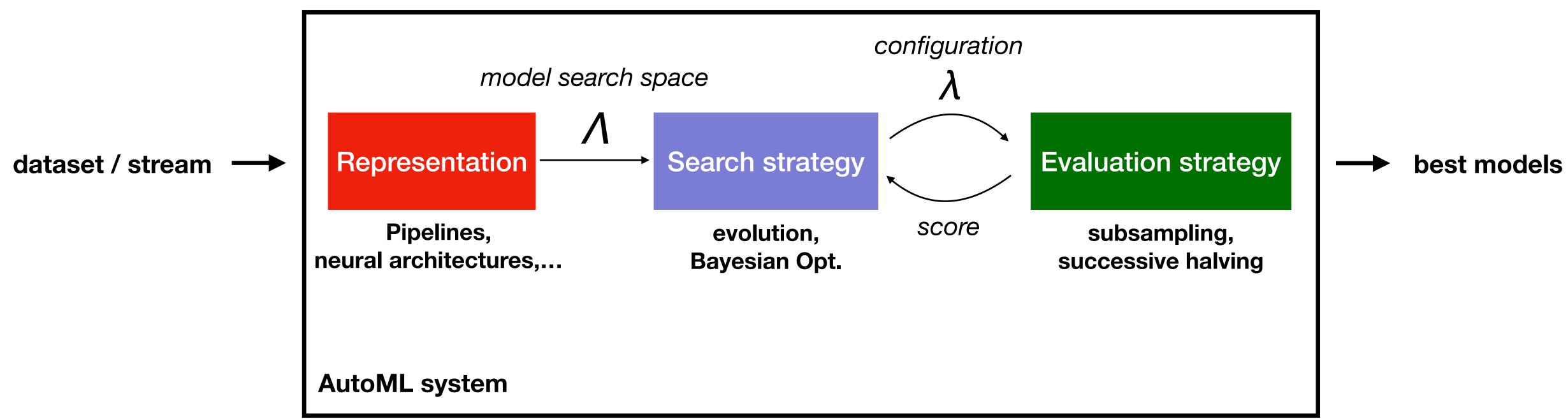
Structure of AutoML systems

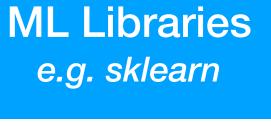


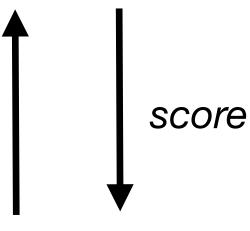
Structure of AutoML systems

 λ (architecture + hyperparameters)

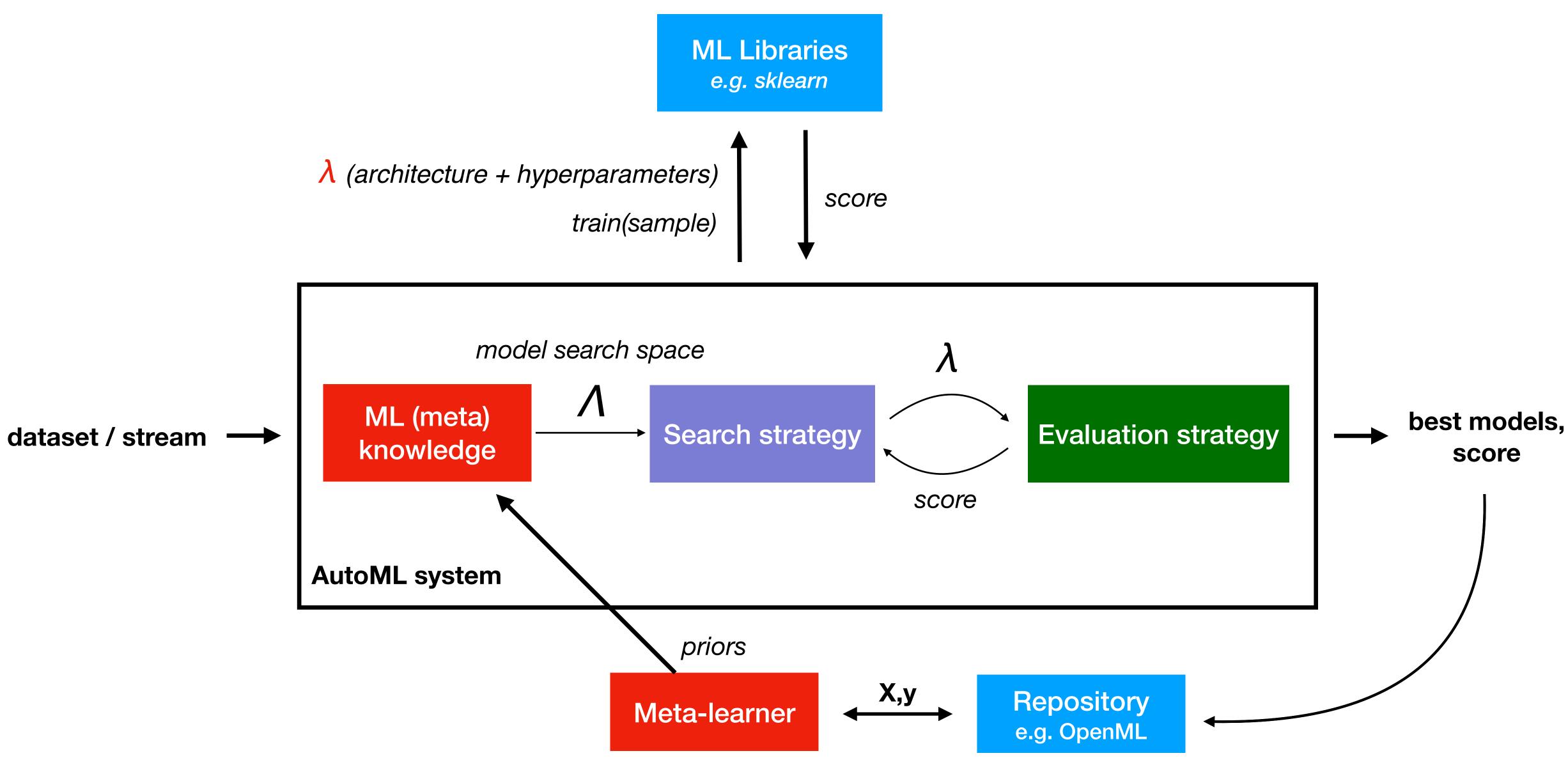
train(sample)



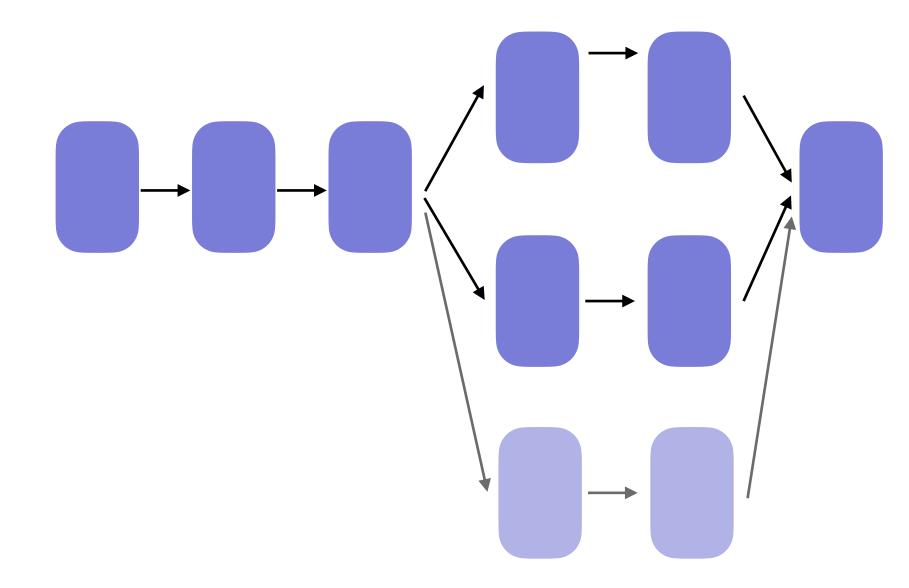




Structure of *learning* AutoML systems



- Model search space Λ : represent all pipelines or neural architectures
 - Pipeline operators, neural layers, interconnections,...
 - Defines a (complex) search space \bullet

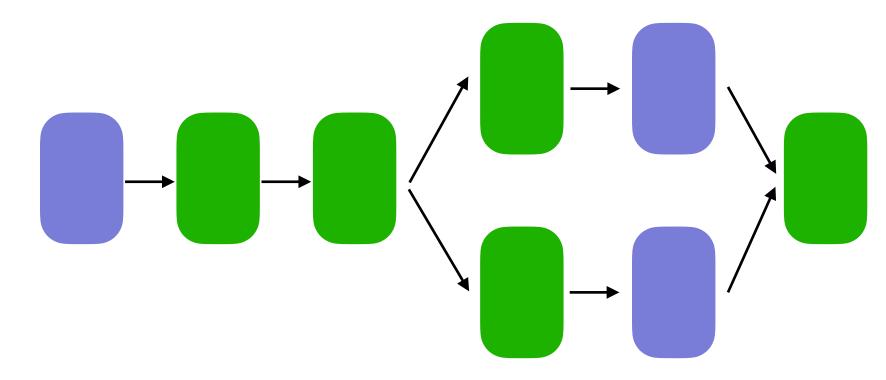


make_pipeline(**OneHotEncoder()**, Imputer(), StandardScaler(), SVC())

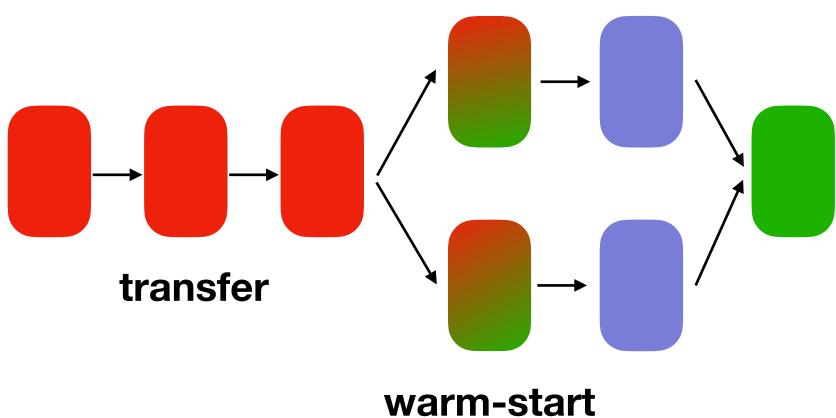
model.add(Conv2D(32, (3, 3)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3))

- Model search space: represent all possible architectures
- **Optimization**:
 - What is the best architecture? Which hyperparameters are important?
 - How to optimize them? What is the (multi-) objective function?

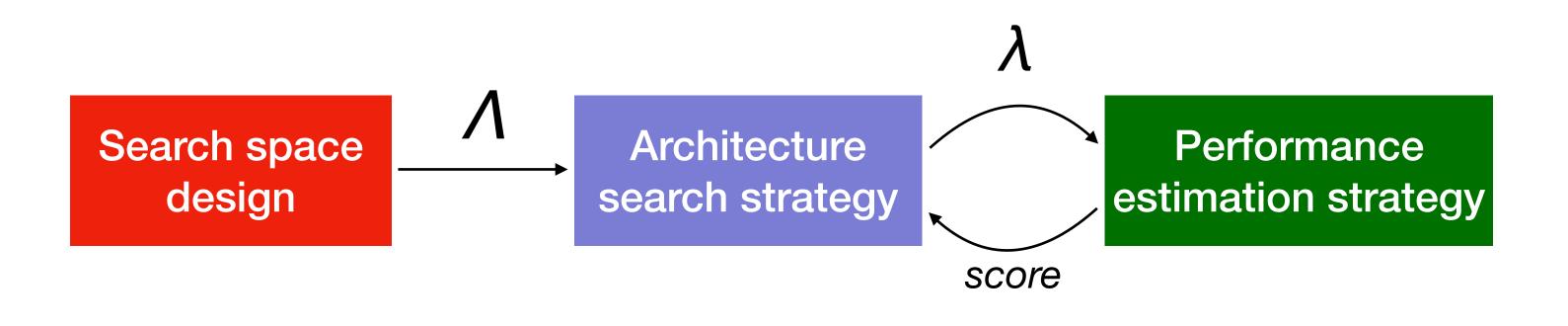
hyper_space = {'SVC_C': expon(scale=100), 'SVC_gamma': expon(scale=.1)} RandomizedSearchCV(pipe, param_distributions=hyper_space, n_iter=200)



- Architecture search space: represent all possible architectures
- **Optimization:** *optimize* architecture and hyperparameters
- Meta-learning: how can we transfer *experience* from previous tasks?
 - Don't start from scratch (search space is too large)
 - Transfer learning: reuse good architectures/configurations/weights
 - Warm starting: start from promising architectures/configurations/initializations

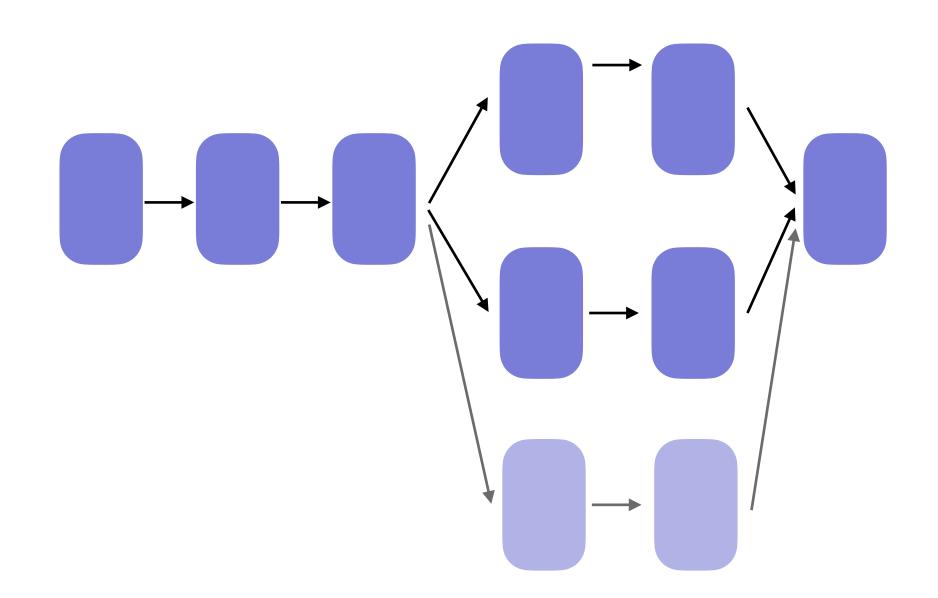


- Architecture search: represent all possible architectures
- Optimization: optimize architecture and hyperparameters
- Meta-learning: how can we transfer experience from previous tasks?



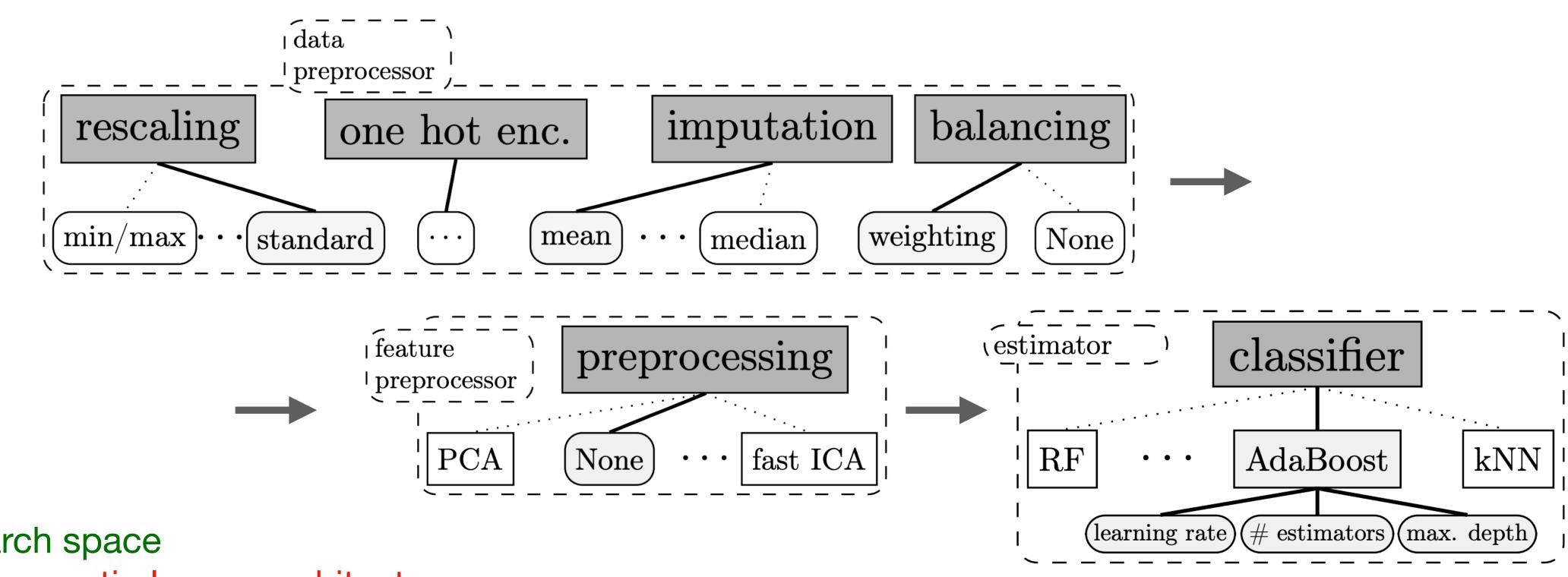
Many combinations are possible! They can be done *consecutively*, *simultaneously* or *interleaved*

Architecture search space



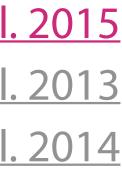
Parameterized architectures

- Manual bias: most successful pipelines have a similar structure
- Fix architecture, encode *all* choices as extra hyperparameters
 - Architecture search becomes hyperparameter optimization



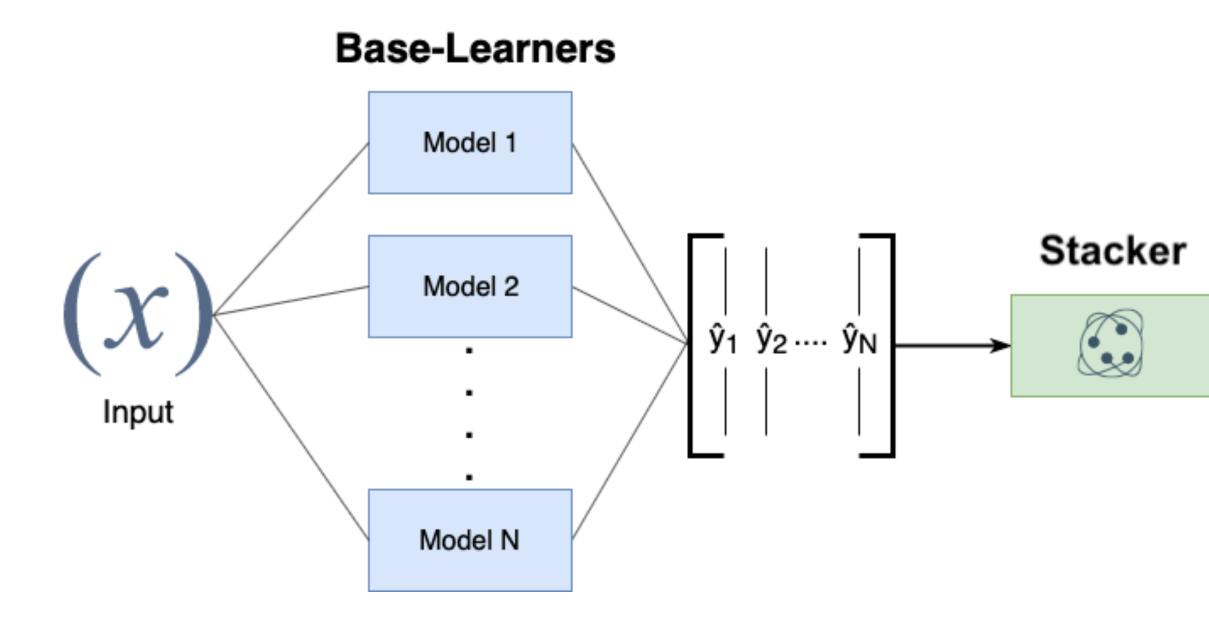
+ smaller search space - you can't learn entirely new architectures

autosklearn Feurer et al. 2015 autoWEKA Thornton et al. 2013 hyperopt-sklearn Komer et al. 2014



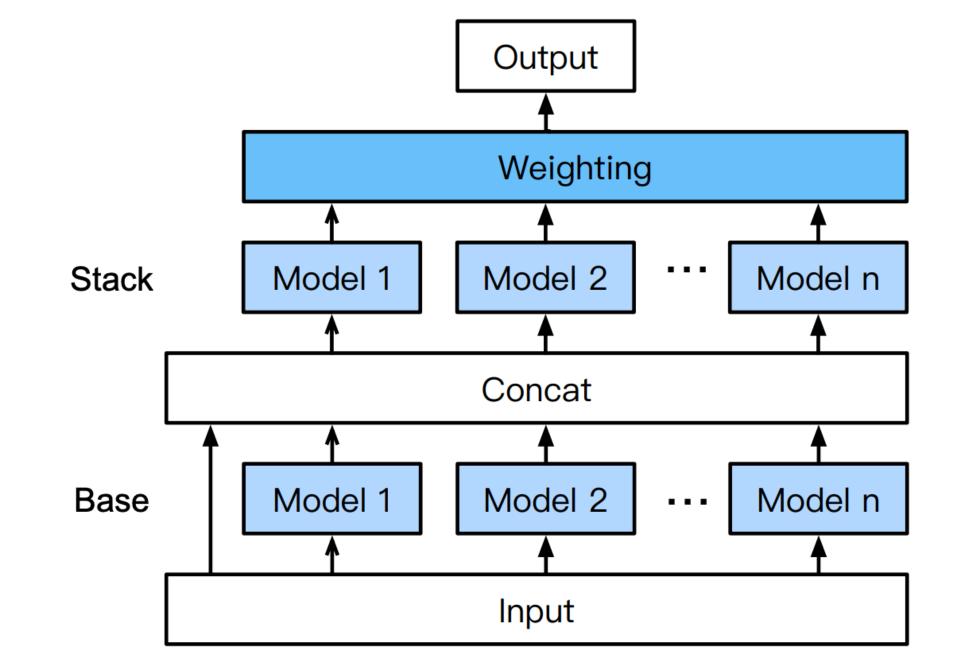
Ensembling

- Build ensembles of multiple pipelines to avoid overfitting
 - RandomForests (Auto-sklearn, GAMA,...)
 - Stacking (AutoGluon-Tabular, H2O AutoML,...) ${ \bullet }$



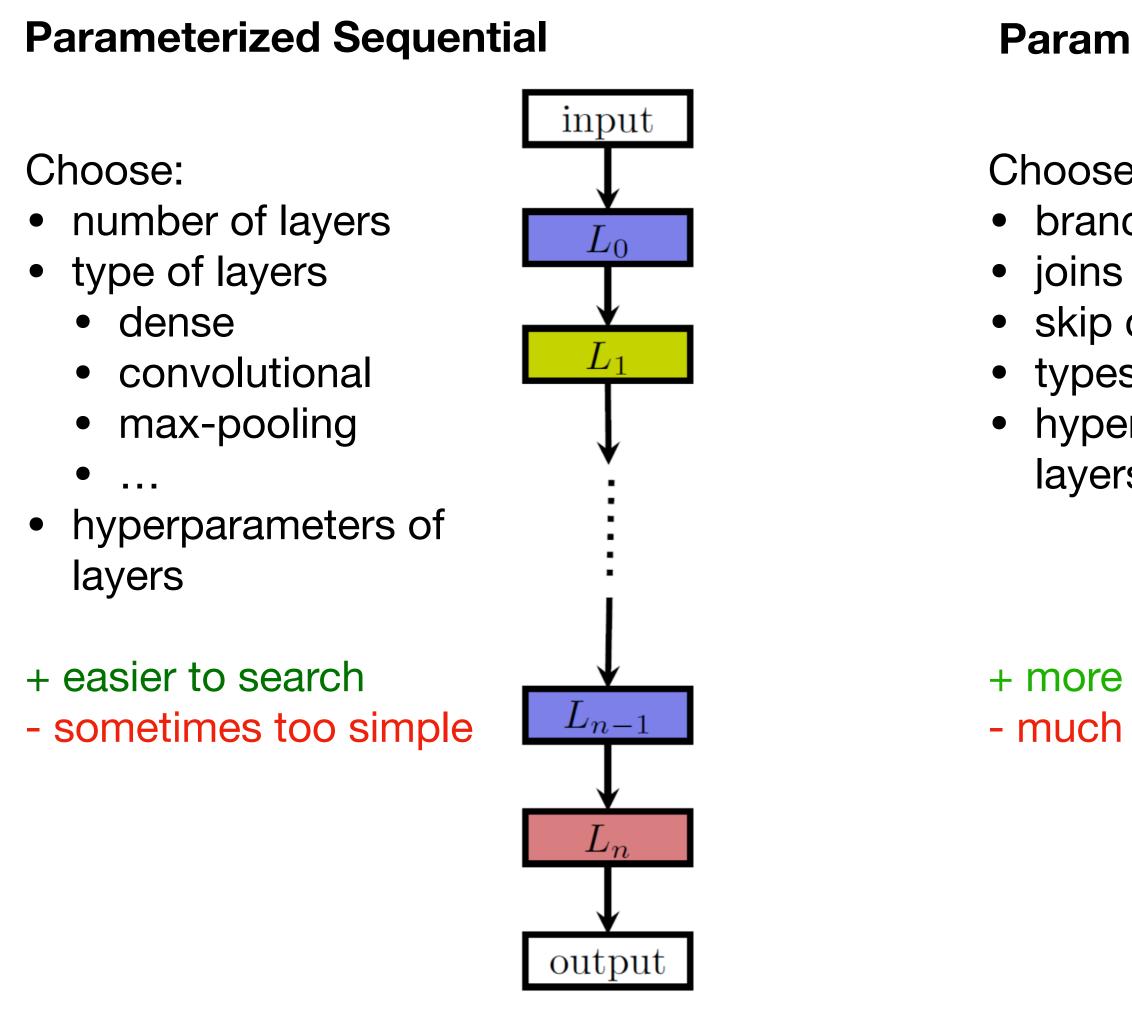
autosklearn Feurer et al. 2015 GAMA <u>Gijsbers & Vanschoren, 2020</u> AutoGluon-Tabular, Erikson et al. 2020 H2O AutoML, LeDell et al.

