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Kernel Machines

Kernel trick

@ Feature mapping @(-) can be very high dimensional (e.g.
think of polynomial mapping)

@ |t can be highly expensive to explicitly compute it

@ Feature mappings appear only in dot products in dual
formulations

@ The kernel trick consists in replacing these dot products
with an equivalent kernel function:
k(x,X') = &(x)T o (x)

@ The kernel function uses examples in input (not feature)
space
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Kernel trick

Support vector classification

@ Dual optimization problem

m m

1 T

max, /21: o~ 3 /,'221 ajajyiy; P(X;) " ®(x;)
- 7 k(x;,X;)

subjectto 0<o; <C i=1,....m
m
> aiyi=0
i=1
@ Dual decision function

f(x) = > aiyi 9(x;)"(x)
=

k(xi,X)
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Kernel trick

Polynomial kernel

@ Homogeneous:

o Eg. (d=2)
Xq X1/ . / /12
k(( X >’<Xé )) = (X1Xq + X2X3)
= (X1X})? + (X2X4)? + 2x1 X] X2 X}
T X2
— <x12 V2x1 X x22) \@xéxé
X/
o(x)7 +
P(x!

Kernel Machines



Kernel trick

Polynomial kernel

@ Inhomogeneous:
k(x,x") = (1 +x"x)?

o Eg. (d=2)
X X{
(2)-(4)-tts ot
=14+ (xq1X])2 + (XX5)? + 2X1 X} 4 2XpXb + 2X1 X XpXb
1
2x{
T Dx!
= (1 V2x1 V2xa X2 V2x1x xg) \52(2
y 1
o (0T 2x1%;
b
—_———
d(x’)
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Valid Kernels
Dot product in feature space

@ A valid kernel is a (similarity) function defined in cartesian
product of input space:

k:Xx&X—=R

@ corresponding to a dot product in a (certain) feature space:

k(x,x') = &(x)"d(x')

@ The kernel generalizes the notion of dot product to
arbitrary input space (e.g. protein sequences)

@ It can be seen as a measure of similarity between objects
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Valid Kernels

Gram matrix

@ Given examples {xy,...,Xn} and kernel function k

@ The Gram matrix K is the (symmetric) matrix of pairwise
kernels between examples:

Kij = k(xj,%;) Vi,j