Output



Multi-level stacking

Parameterized neural architectures

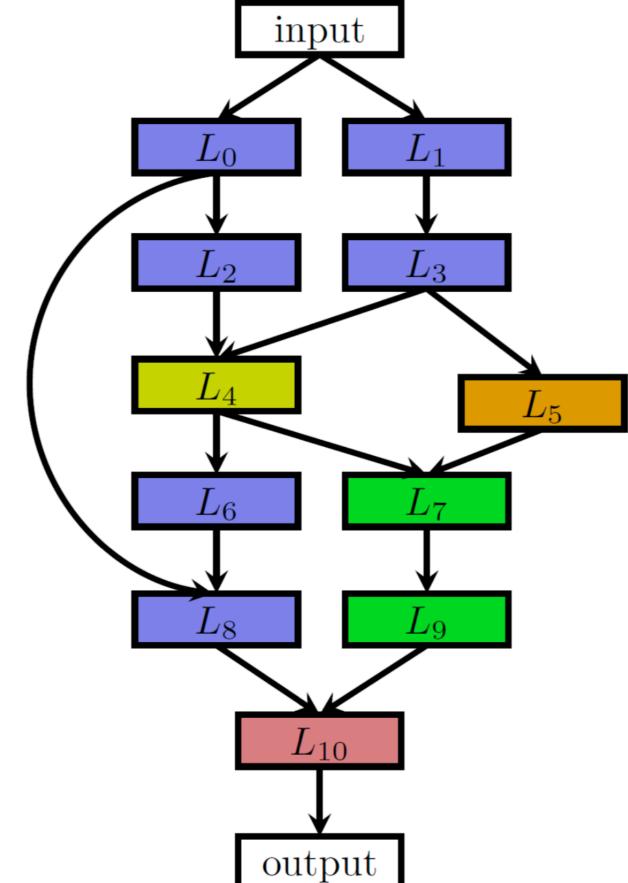


Elsken et al. 2019

Parameterized Graph

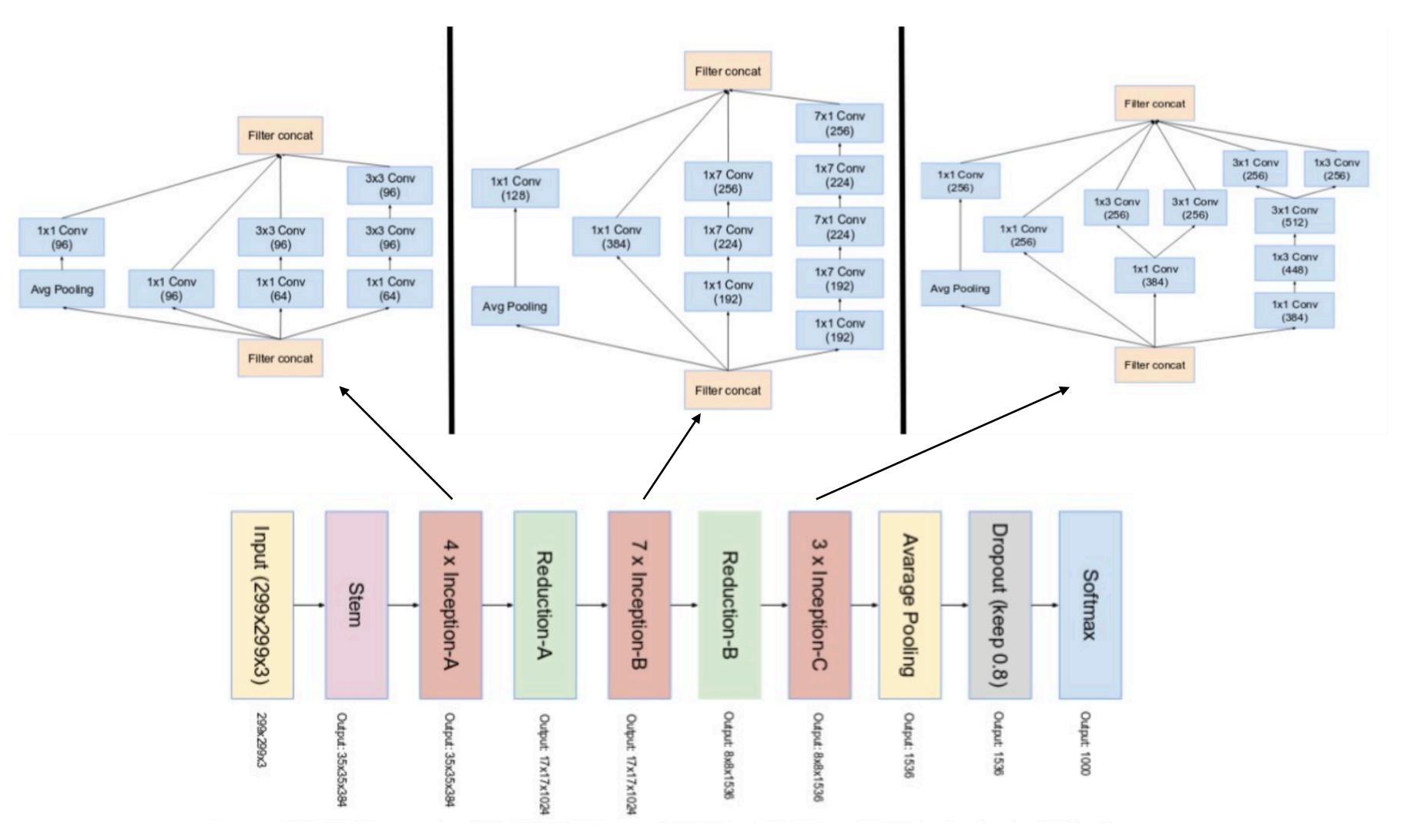
- Choose:
- branching
- skip connections
- types of layers
- hyperparameters of layers

+ more flexible - much harder to search



Cell search spaces

Manual bias: successful deep networks have repeated motifs (cells) e.g. Inception v4:

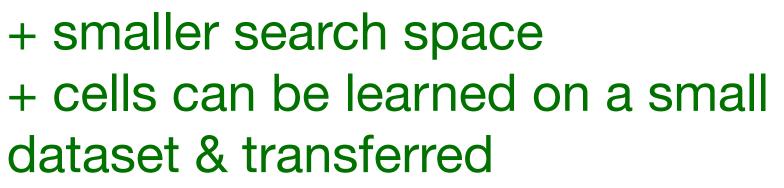


Cell search spaces

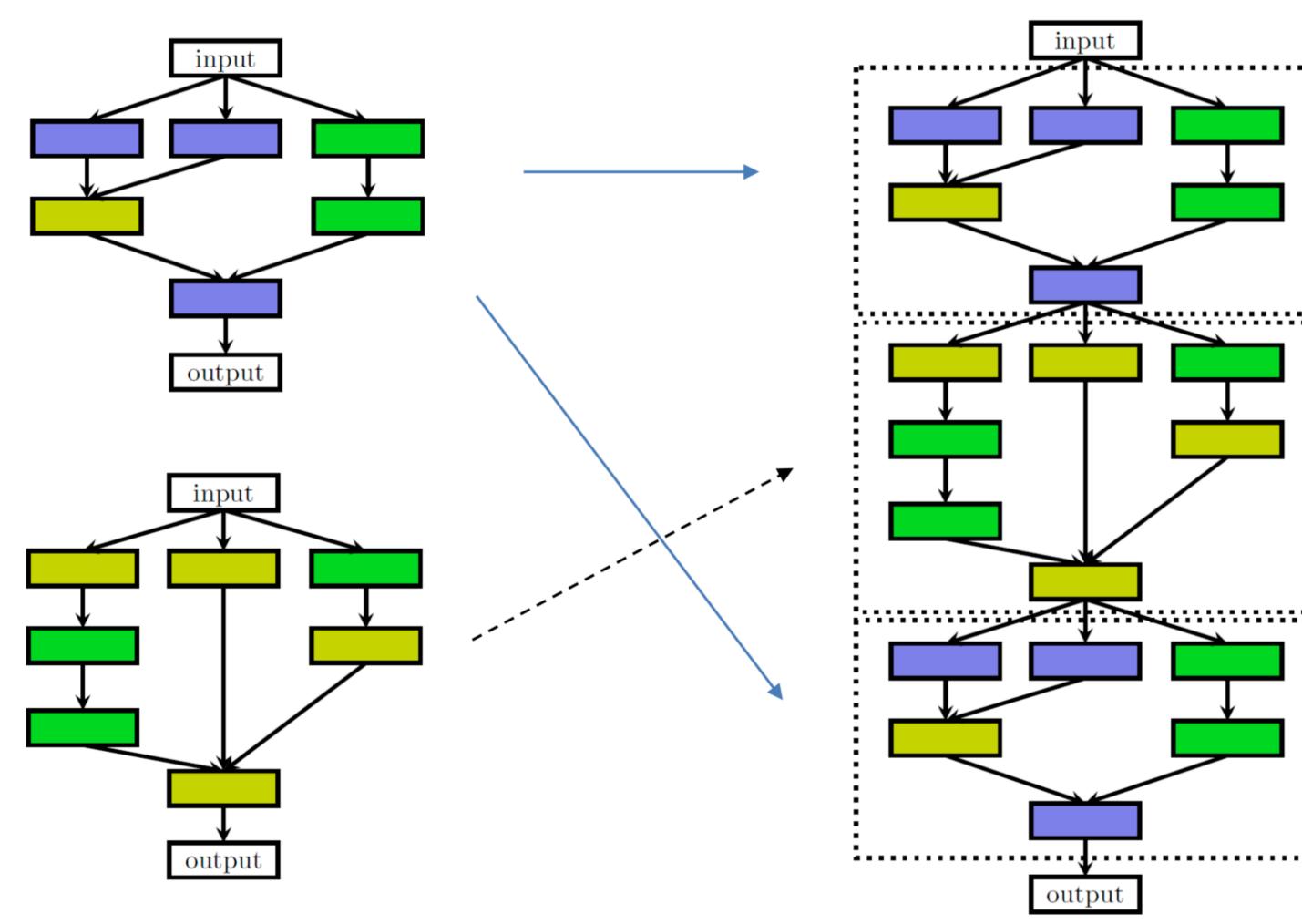
Compositionality: learn hierarchical building blocks to simplify the task

Cell search space

- learn parameterized building blocks (cells)
- stack cells together in macroarchitecture



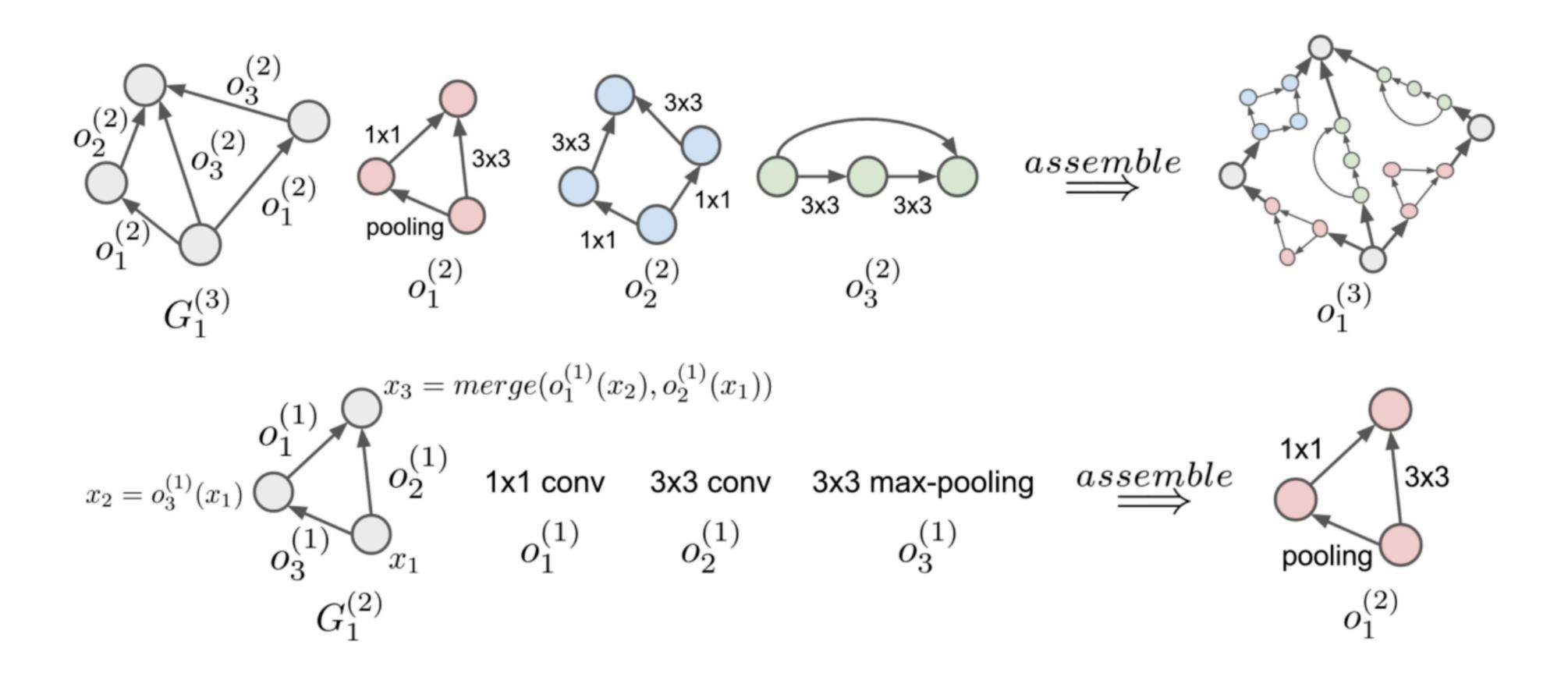
- strong domain priors, doesn't generalize well



Google NASNet Zoph et al 2018

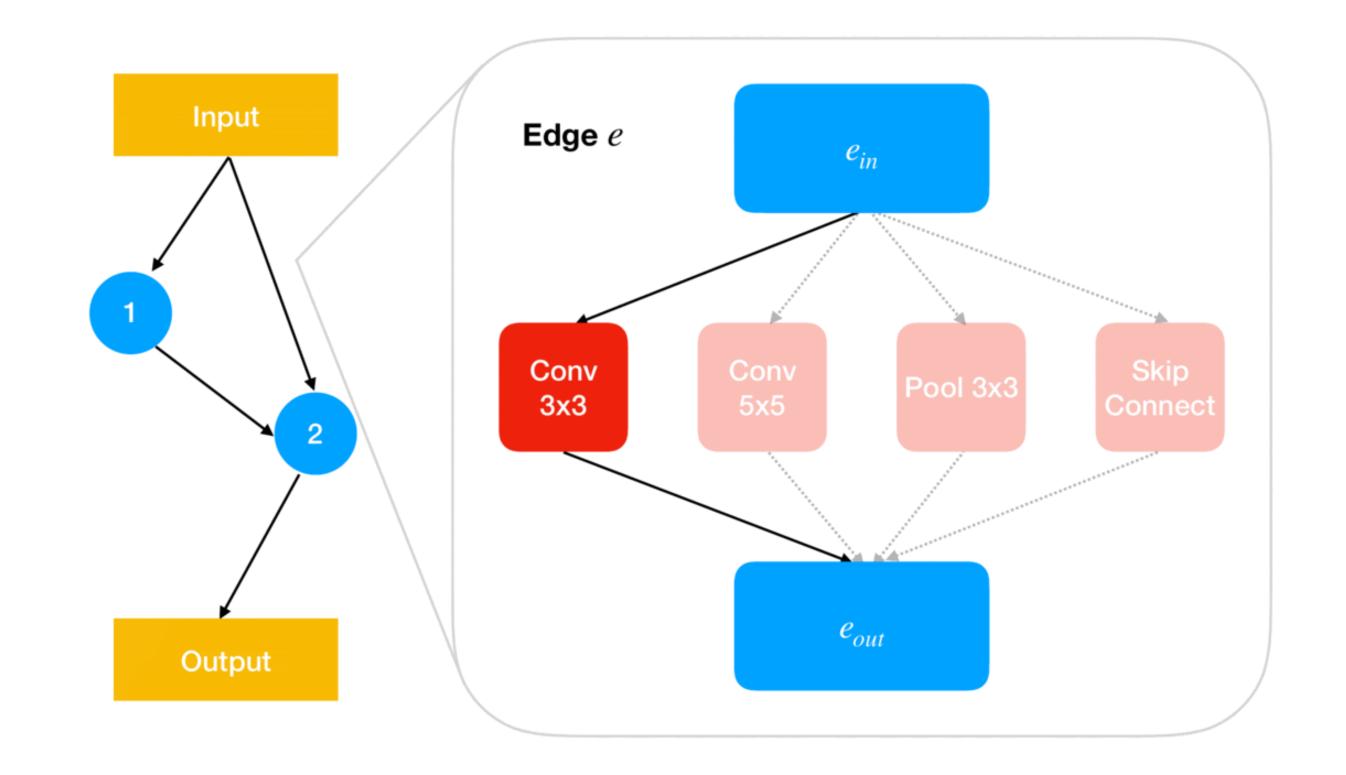
Hierarchical Search Spaces

- Define a number of primitive operations (e.g. convolution, max-pooling,...) \bullet
- Build small motifs of primitives $(o_1, o_2, o_3, ...)$ \bullet
- Choose a graph structure G_i, replace edges with motifs, repeat \bullet



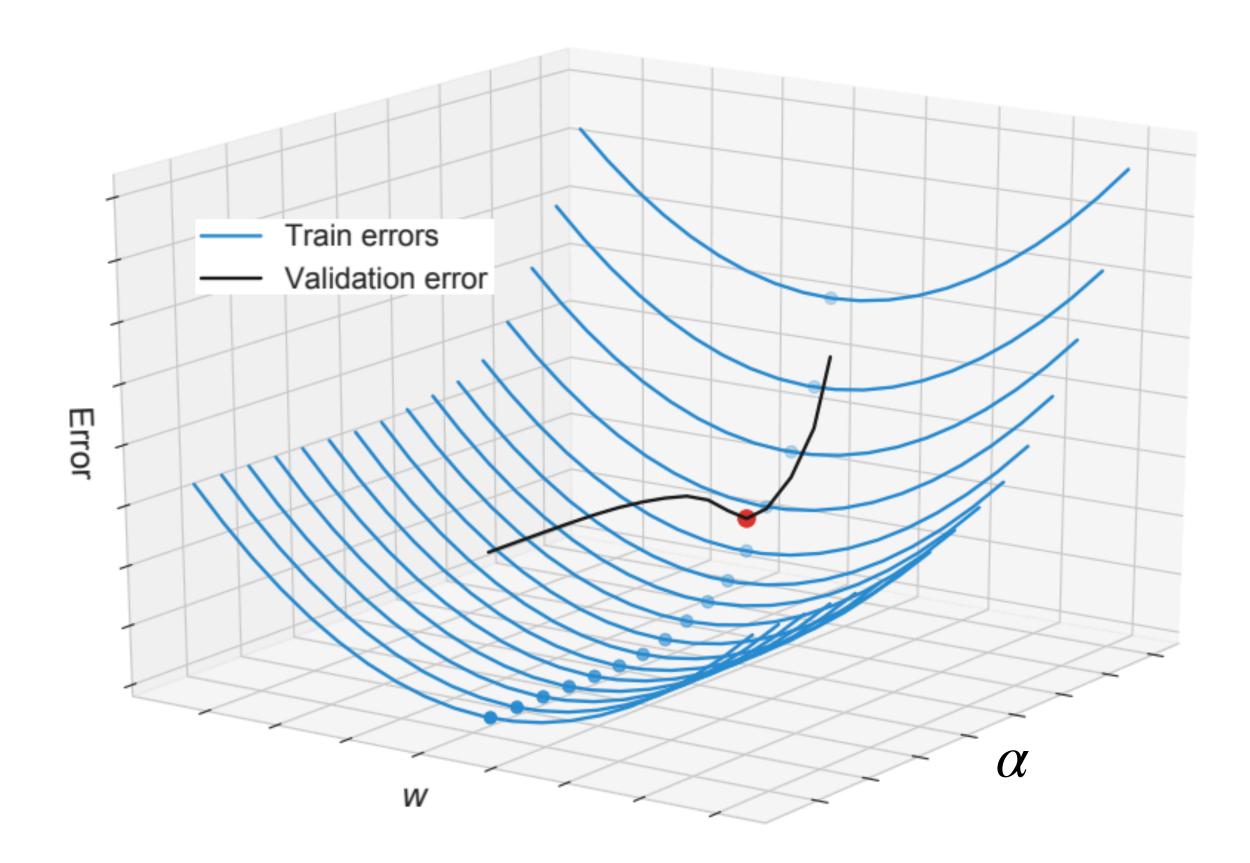
Differentiable Search Spaces

- Fixed (one-shot) structure, each edge can be any primitive operation
- Give all operators a weight α_i -> pure numeric/differentiable search space!
- Each edge output: weighted sum of outputs of all operators

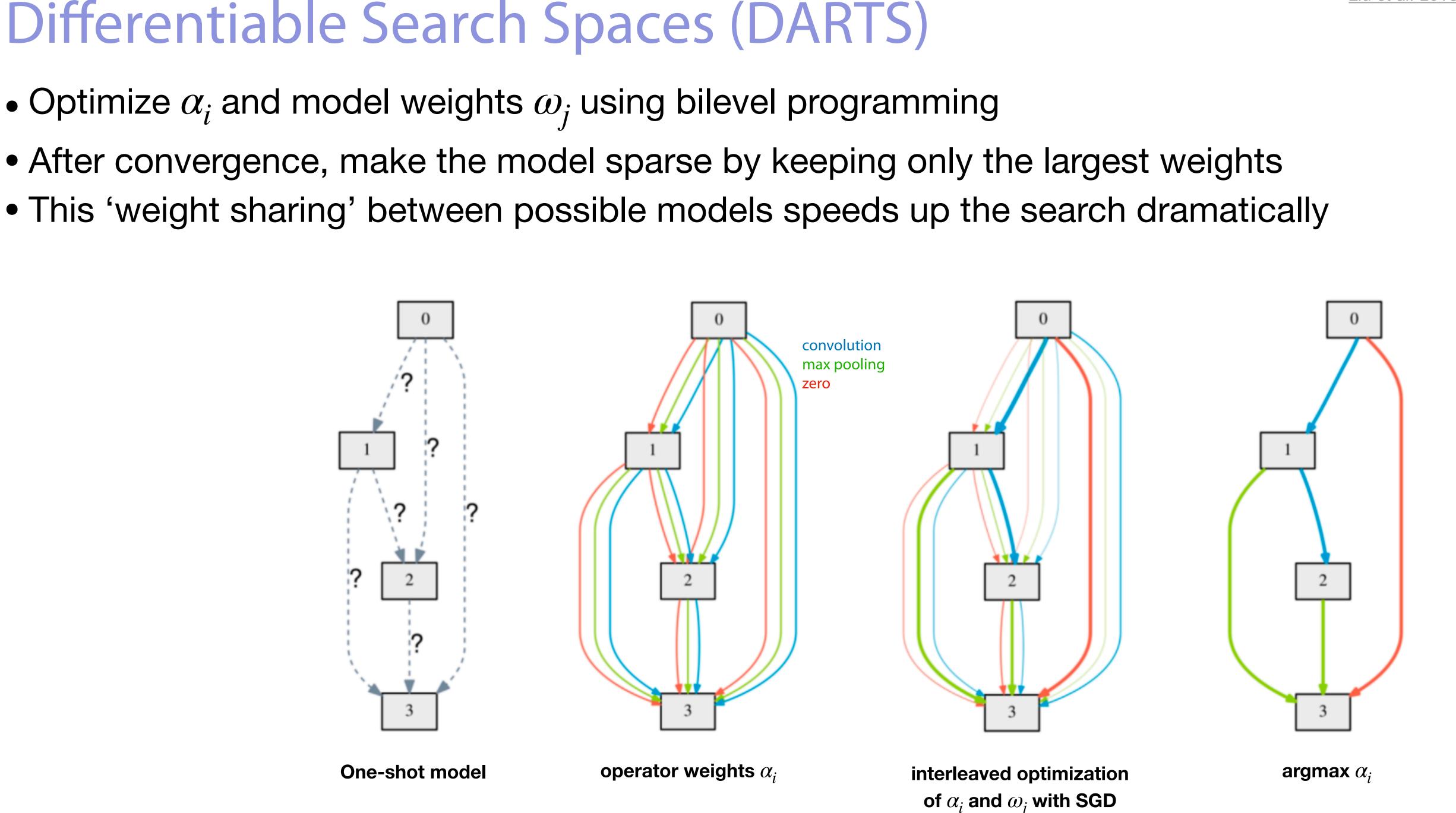


Differentiable Search Spaces

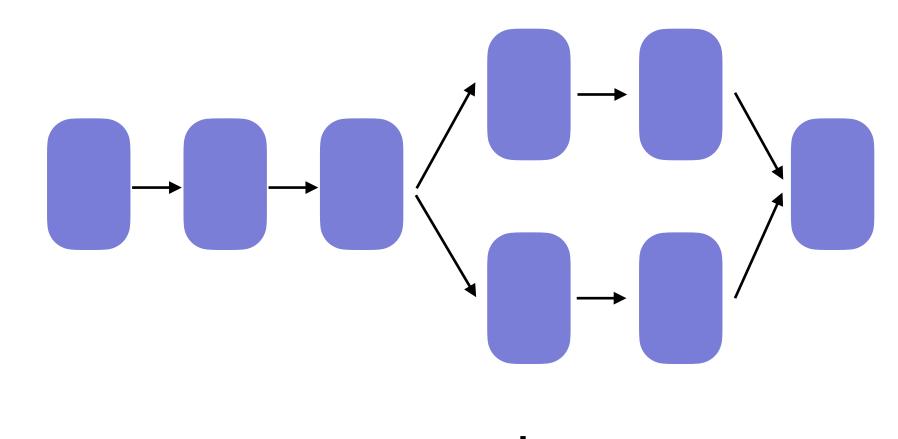
• Optimize operator weights α_i and model weights ω_j using bilevel optimization

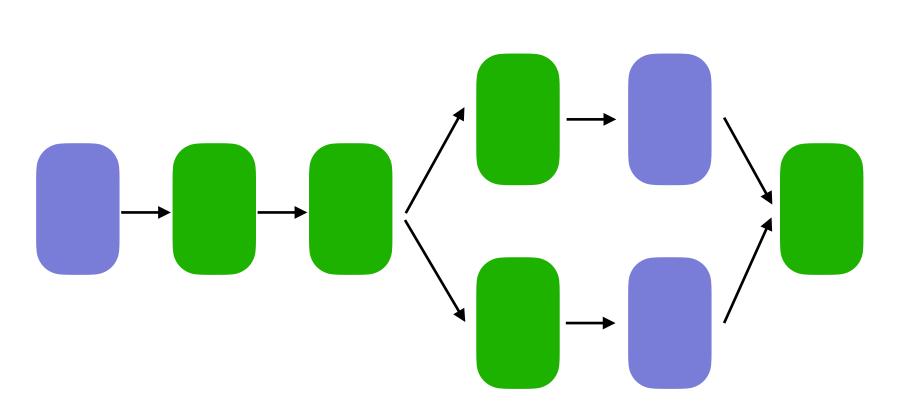


Differentiable Search Spaces (DARTS)



Optimization

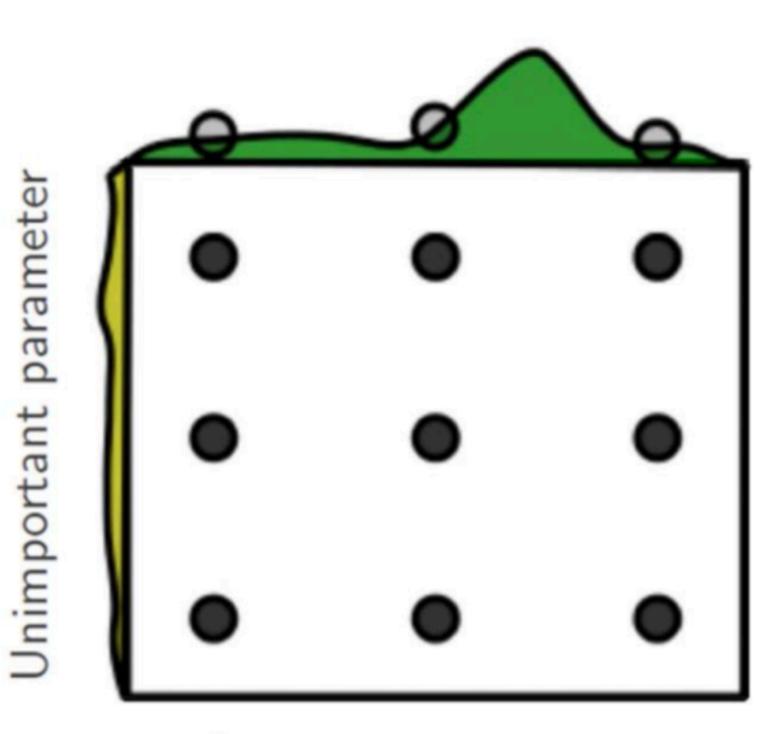




Random search

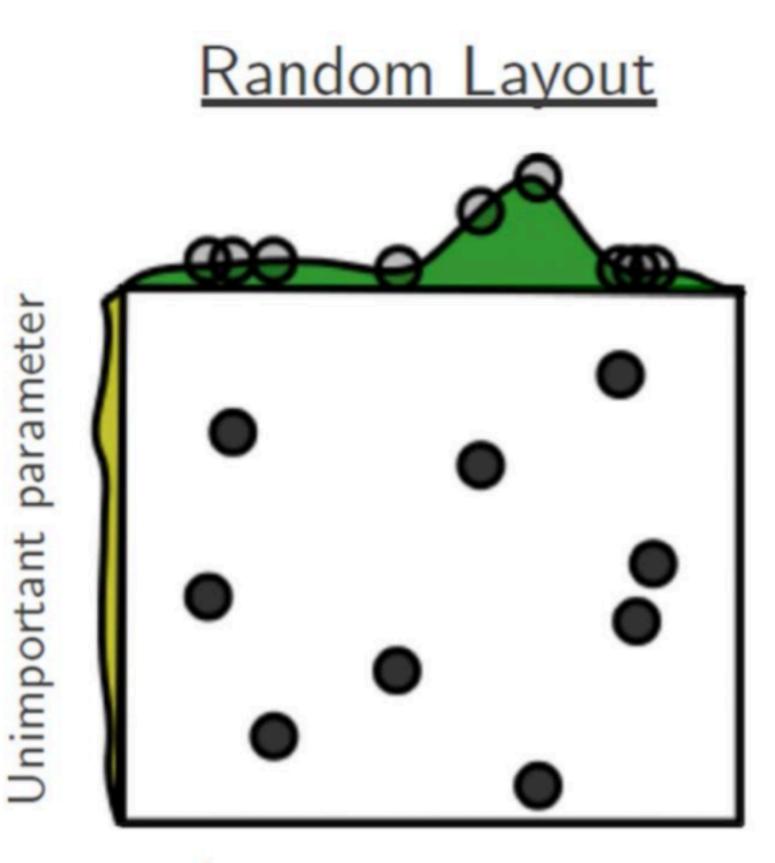
- Handles unimportant dimensions better than grid search
- Easily parallelizable, but uninformed (no learning)

Grid Layout



Important parameter

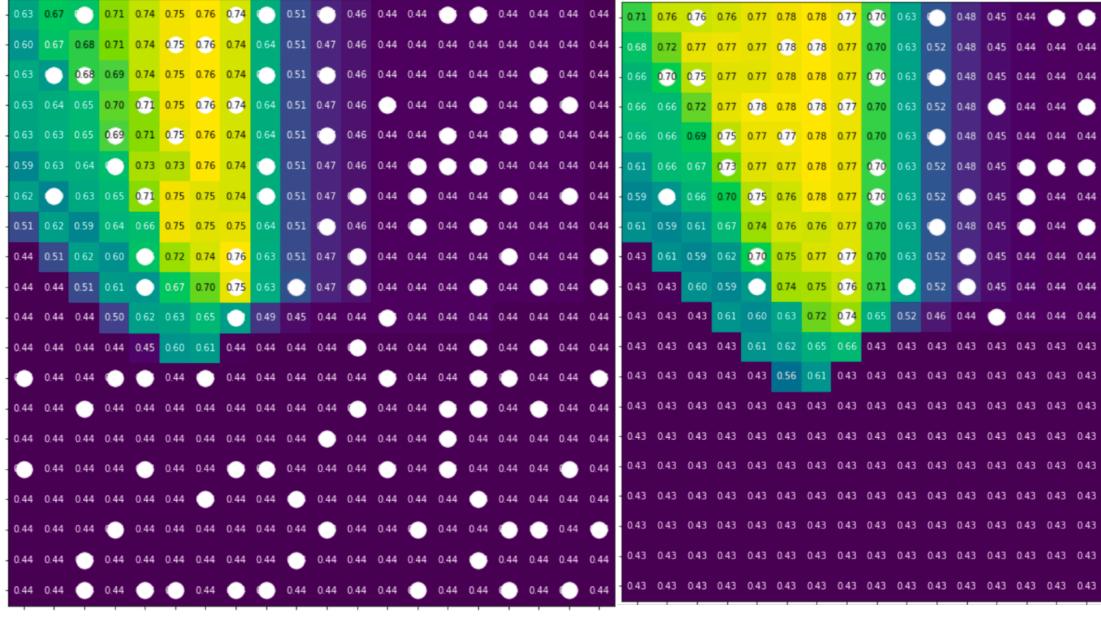
Bergstra & Bengio, JMLR 2012



Important parameter

Successive Halving

- Train on small data subsets, infer which regions may be interesting to evaluate in more depth
 - Randomly sample candidates and evaluate on a small data sample
 - Retrain the 50% best candidates on twice the data, repeat



1/16

1/2

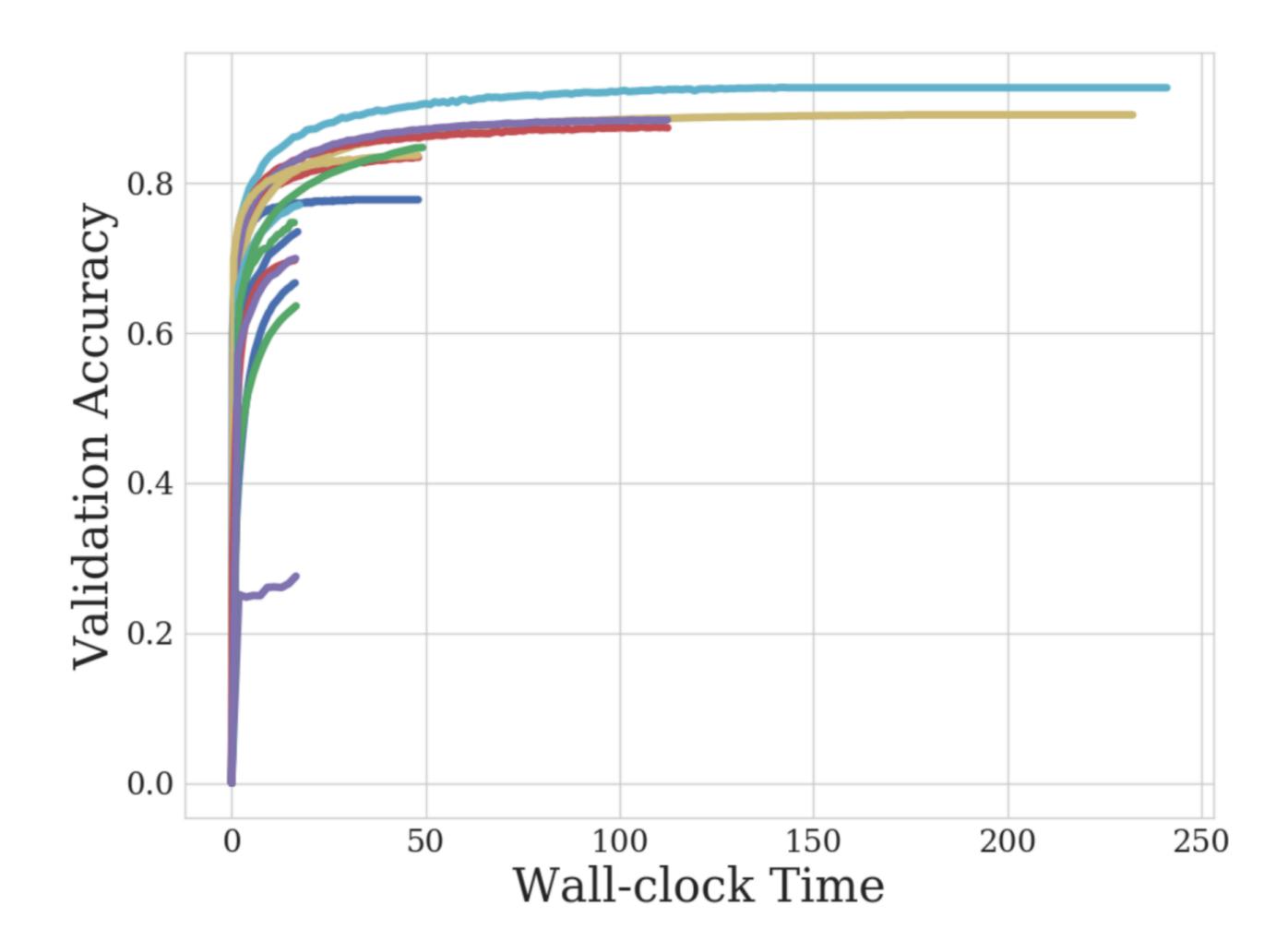
																									_																_
	0.44	0.44	0.44	0.43	0.74	0.80	0.81	0.83	0.82	0.83	0.83	0.83	0.75	0.67	\bullet	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.83	0.89	0.91	0.91	0.90	0.90	0.89	0.90	0.85	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
14	0.44	0.44	0.44	0.43	0.71	0.77	0.82	0.82	0.82	0.83	0.83	0.83	0.75	0.67	0.58	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.79	0.87	0.90	0.91	0.90	0.90	0.89	0.90	0.85	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
14	0.44	0.44	0.44	0.43	0.71	0.74	0.81	0.81	0.83	0.83	0.83	0.83	0.75	0.67	0.58	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.75	0.83	0.89	0.91	0.91	0.90	0.90	0.90	0.85	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
	0.44	\bullet	\bullet	0.43	0.70	0.71	0.78	0.82	0.82	0.83	0.82	0.83	0.75	0.67	0.58	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.72	0.78	0.87	0.90	0.92	0.91	0.90	0.90	0.85	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
14			0.44	0.43	0.68	0.70	0.75	0.81	0.82	0.83	0.83	0.83	0.75	0.67	0.58	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.70	0.74	0.82	0.88	0.91	0.91	0.91	0.90	0.86	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
	0.44	0.44	0.44	0.43	0.63	0.68	0.72	0.78	0.82	0.83	0.83	0.83	0.75	0.67	0.58	0.51	0.46	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.70	0.71	0.77	0.86	0.90	0.92	0.91	0.90	0.86	0.78	0.71	0.63	0.57	0.51	0.47	0.44	
					0.58																																				
					0.58																																				
										_																															
					0.58																								_												
					0.42																									_											
4	0.44	0.43	0.43	0.43	0.42	0.42	0.58	0.58	0.59	0.69	0.75	0.78	0.70	0.59	0.50	0.44	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.58	0.57	0.57	0.70	0.78	0.86	0.87	0.81	0.73	0.65	0.57	0.50	0.44	0.42	0.42	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.58	0.58	0.59	0.65	0.69	0.52	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.58	0.57	0.57	0.73	0.81	0.82	0.75	0.67	0.52	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.57	0.60	0.60	0.58	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.58	0.57	0.59	0.72	0.73	0.67	0.42	0.41	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.45	0.47	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.58	0.58	0.60	0.65	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.55	0.60	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
43	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
13	0.43	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	
					0.42																																				
	0.45	0.45	0.45	0.45	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42						,								_	,	_	

0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.43	0.42	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41
0.41	0.41	0.41	0.41

Hyperband

Successive halving risks killing good models too early

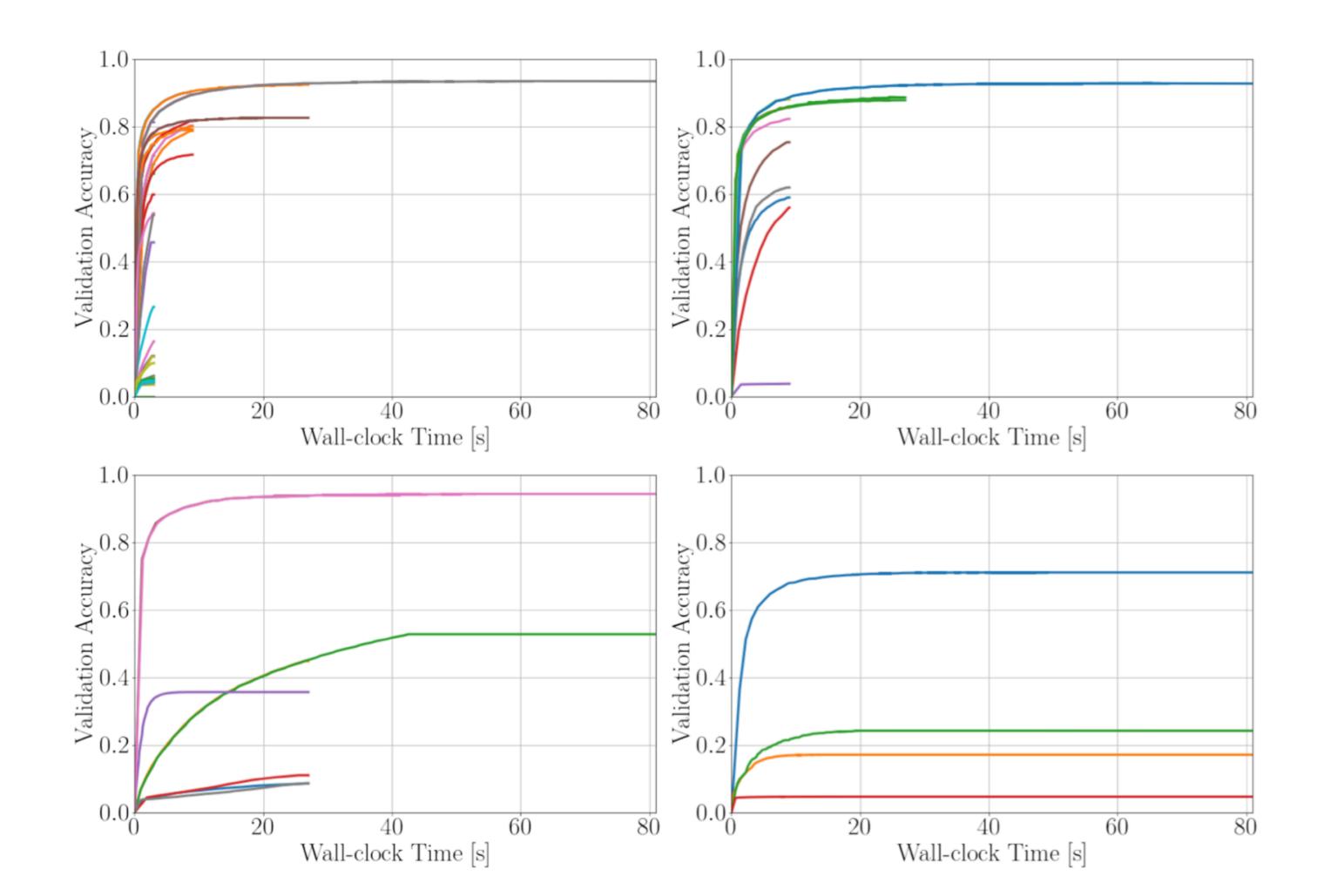
- Repeat in multiple, decreasingly aggressive iterations (brackets)
- Strong anytime performance, easy to implement, scalable, parallelizable



Hyperband

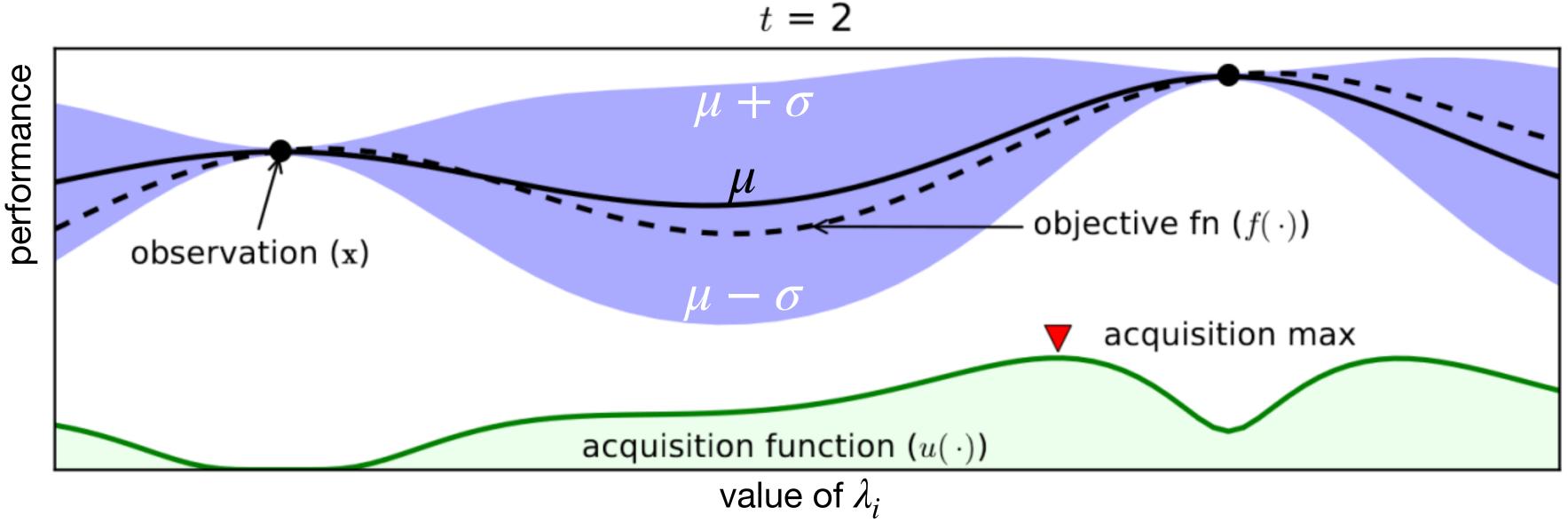
Successive halving risks killing good models too early

- Repeat in multiple, decreasingly aggressive iterations (brackets)
- Strong anytime performance, easy to implement, scalable, parallelizable



Bayesian Optimization

- Start with a few (random) hyperparameter configurations
- Fit a *surrogate model* to predict other configurations
- Probabilistic regression (e.g. Gaussian Processes): mean μ and standard deviation σ (blue band)
- Use an *acquisition function* to trade off exploration and exploitation, e.g. Expected Improvement (EI)
- Sample for the best configuration under that function

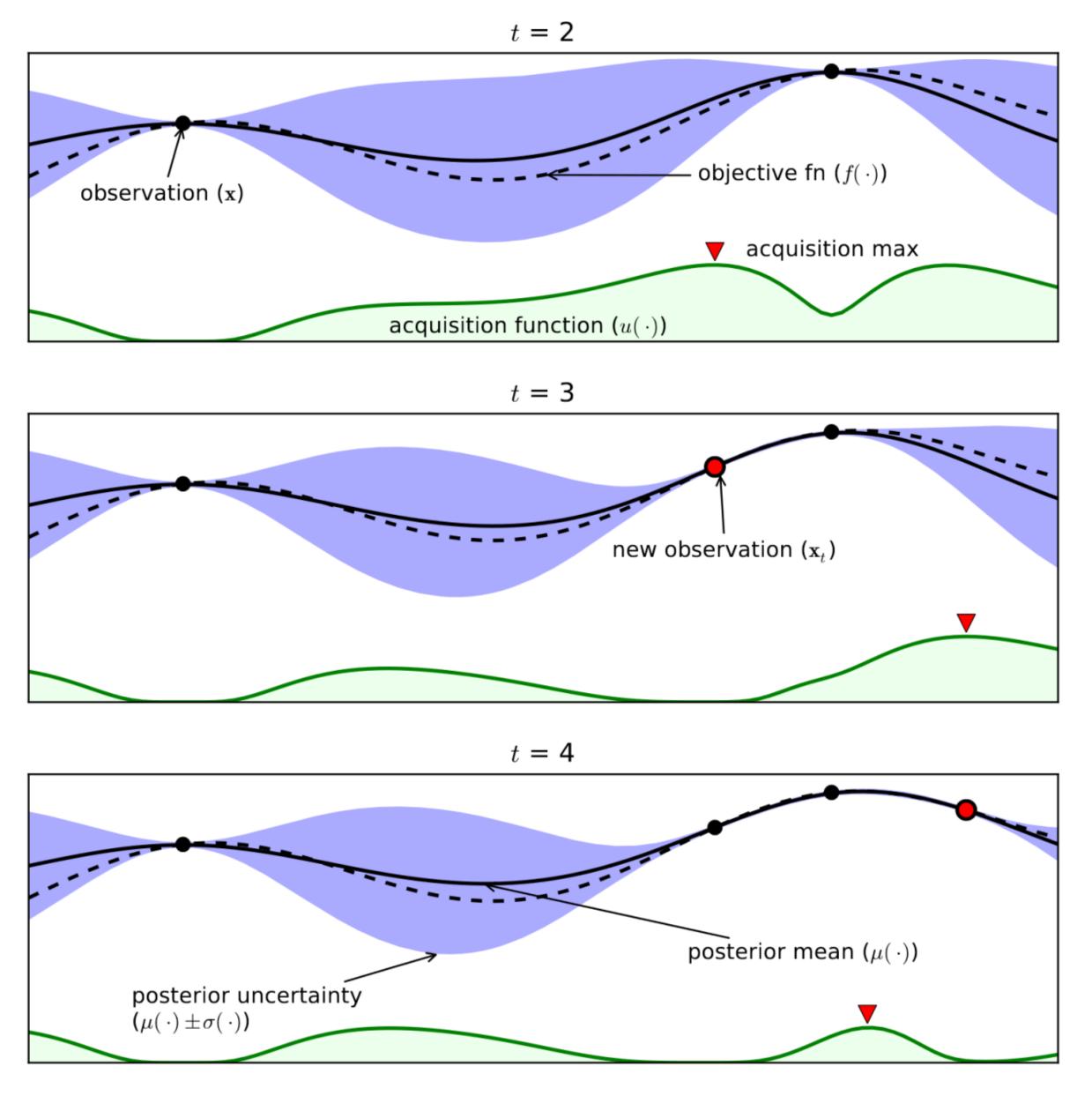


Bayesian Optimization

- Repeat until some stopping criterion:
 - Fixed budget
 - Convergence
 - El threshold
- Theoretical guarantees

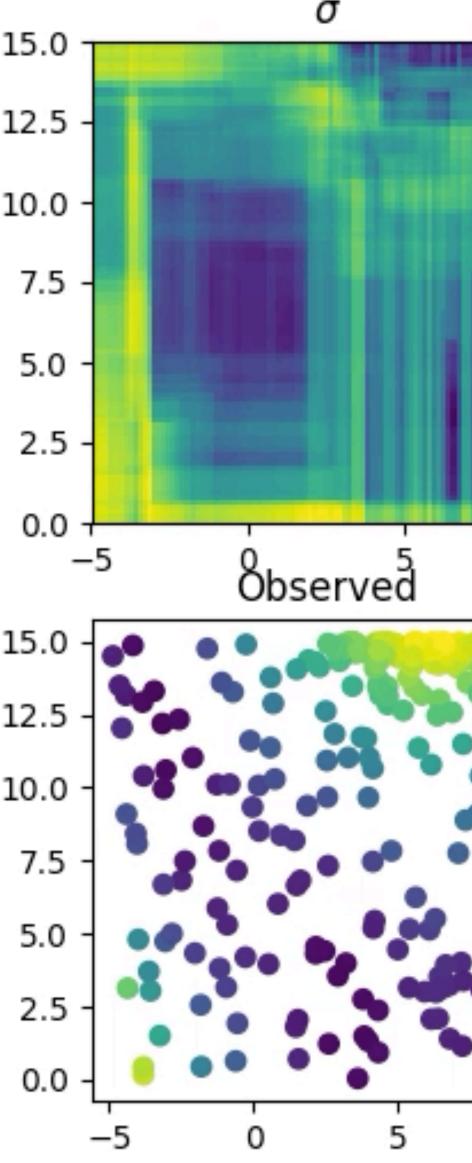
<u>Srinivas et al. 2010, Freitas et al.</u> 2012, <u>Kawaguchi et al. 2016</u>

- Also works for non-convex, noisy data
- Used in AlphaGo

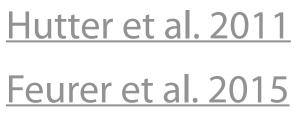


Bayesian Optimization (surrogate: random forests) EI σ μ 15.0 15.0 15.0 Use random forest 12.5 -12.5 -12.5 variance 10.0 -10.0 -10.0 hyperparameters 7.5 -7.5 -7.5 -Used in Auto-sklearn 5.0 -5.0 -5.0 -2.5 -2.5 -2.5 -0.0 + 0.0 -0.0 --5 10 10 -5 5 0 -5 Time History Öbserved 15.0 -200 -12.5 0.04 -150 -10.0 0.02 -7.5 100 -5.0 50 2.5 0.0 0 100 10 100 300 200 5 200 0 0 0

- •
- Scales well to many
- •

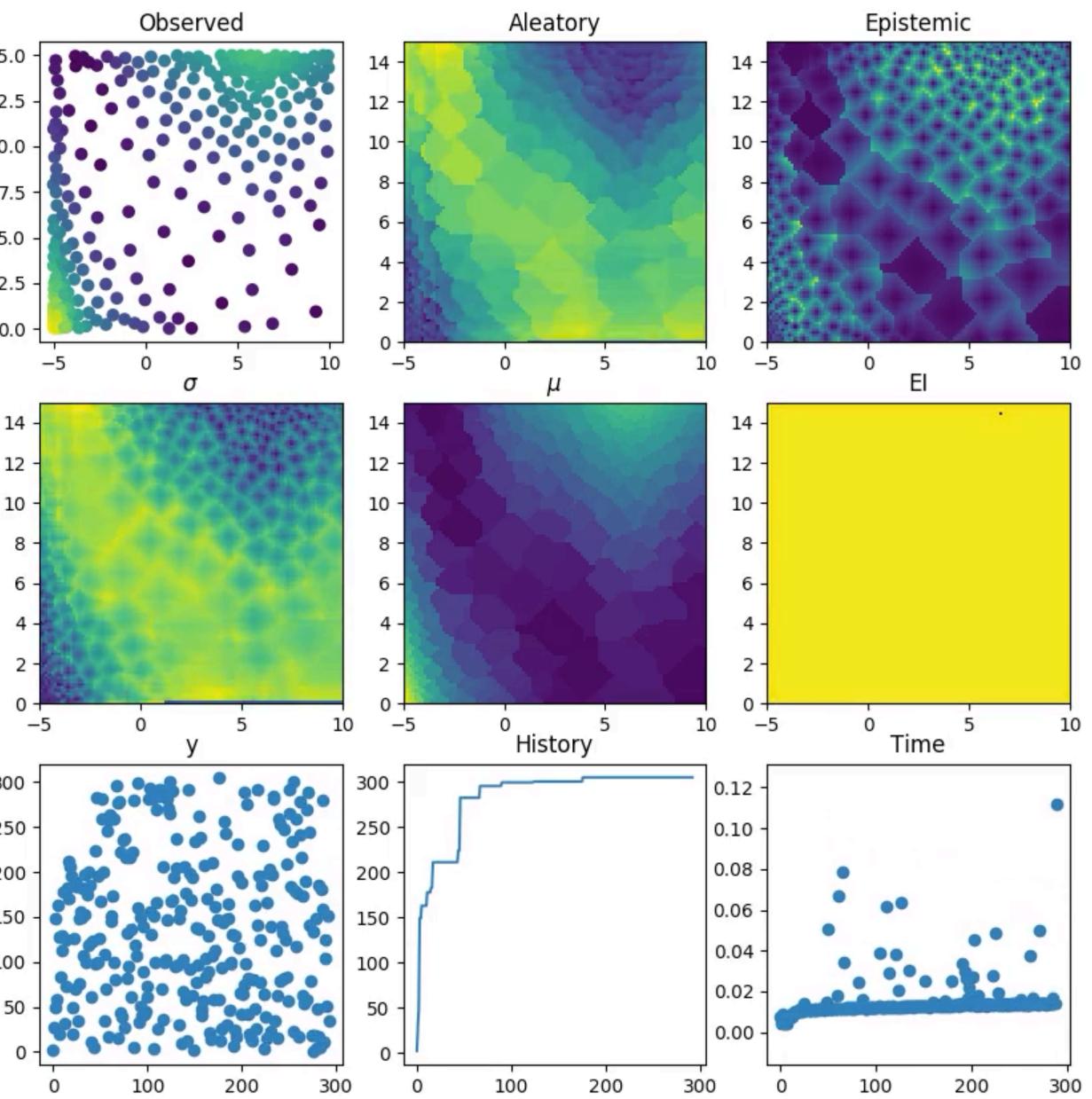


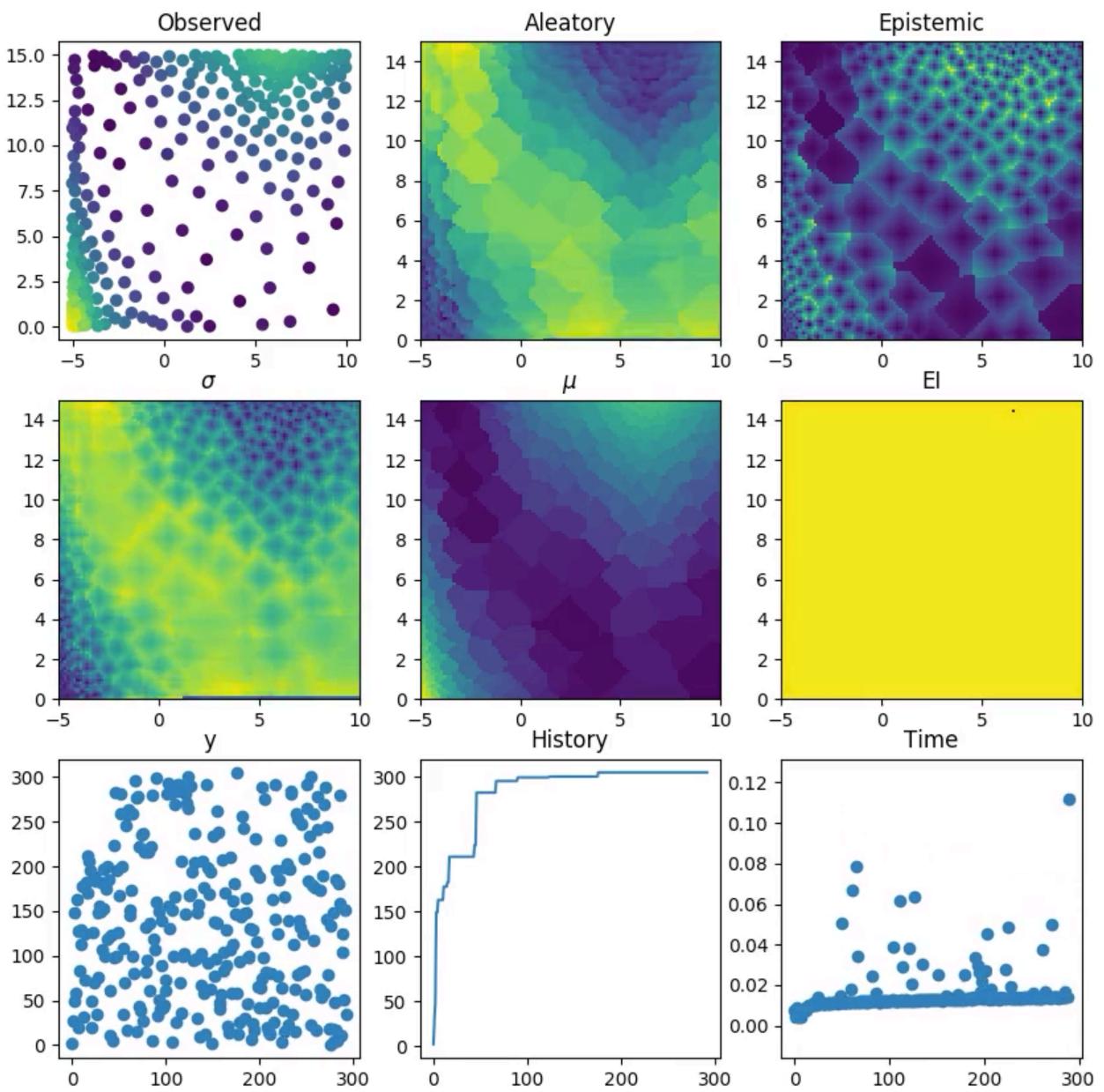
animation by Jeroen van Hoof

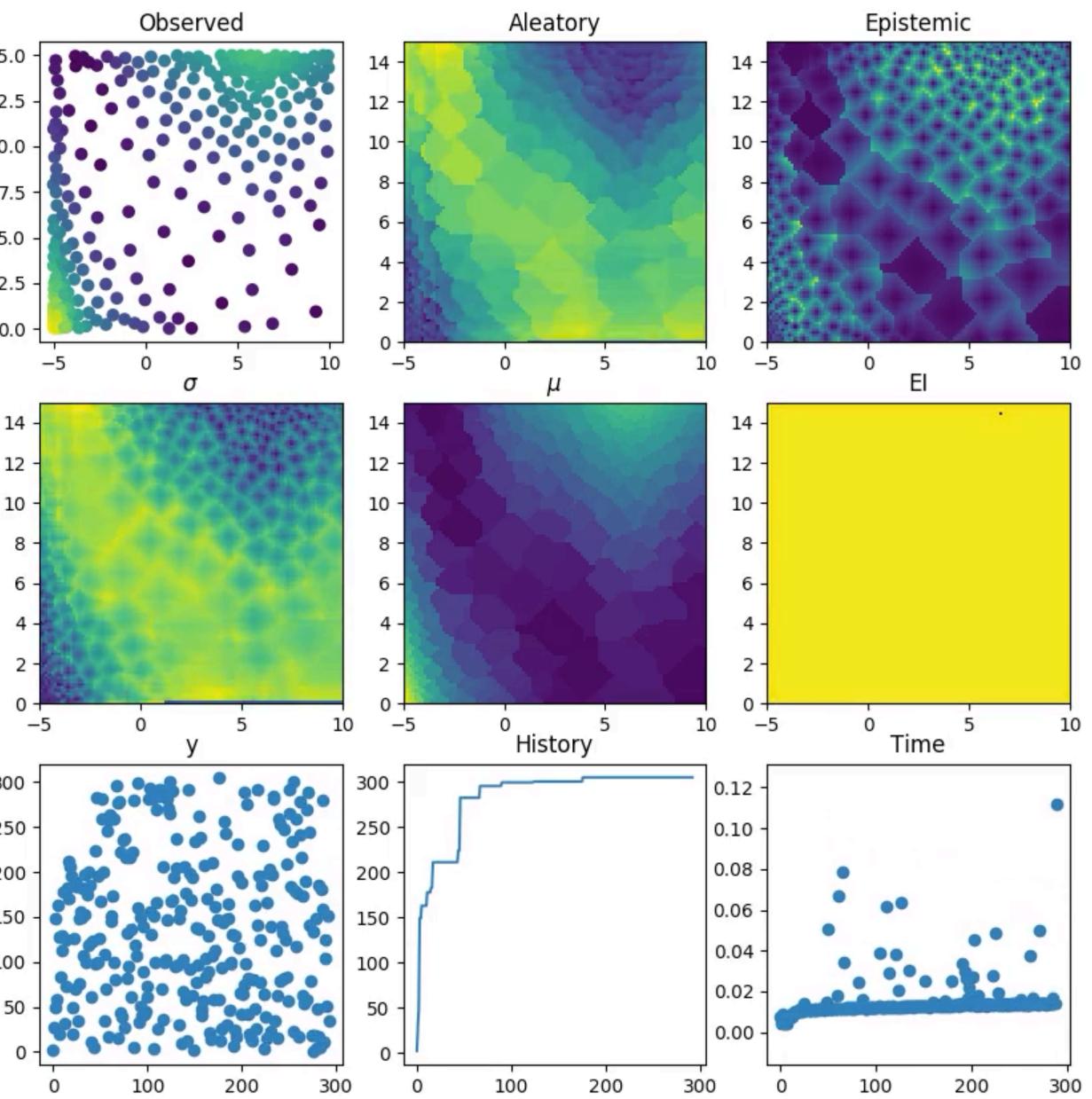


van Hoof & Vanschoren 2020 **Bayesian Optimization (surrogate: gradient boosting)**

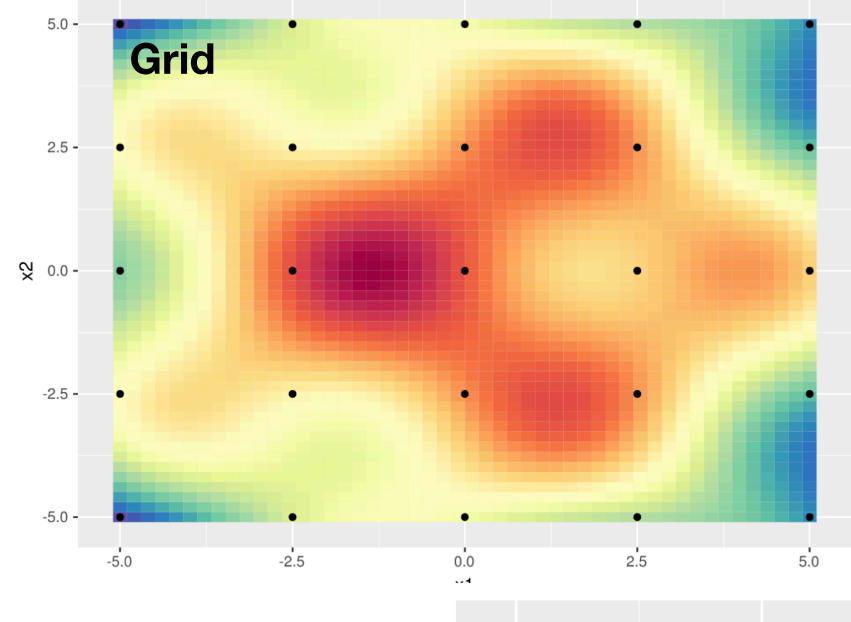
- Let gradient boosting predict 12.5 • 10.0 the mean + upper and lower 7.5 quantile 5.0 2.5 Faster
 - More robust to concept drift •

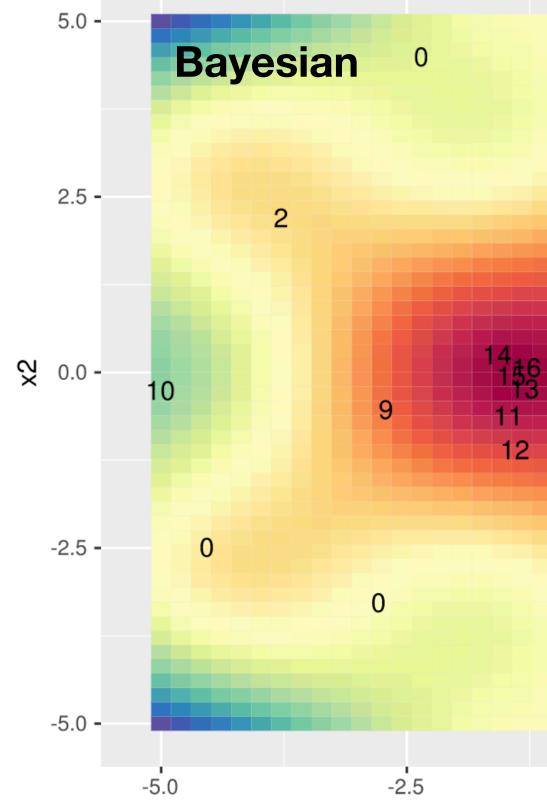


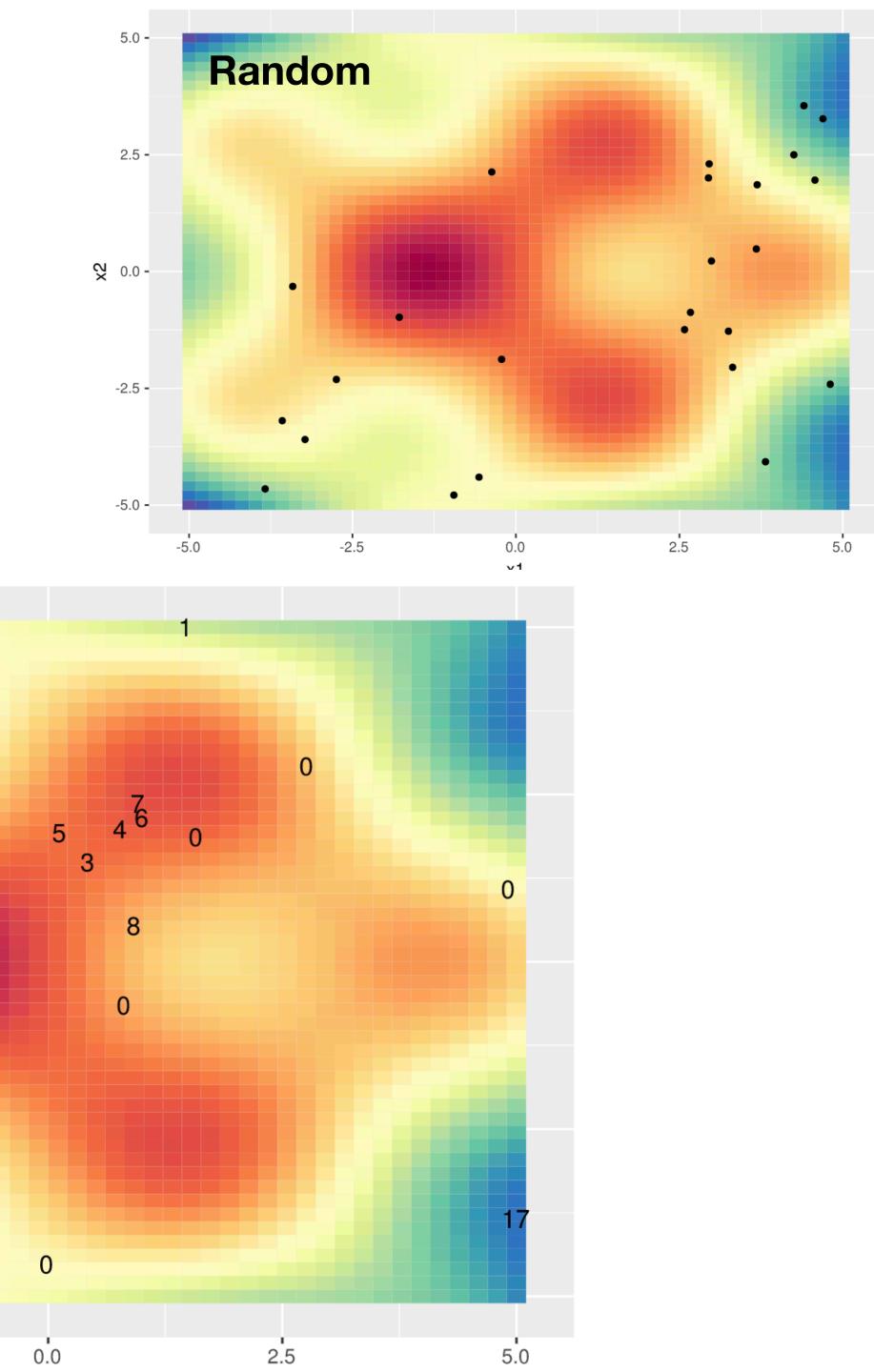






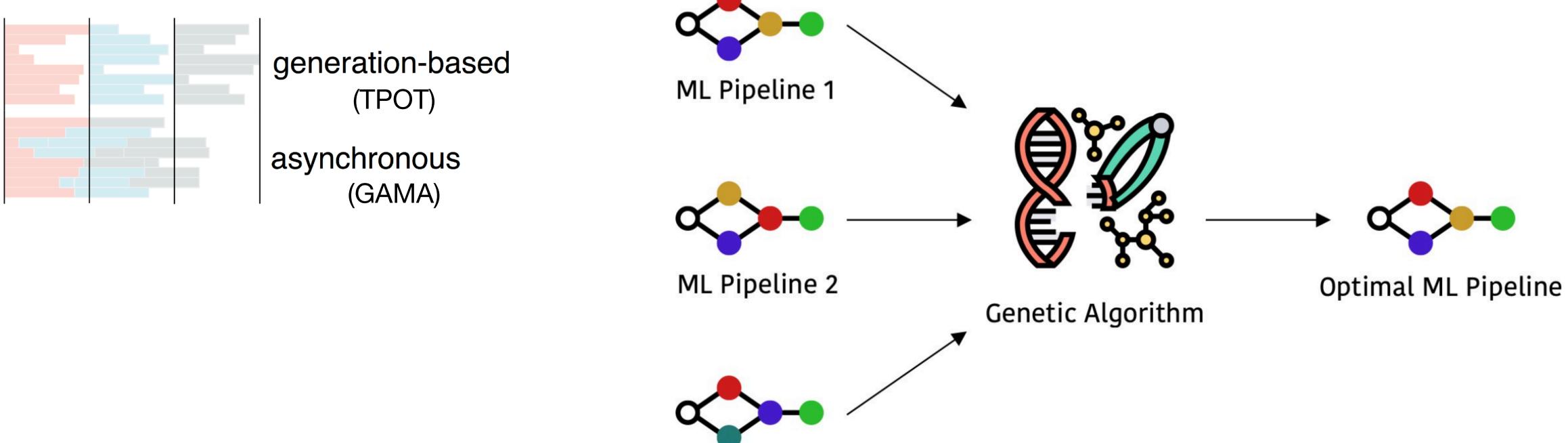


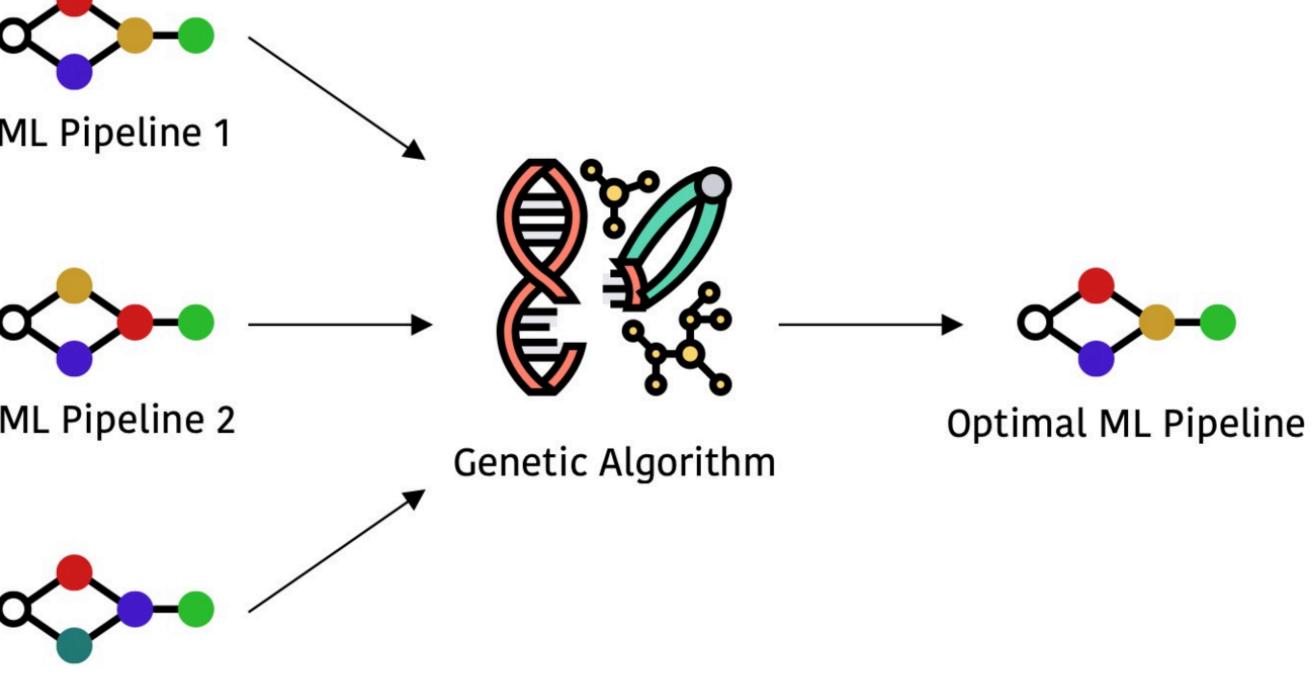




Evolution

- Start with initial pipeline
- Best pipelines evolve: cross-over or mutation
- No fixed pipeline length: adapts to complexity of the problem
- Used in GAMA, TPOT,...



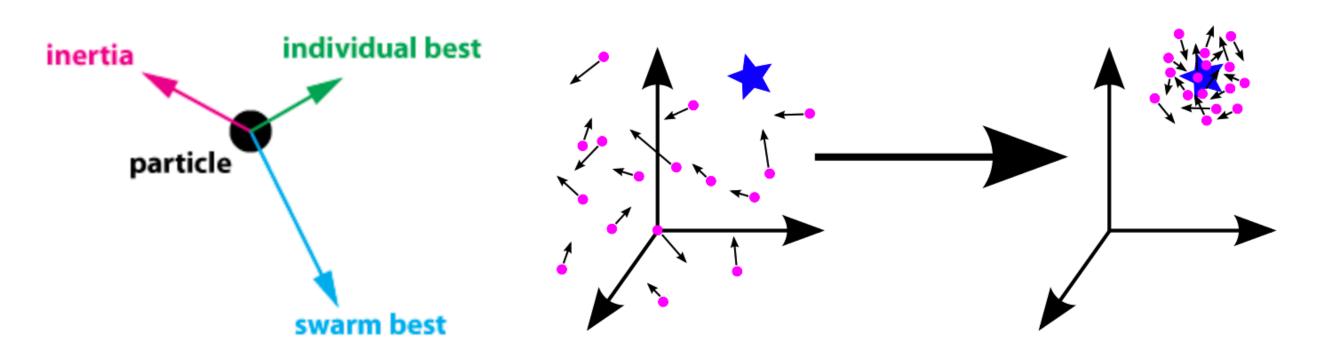


TPOT - Olson & Moore 2016 GAMA - <u>Gijsbers & Vanschoren 2018</u>

ML Pipeline "n"

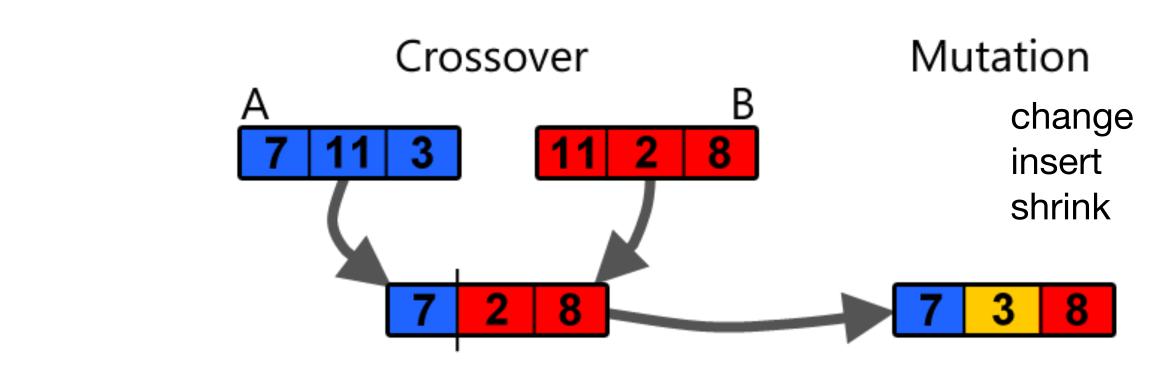
Evolution

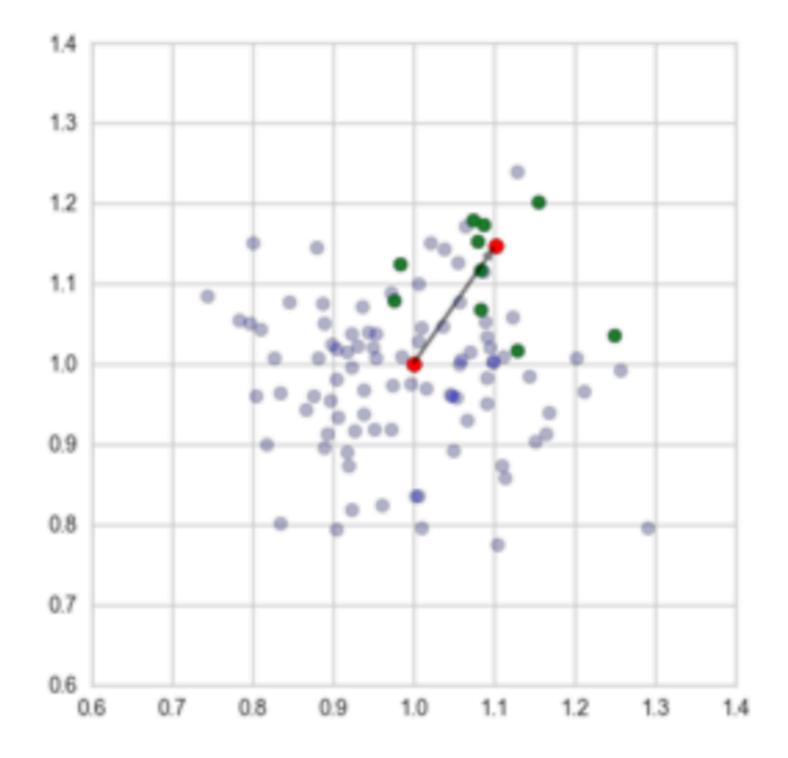
- TPOT <u>Olson 2016</u> • Genetic programming GAMA Gijsbers 2020
 - Mutations: add, mutate/tune, remove HP
- Particle swarm optimization <u>Mantovani et al 2015</u>



- Covariance matrix adaptation evolution (CMA-ES) <u>Hansen 2015</u>
 - Purely continuous, expensive
 - Competitive to optimize deep neural nets

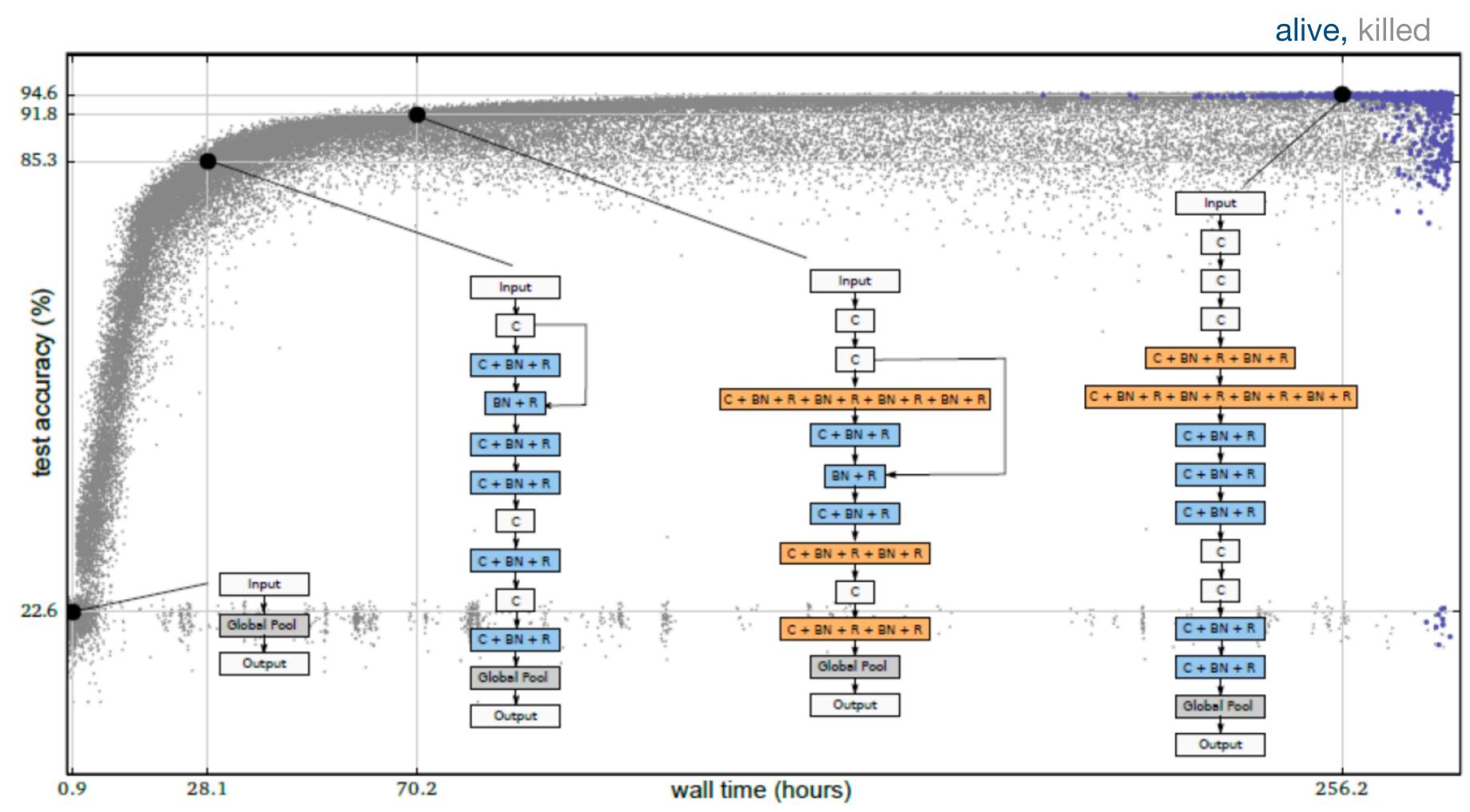
[Loshilov, Hutter 2016]





Neuro-evolution

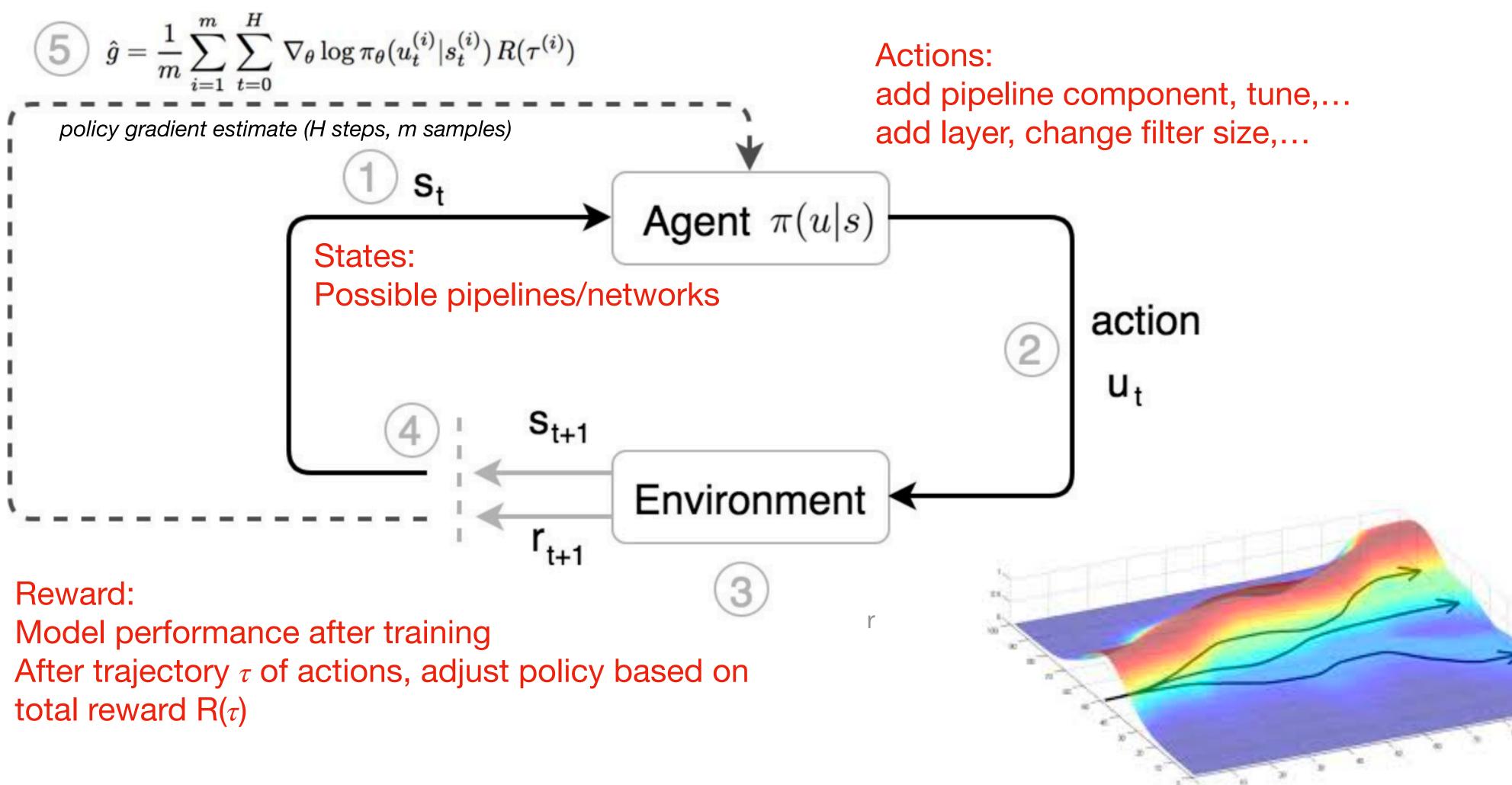
- learn the neural architecture through evolution
- mutations: add, change, remove layer



Real et al 2017 Miikkulainen et al 2017 Wistuba et al 2018

Optimization: Reinforcement learning

Build pipeline or network step-by-step, learn general strategy (policy)



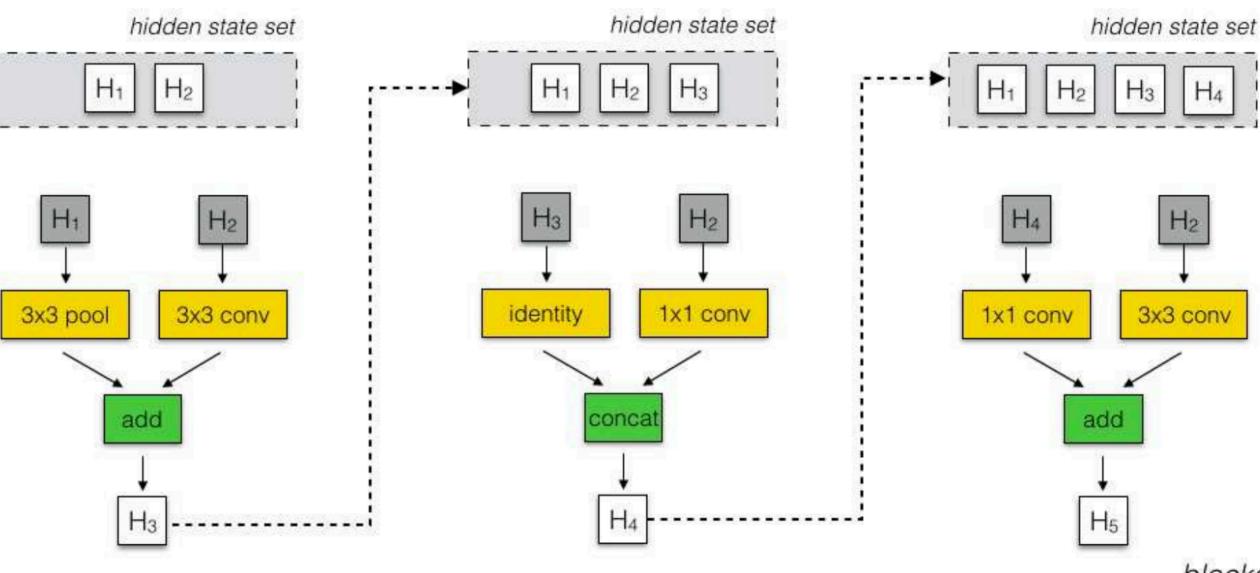
Zoph & Le 2017

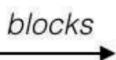
Levine 2018

NAS with Reinforcement learning

- 1-layer LSTM (PPO), cell space search
- State of the art on ImageNet
- 450 GPUs, 3-4 days, 20000 architectures
- Cell construction:
 - Select existing layers (hidden states, e.g. cell input) H_i to build on
 - Add operation (e.g. 3x3conv) on H_i
 - Combine into new hidden state (e.g. concat, add,...)
 - Iterate over *B* blocks

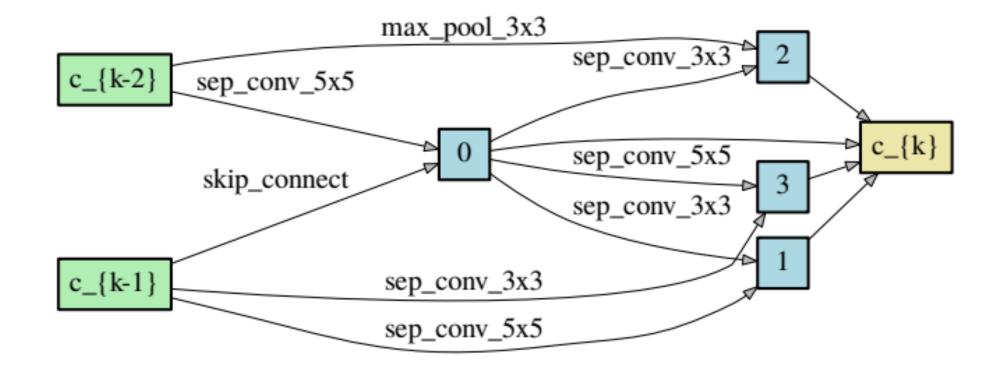
Zoph et al 2018





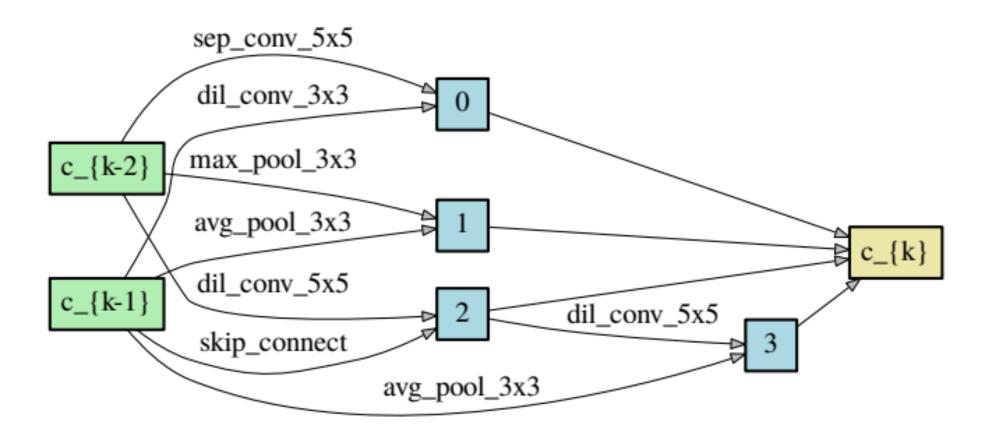
Sidenote: NAS with random search?

If you constrain the search space enough, you can get SOTA results with random search!



(a) Normal Cell

Li & Talwalkar 2019 <u>Yu et al. 2019</u> Real et al. 2019

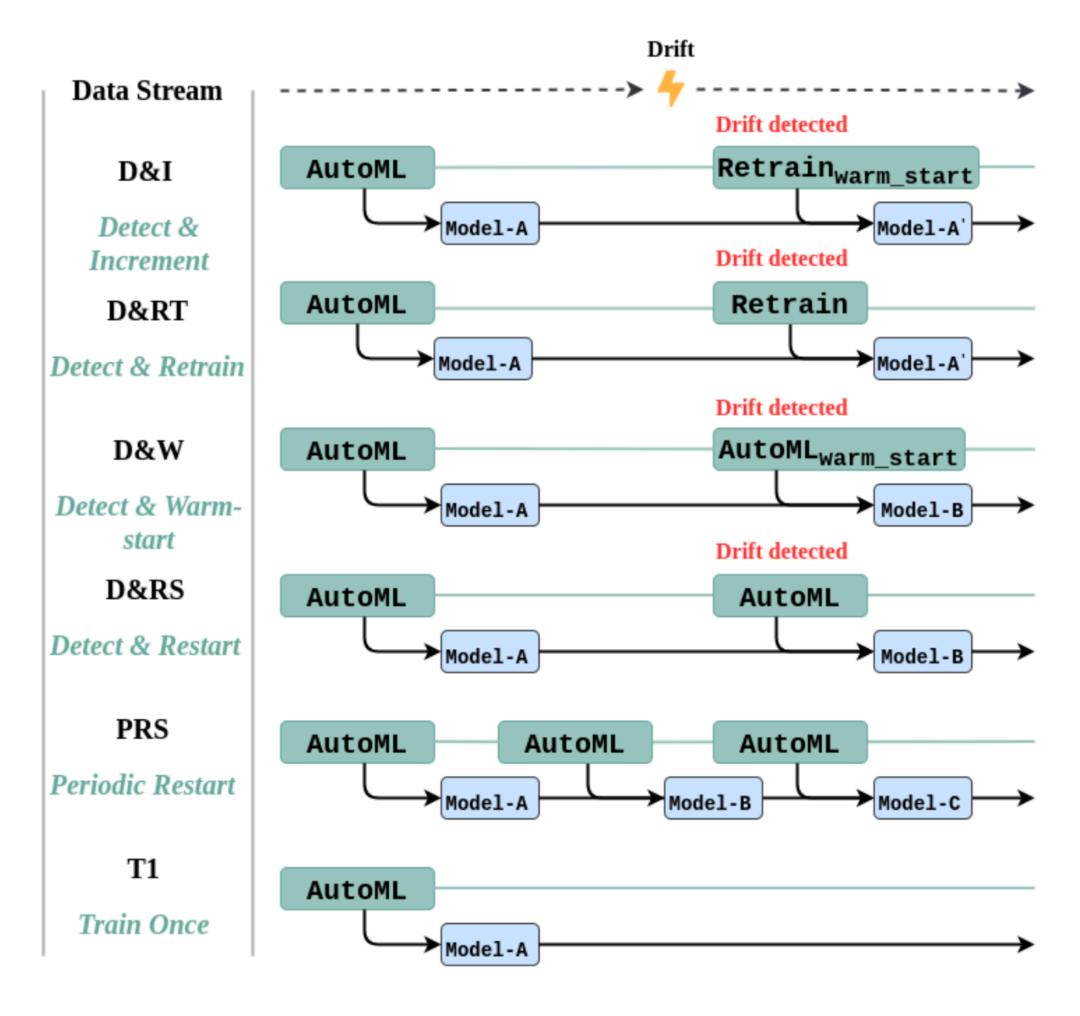


(b) Reduction Cell

Convolutional Cells on CIFAR-10 Benchmark: Best architecture found by random search with weight-sharing.

Handling concept drift

In many real-word cases, the data evolves over time Requires adaptation strategies



Gradual Drift

Warm-start from (set of) last good solutions, where possible

High Abrupt Drift

Re-optimize pipelines from scratch after drift detection. Replace with better models when found.

Effect of Drift Type: High Gradual Drift

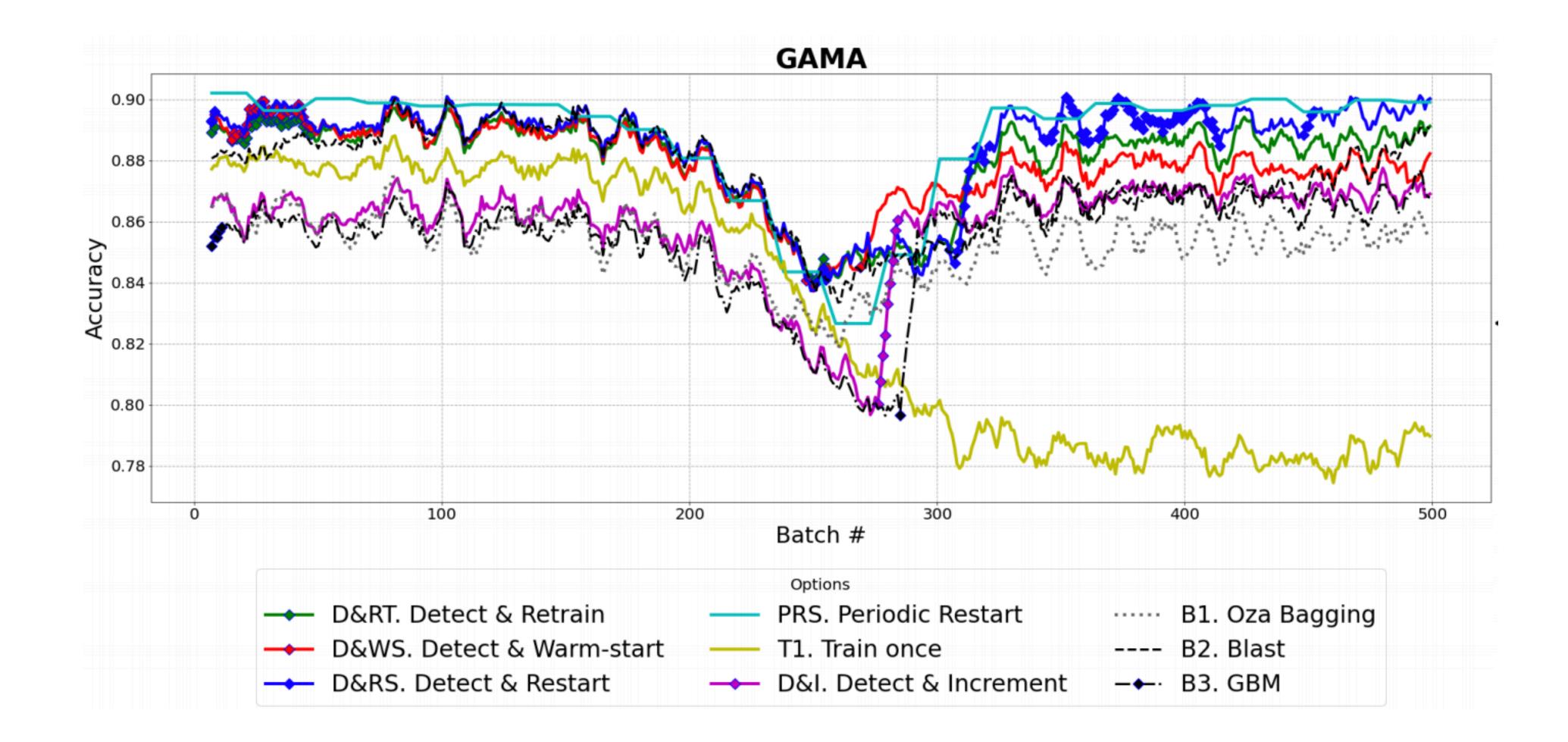
Retrain (don't reoptimize) pipelines from scratch Incremental learning also works guite well

Effect of Drift Type: High Mixed Drift

Re-optimize pipelines on new data (D&RS) performs best overall.

Evolution: benefits

- Easy to parallelize, and quickly adapts to changes in the data



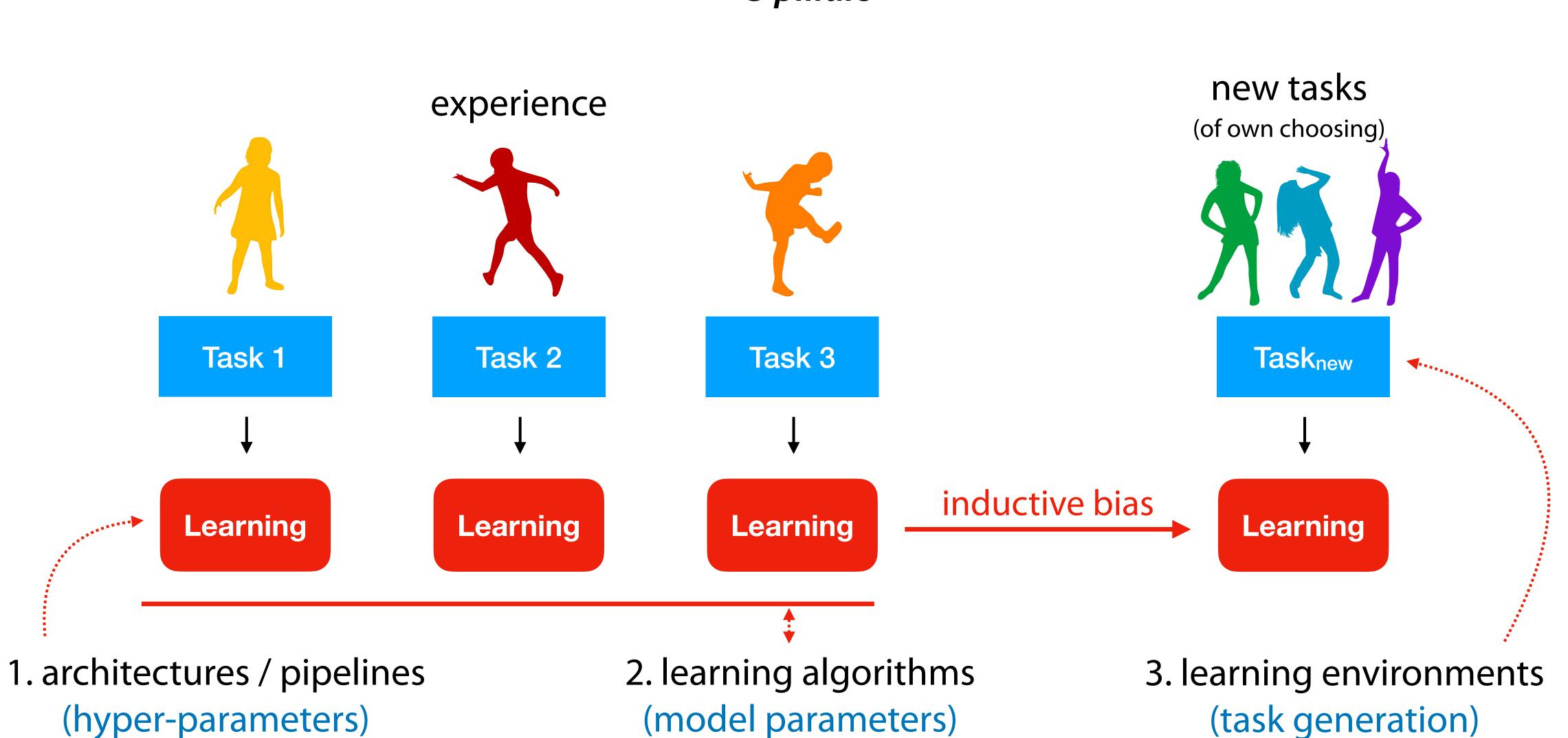
Easy warm-starting: if the data changes, re-start AutoML but start with best prior pipelines

Overview

Part 3: Learning how to do AutoML

Closing the loop

What can we learn to learn? 3 pillars



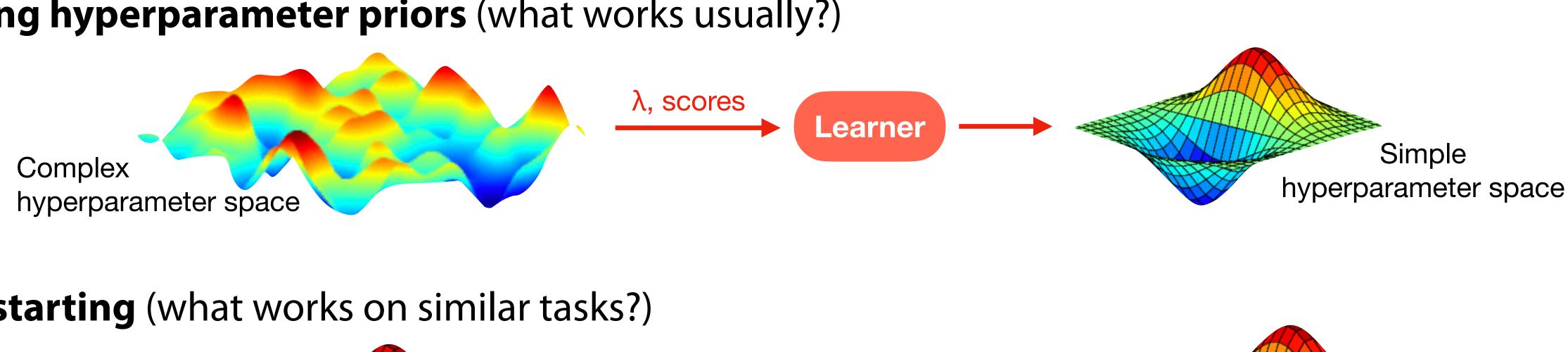
(hyper-parameters)

49

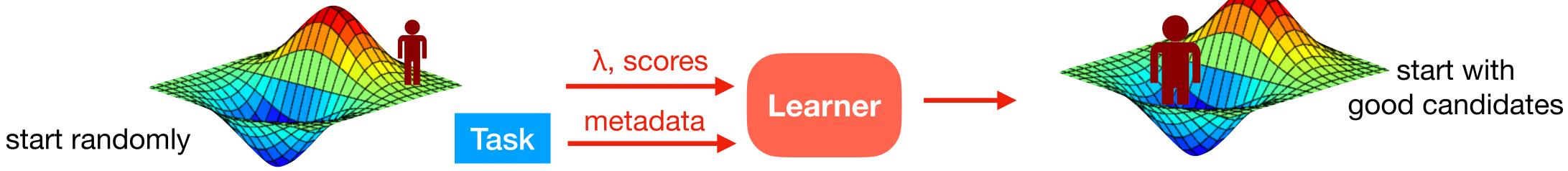
Meta-learning for AutoML: how?

hyperparameters = architecture + hyperparameters

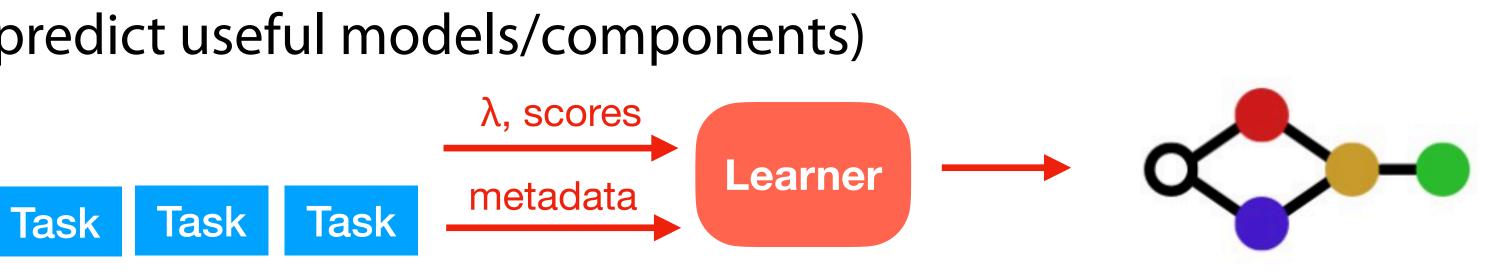
Learning hyperparameter priors (what works usually?)



Warm starting (what works on similar tasks?)



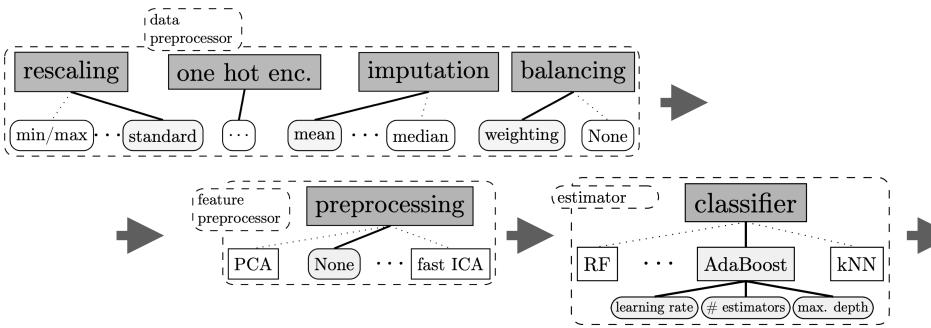
Meta-models (learn and predict useful models/components)

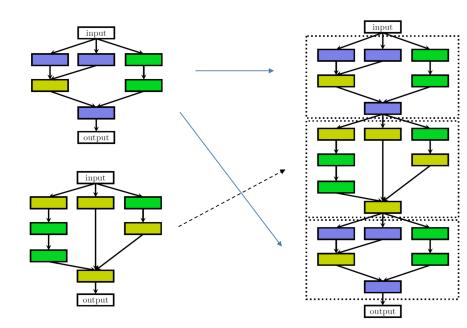


Vanschoren 2018

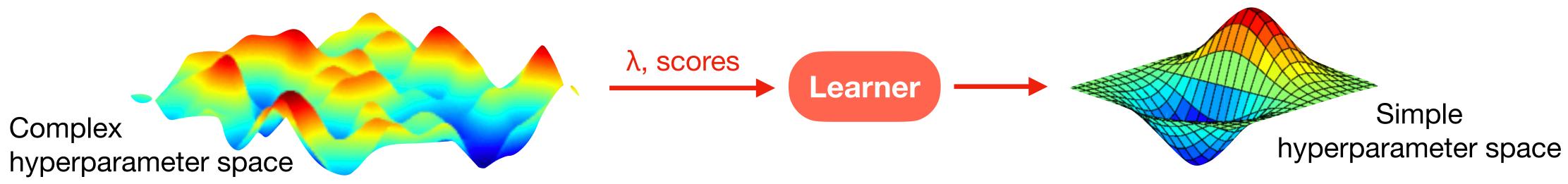
Observation: current AutoML strongly depends on learned priors







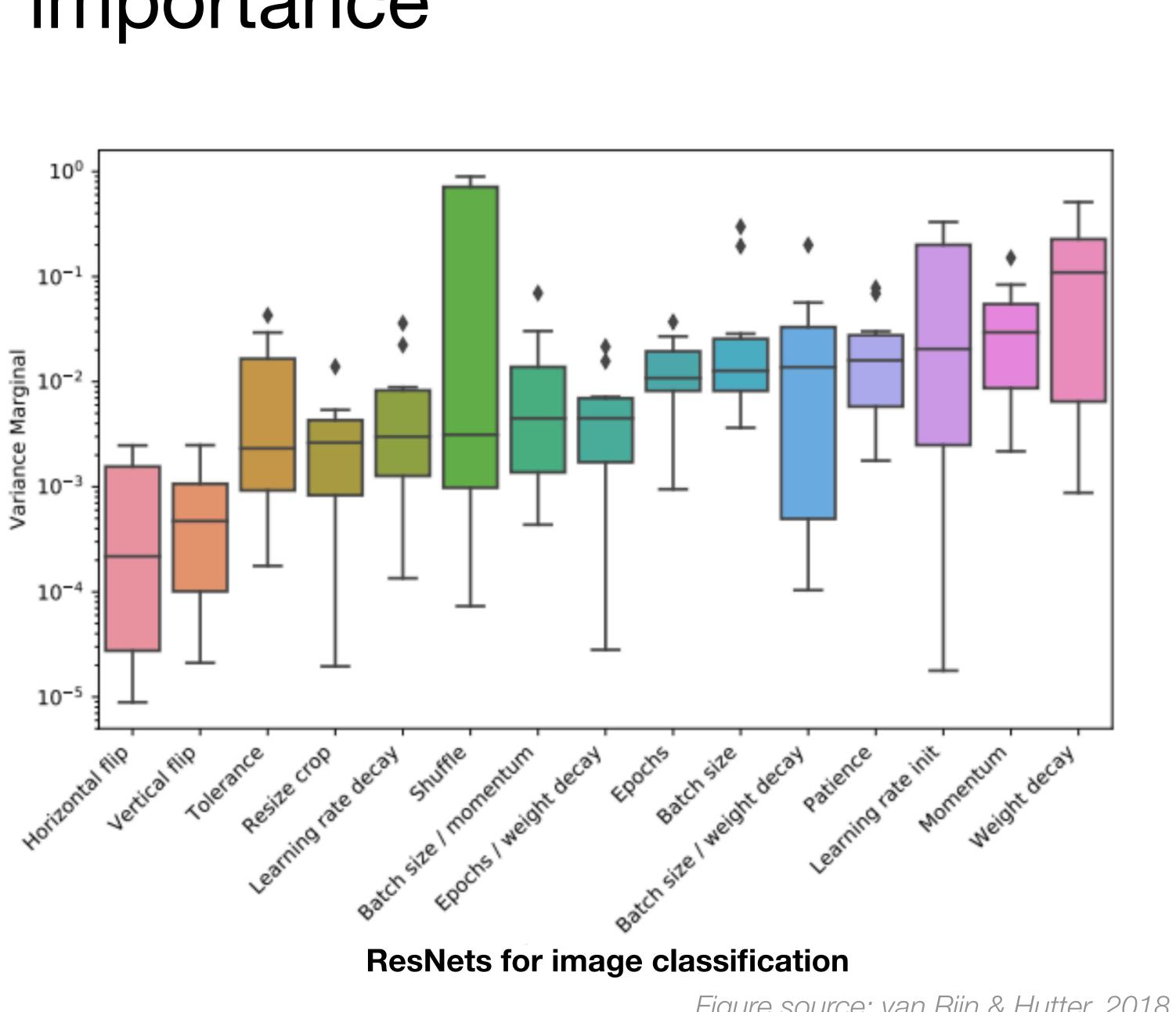
Can we learn good hyperparameter priors?



Learn hyperparameter importance

Functional ANOVA¹ lacksquare

- Select hyperparameters that cause lacksquarevariance in the evaluations.
- Useful to speed up black-box ulletoptimization techniques



¹ van Rijn & Hutter 2018

Figure source: van Rijn & Hutter, 2018

Learn defaults + hyperparameter importance

• **Tunability** 1,2,3

Learn good hyperparameter defaults. Is tuning to given task still needed? Learn *symbolic defaults* based on data properties ⁴

function
max_features
m = 0.16*p
$m = p \ ^0.74$
$m = 1.15^{sqrt}(p)$
m = sqrt(p)
gamma
m = 0.00574*p
m = 1/p
m = 0.006

Learned defaults

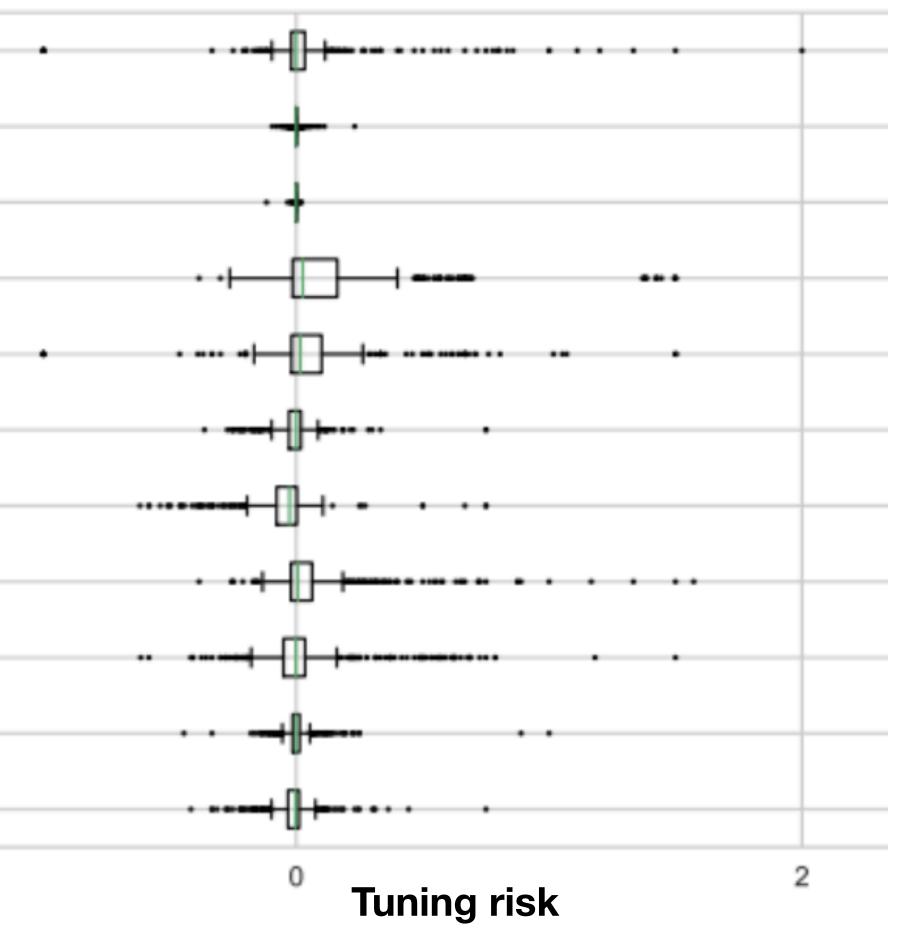
C
tol
 shrinking
 gamma
gamma (sklearn)
bootstrap
 min_samples_leaf
max_features
max_features (sklearn)
 criterion
 min_samples_split

¹ Probst et al. 2018

² Weerts et al. 2018

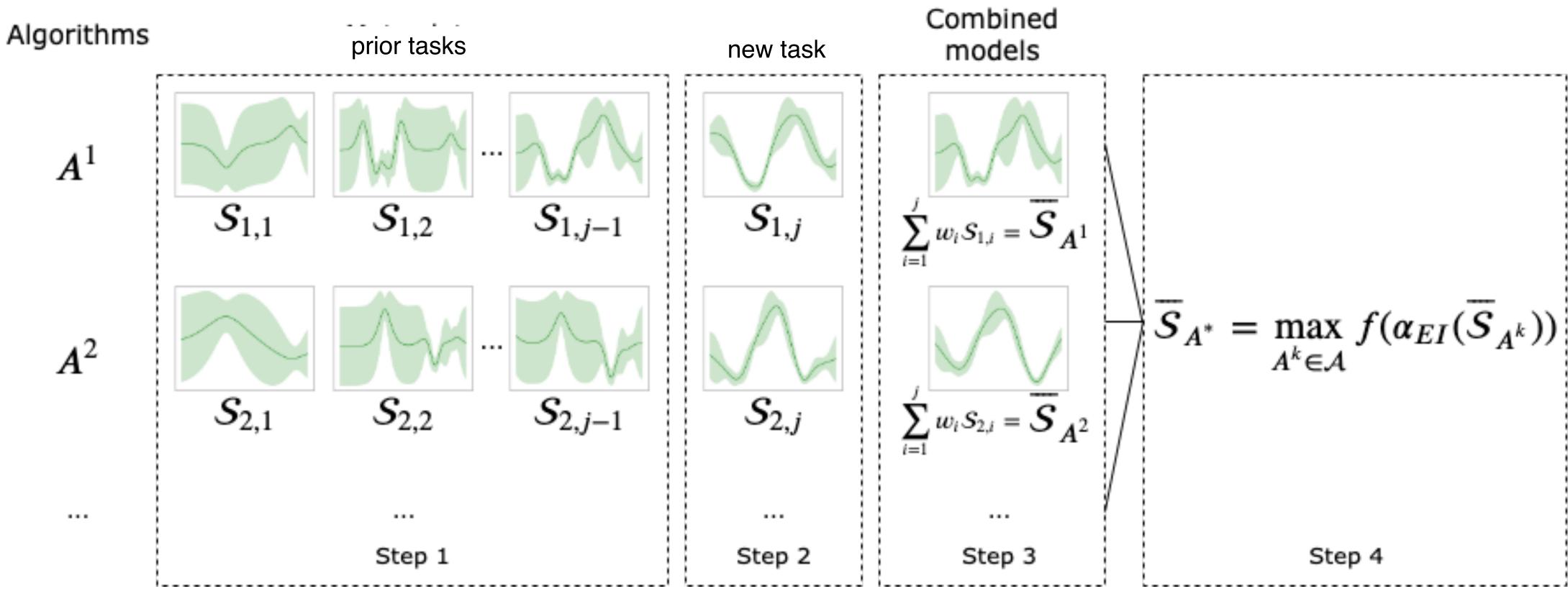
³ van Rijn et al. 2018

⁴ Gijsbers et al. 2021



Surrogate model transfer

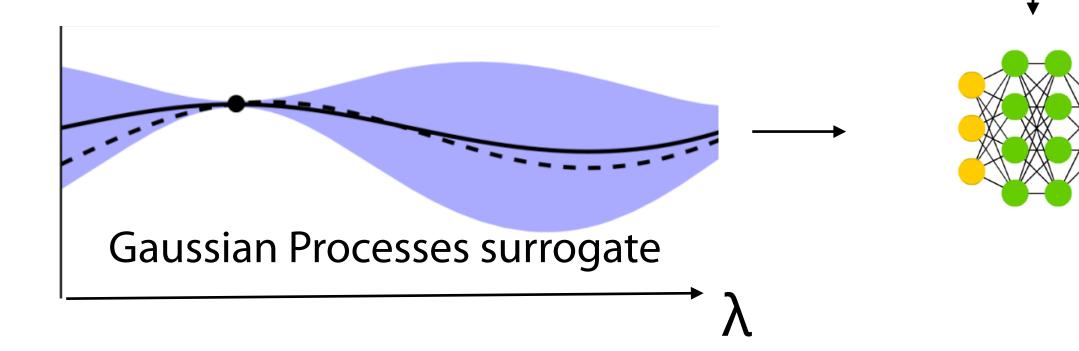
- If task j is similar to the new task, its surrogate model S_i will likely transfer well
- Sum up all S_i predictions, weighted by task similarity
- Build combined surrogate, weighted by current performance on new task²

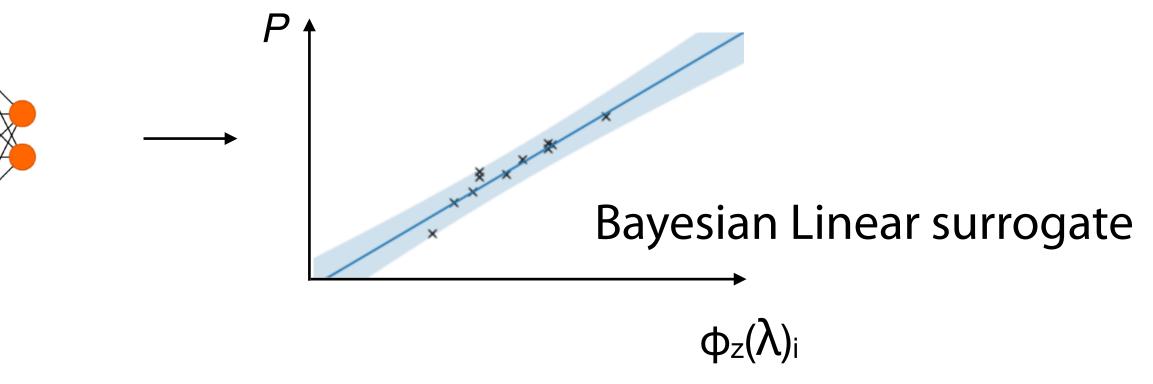


Deep learning models for hyperparameter spaces

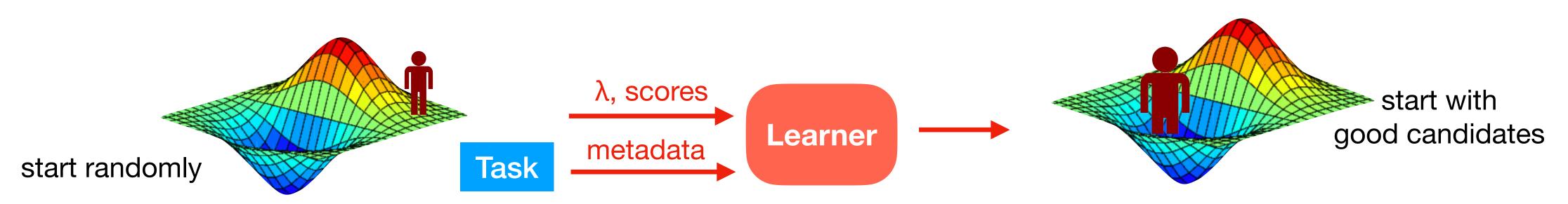
- Use a neural net to learn a simpler hyperparameter search space
- Used in SageMaker AutoML

 (λ_{i}, P) data (e.g. from OpenML)





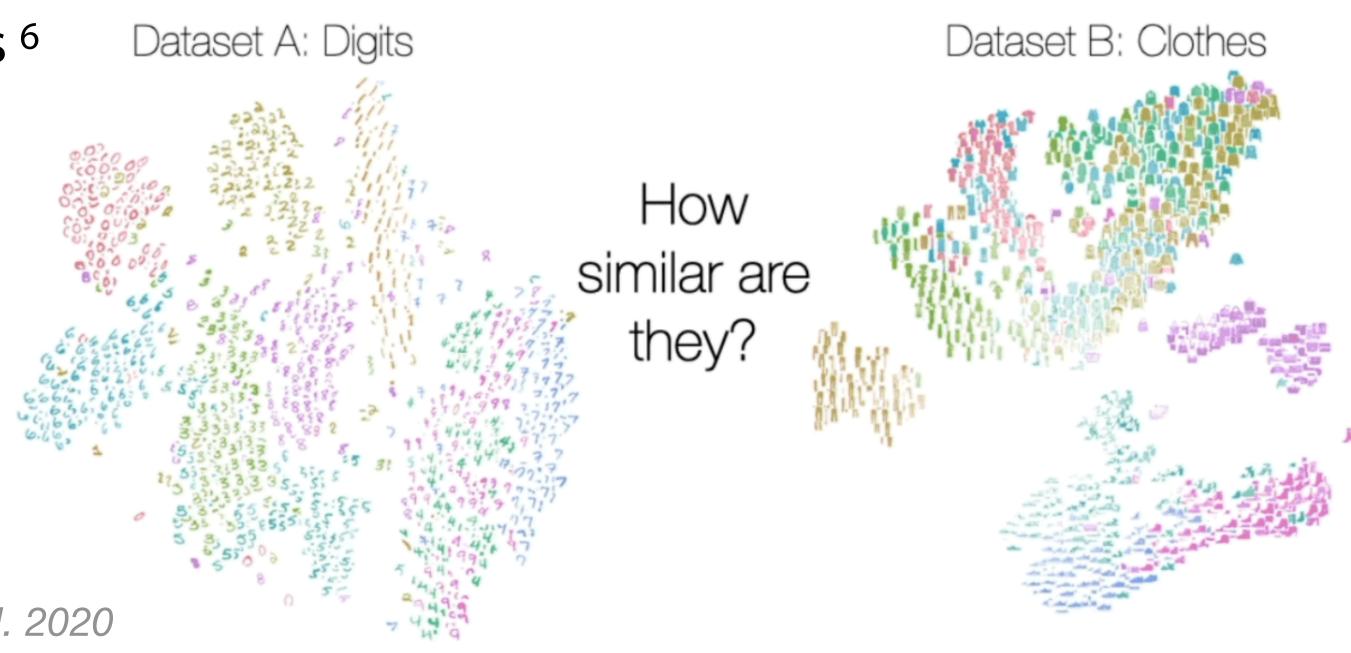
Warm starting (what works on similar tasks?)



How to measure task similarity?

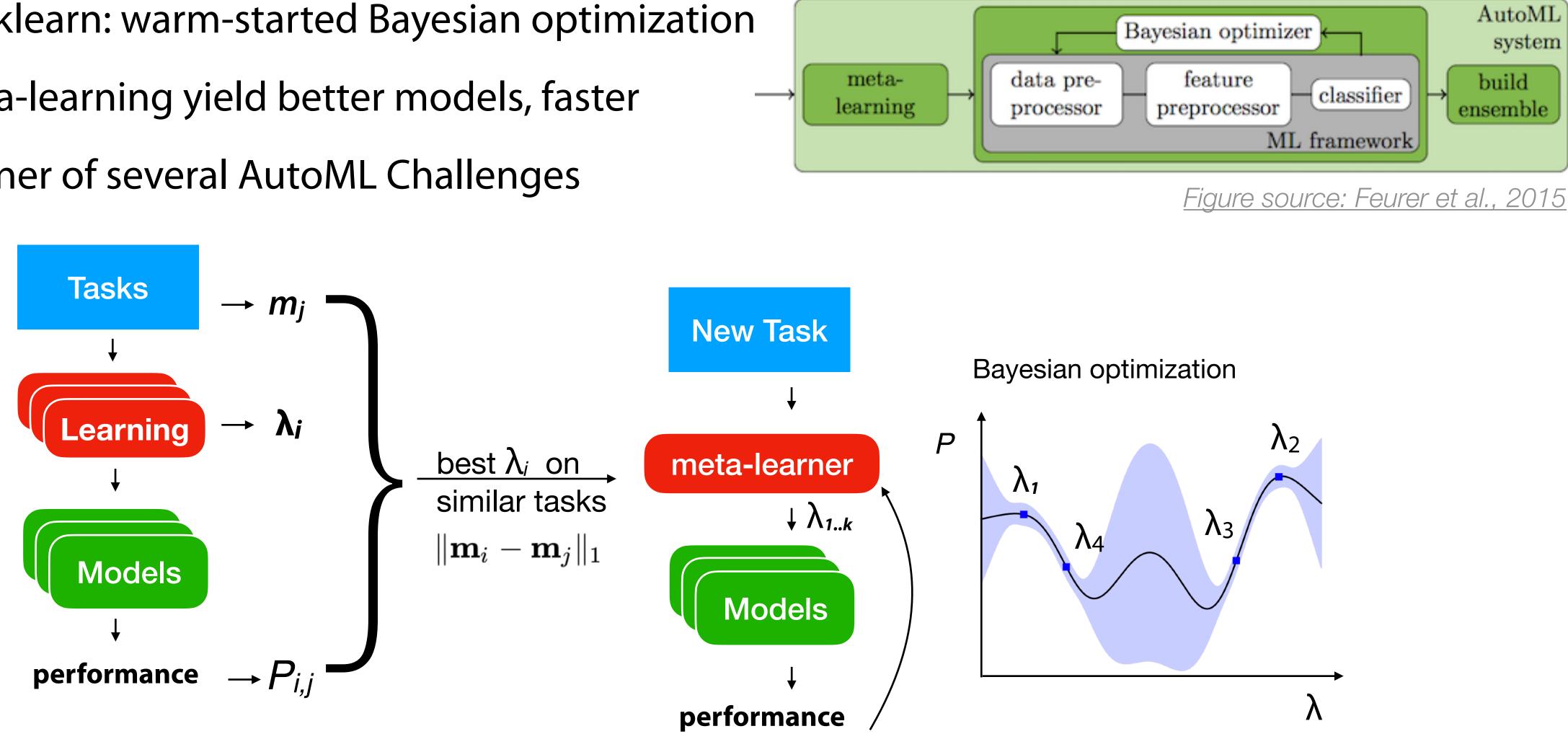
- Hand-designed (statistical) meta-features that describe (tabular) datasets ¹
- Task2Vec: task embedding for image data ²
- Optimal transport: similarity measure based on comparing probability distributions ³ Metadata embedding based on textual dataset description ⁴
- \bullet lacksquare
- Dataset2Vec: compares batches of datasets ⁵
- Distribution-based invariant deep networks ⁶

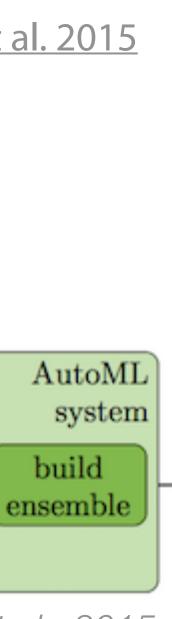
- Vanschoren 2018
- ² Achille et al. 2019
- ³ Alvarez-Melis et al. 2020
 - ⁴ Drori et al. 2019
 - ⁵ Jooma et al. 2020
 - ⁶ de Bie et al. 2020



Warm-starting with kNN

- Find k most similar tasks, warm-start search with best λ_i (instead of random points)
 - Auto-sklearn: warm-started Bayesian optimization
 - Meta-learning yield better models, faster
 - Winner of several AutoML Challenges ullet



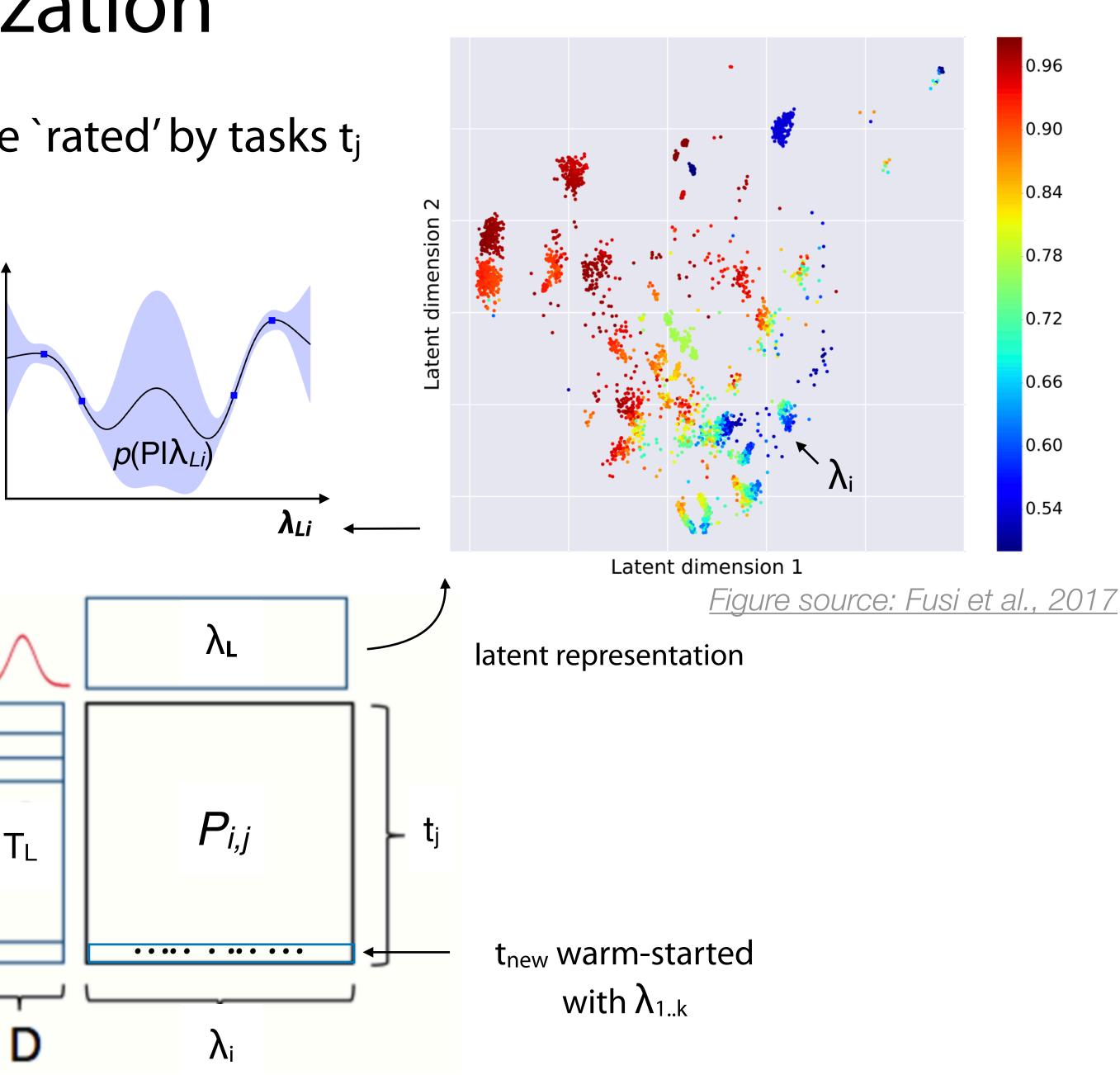


Probabilistic Matrix Factorization

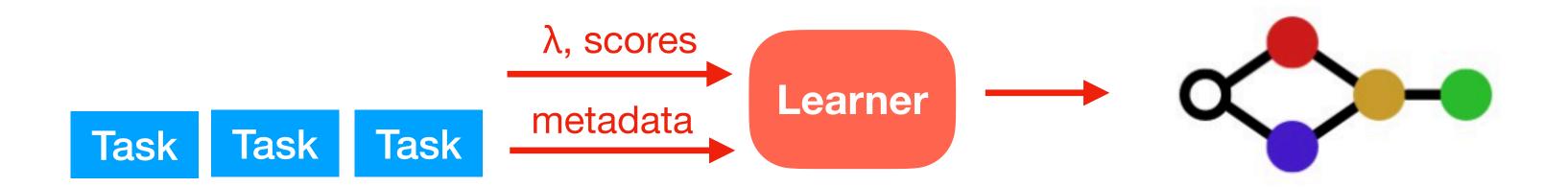
Ρ

- Collaborative filtering: configurations λ_i are `rated' by tasks t_j
- Learn latent representation for tasks T and configurations λ
- Use meta-features to warm-start on new task
- Returns probabilistic predictions for Bayesian optitmization
- Used in Azure AutoML

Fusi et al. 2017



Meta-models (learn how to build models/components)



Meta-learning = how to learn better for specific *types* of (real world) tasks

Algorithm selection models

- Learn direct mapping between meta-features and P_{i,i}
 - Zero-shot meta-models: predict best λ_i given meta-features ¹ \bullet

$$m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{\text{best}}$$

Ranking models: return ranking $\lambda_{1..k}$ ²

$$m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{1..k}$$

Predict which algorithms / configurations to consider / tune³

$$m_j \rightarrow M_j \rightarrow \Lambda$$

Predict performance / runtime for given Θ_i and task⁴

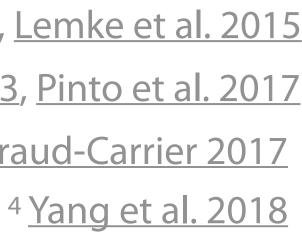
$$m_{j,}\lambda_i \rightarrow \text{meta-learner} \rightarrow P_{ij}$$

• Can be integrated in larger AutoML systems: warm start, guide search,...

¹ Brazdil et al. 2009, Lemke et al. 2015

² Sun and Pfahringer 2013, Pinto et al. 2017

³ Sanders and C. Giraud-Carrier 2017



Learning model components

- - E.g. Swish can outperform ReLU

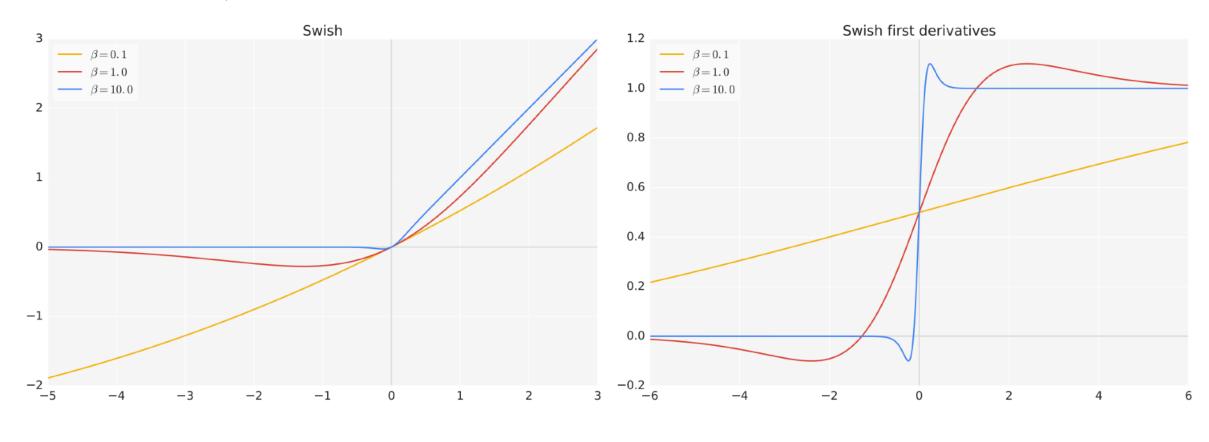
Swish:
$$\frac{x}{1 + e^{-\beta x}}$$

- Learn optimizers: RL-based search of space of likely useful update rules ²
 - E.g. PowerSign can outperform Adam, RMPprop

PowerSign : $e^{sign(g)sign(m)}g$

Learn acquisition functions for Bayesian optimization³

Learn nonlinearities: RL-based search of space of likely useful activation functions 1



g: gradient, m:moving average

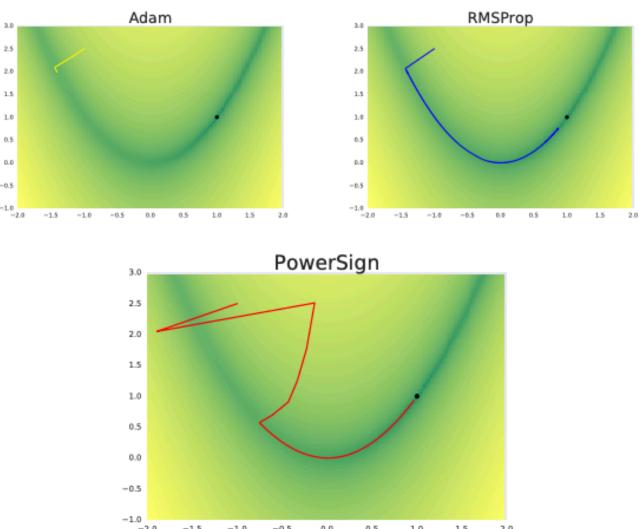
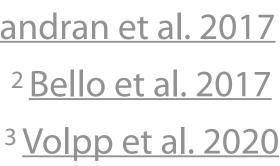
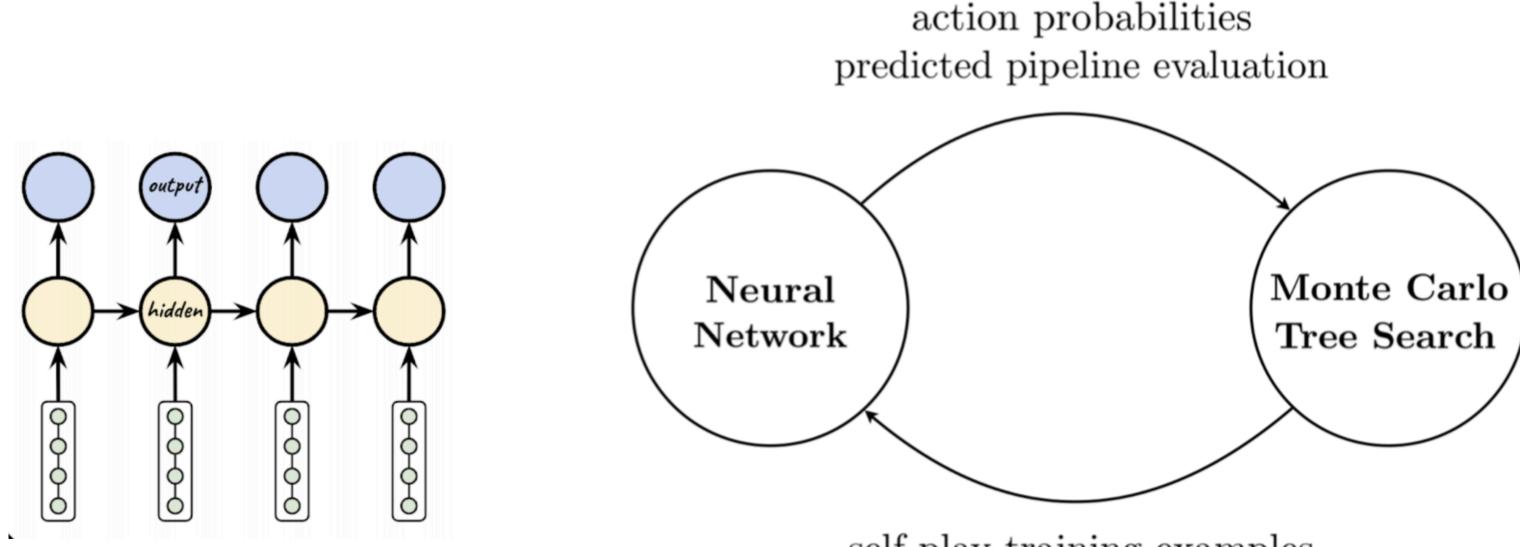


Figure source: Ramachandran et al., 2017 (top), Bello et al. 2017 (bottom)



Monte Carlo Tree Search + reinforcement learning

- Self-play:
 - Game actions: insert, delete, replace components in a pipeline
 - Monte Carlo Tree Search builds pipelines given action probabilities
 - Neural network (LSTM) Predicts pipeline performance



MOSAIC [Rakotoarison et al. 2019] AlphaD3M [Drori et al. 2019]

self play training examples actual pipeline evaluations

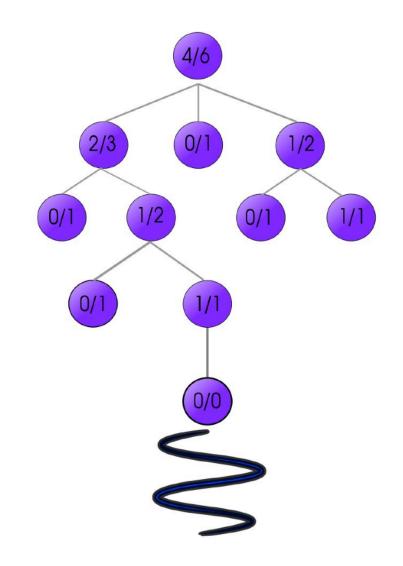


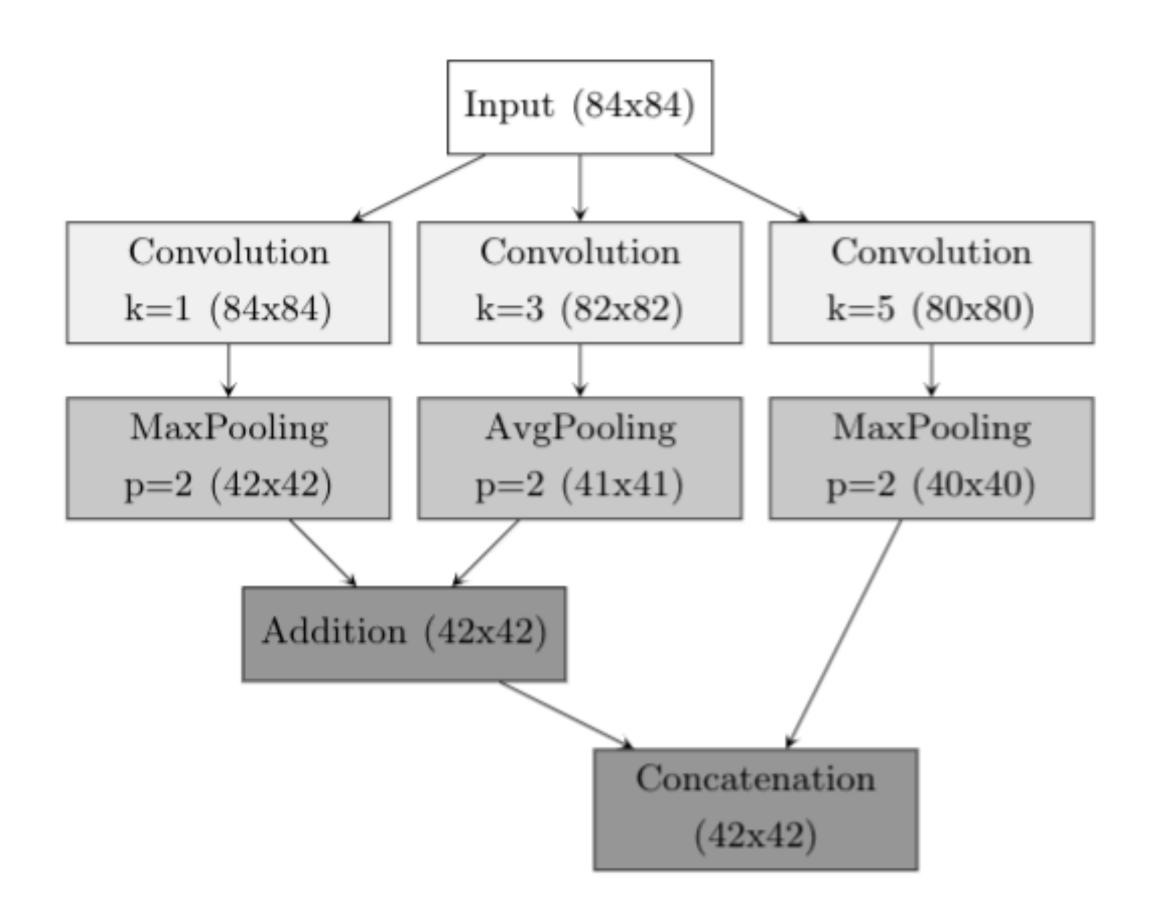
Figure source: Drori et al., 2019

Meta-Reinforcement Learning for NAS

- Train an agent how to build a neural net, across tasks
- Should transfer but also adapt to new tasks

[0, 0, 0, 0, 0][0, 0, 0, 0, 0][1, 1, 1, 0, 0][2, 2, 2, 1, 0][3, 1, 3, 0, 0][4, 3, 2, 3, 0][5, 1, 5, 0, 0][6, 2, 2, 5, 0][7, 5, 0, 2, 4][8, 7, 0, 0, 0]

Actions: add/remove certain layers in certain locations

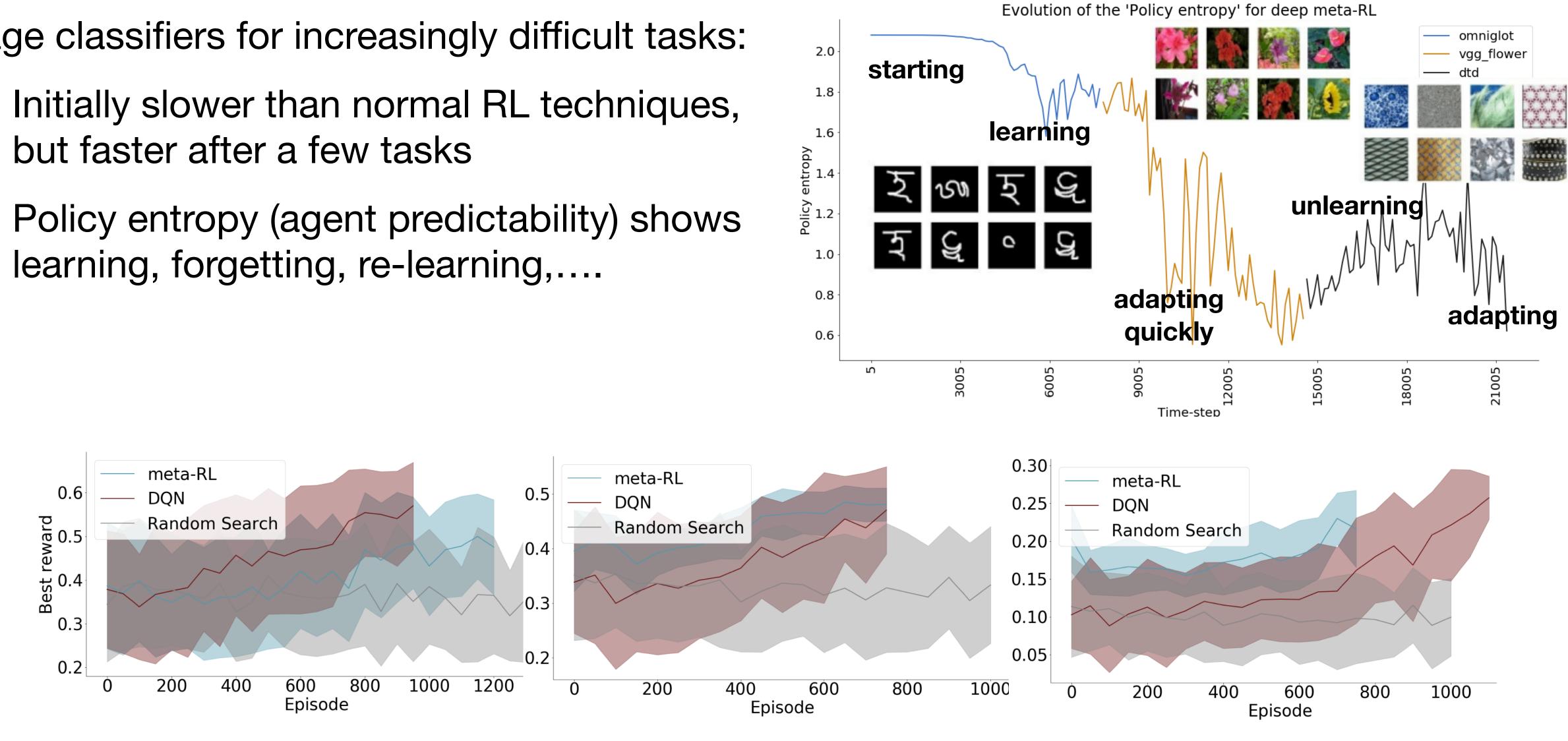


Meta-Reinforcement Learning for NAS

Image classifiers for increasingly difficult tasks:

- ulletbut faster after a few tasks
- learning, forgetting, re-learning,....

omniglot



vgg_flower

dtd

Model agnostic meta-learning (MAML)

Meta-training

- Current initialization Θ , model f_{Θ} \bullet
- On i tasks, perform k SGD steps to find ϕ_i^* , then evaluate $\nabla_{\theta} \mathscr{L}_i(f_{\phi_i^*})$ \bullet
- Update task-specific parameters: $\phi_i = \theta \alpha \nabla_{\theta} \mathscr{L}_i(f_{\phi^*})$ \bullet
- Update Θ to minimize sum of per-task losses, repeat \bullet

 $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{i} \mathscr{L}_{i}(f_{\phi_{i}})$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{i} \mathcal{L}_{i}(f(\theta - \alpha \nabla_{\theta} \mathcal{L}_{i}(f_{\phi_{i}^{*}})))$$

meta-gradient: <u>second-order gradient</u> + backpropagate

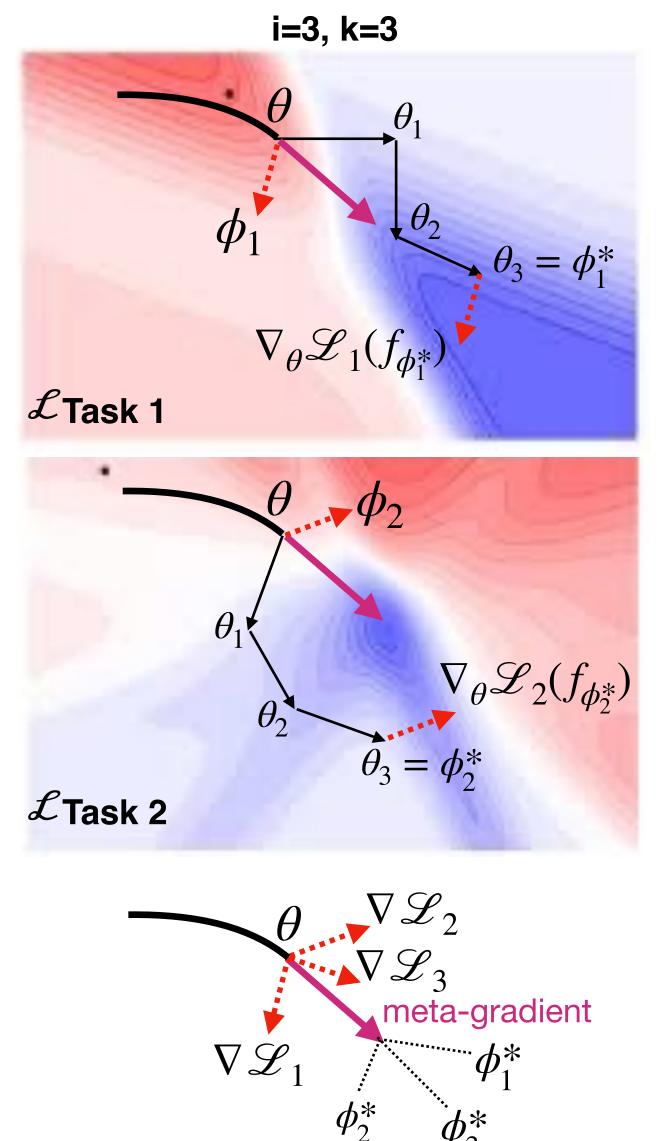
Meta-testing

- Training data of new task D_{train}
- Θ^* : pre-trained parameters
- Finetune: $\phi = \theta^* \alpha \nabla_{\theta} \mathscr{L}(f_{\theta})$

derivative of test-set loss

 α , β : learning rates

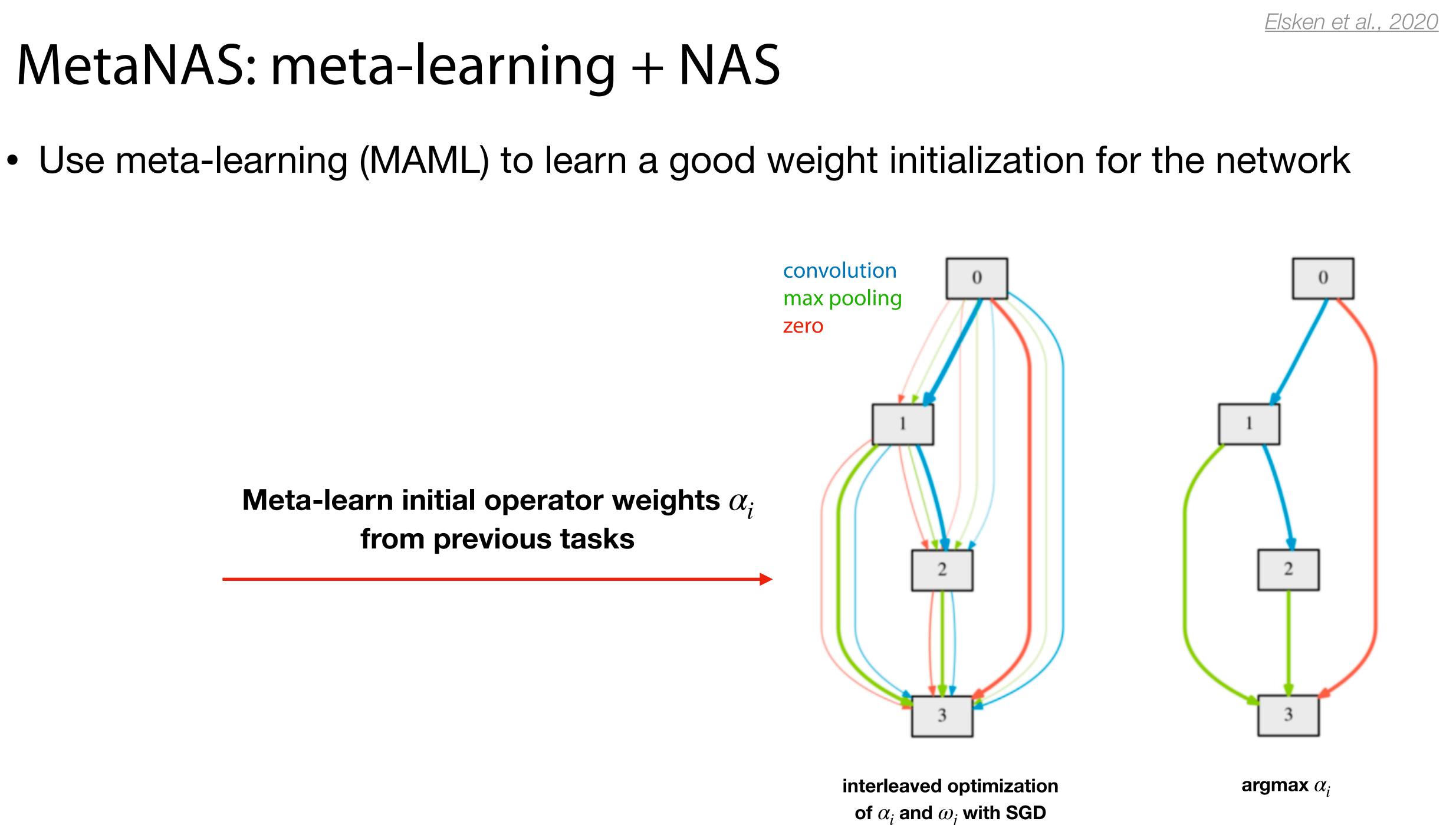
compute how changes in Θ affect the gradient at new Θ



67

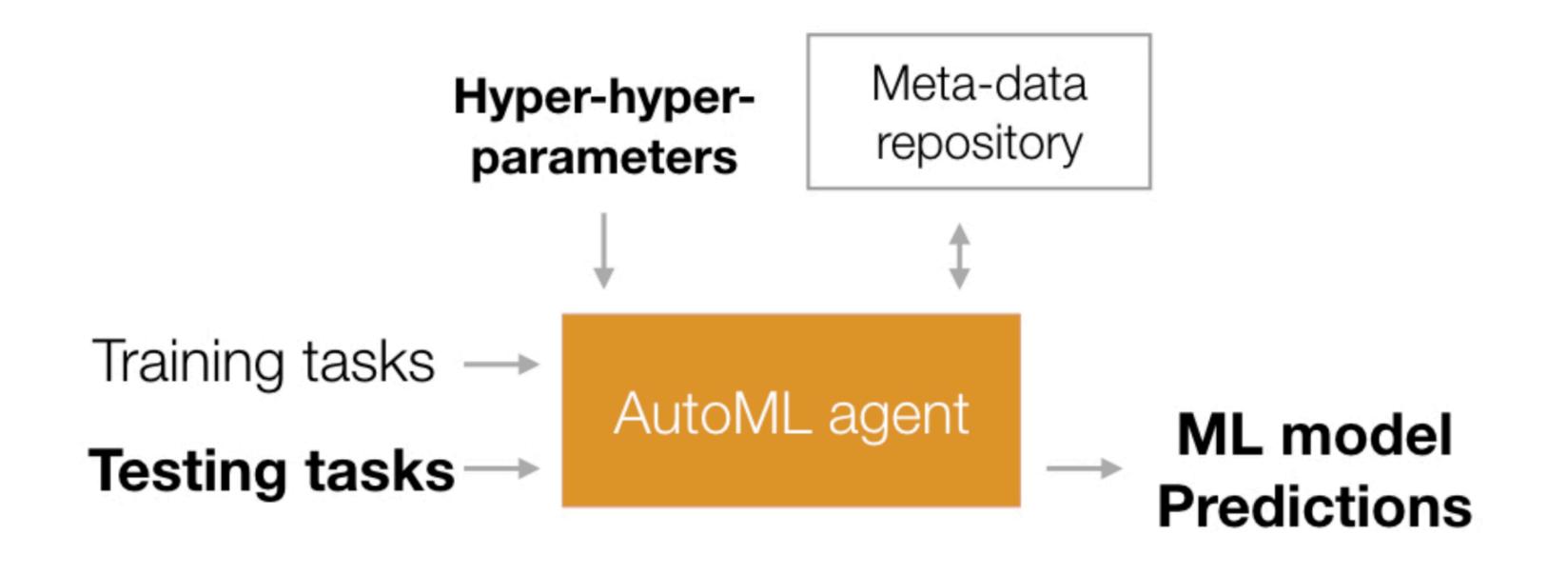
MetaNAS: meta-learning + NAS

Meta-learn initial operator weights α_i from previous tasks



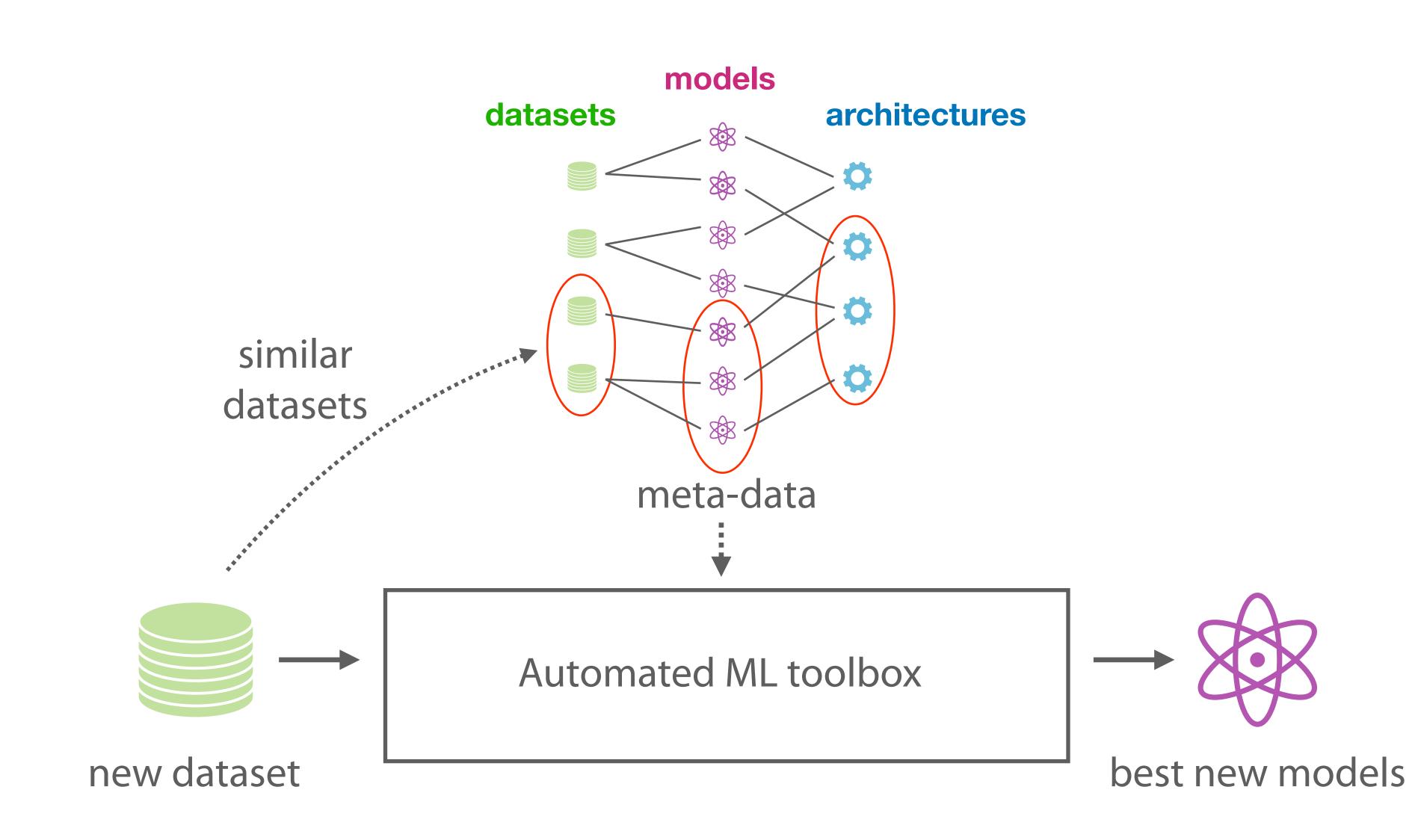
Meta-learning AutoML in practice

- - e.g. <u>OpenML.org</u>
- Ideally, a shared memory that all AutoML tools can access



• We need a meta-data repository of prior machine learning datasets (tasks) and experiments

Meta-learning with OpenML



AutoML open source tools

	Architect. search	Operators	Hyperpar. search	Improvements	Metalearning
<u>Auto-WEKA</u>	Param. pipeline	WEKA	Bayesian Opt. (RF)		
<u>auto-sklearn</u>	Param. pipeline	sklearn	Bayesian Opt. (RF)	Ensemble	warm-start
mlr-mbo	Param. pipeline	mlr	Bayesian Opt.	multi-obj.	
BO-HB	Param. pipeline	sklearn	Tree of Parzen Estim.	Ensemble, HB	
<u>hyperopt-sklearn</u>	Param. pipeline	sklearn	Tree of Parzen Estim.		
<u>skopt</u>	Param. pipeline	sklearn	Bayesian Opt. (GP)		
TPOT	Evolving pipelines	sklearn	Population-based		
<u>GAMA</u>	Evolving pipelines	sklearn	Population-based	Ensemble, ASHA	
H2O AutoML	Param. pipeline	H2O	Random search	Stacking	
AutoGluon-Tabular	Param. pipeline	Sagemaker	Random search	multi-level Stacking	
<u>OBOE</u>	Single algorithms	sklearn	Low rank approx.	Ensembling	runtime prec
<u>Auto-Keras</u>	Param. NAS	keras	Bayesian Opt.	Net Morphisms	
<u>Auto-pyTorch</u>	Param. pipeline	pyTorch	BO-HB		
TensorFlow 2	/	keras	RS or HB		
Talos	/	keras	RS variants		

Many other tools for hyperparameter optimization alone

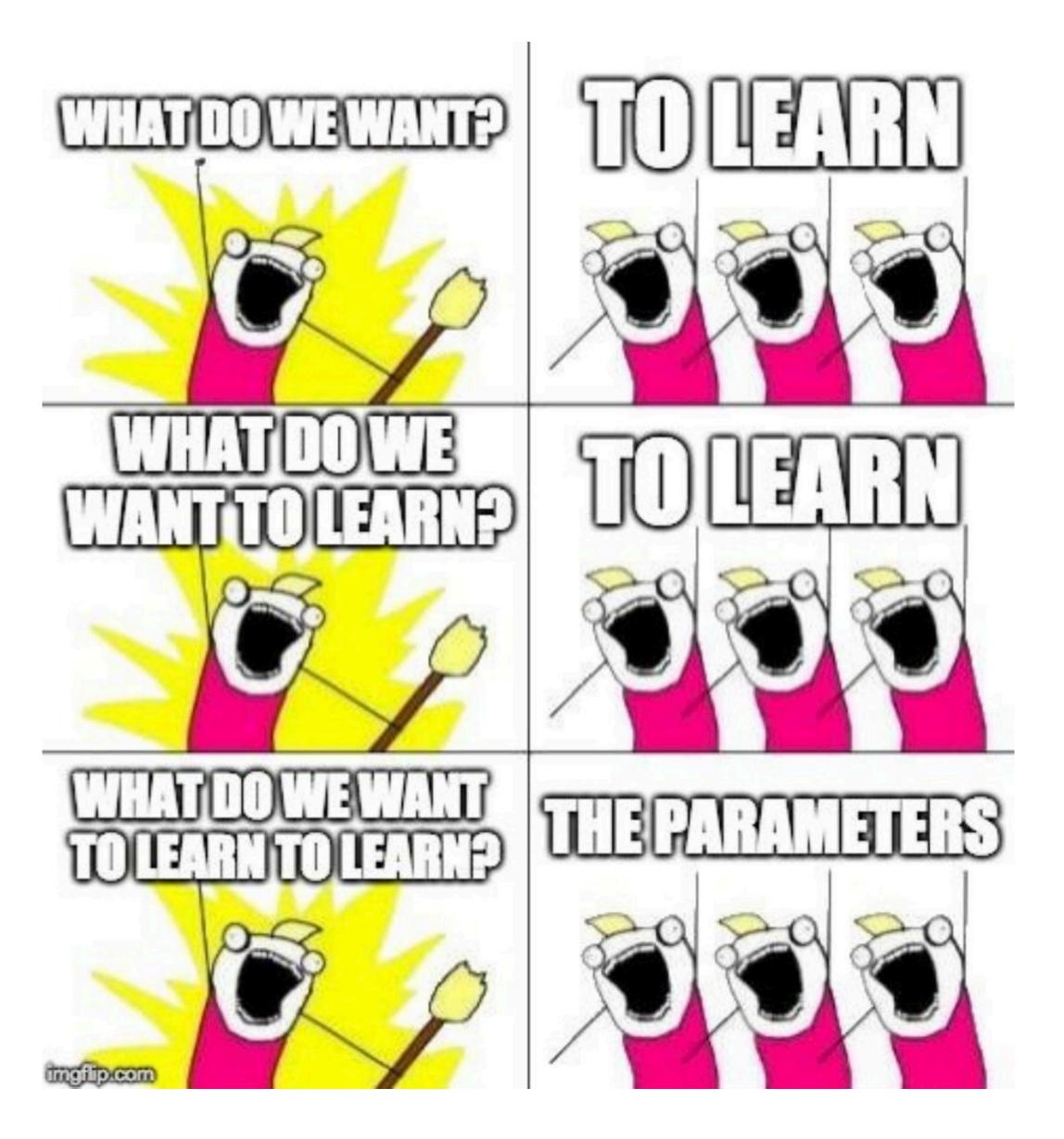


Image: Pesah et al. 2018

Further reading

Open access book PDF (free): <u>www.automl.org/book</u> <u>www.amazon.de/dp/3030053172</u>

The Springer Series on Challenges in Machine Learning

Frank Hutter Lars Kotthoff Joaquin Vanschoren Editors

Automatic Machine Learning

Methods, Systems, Challenges

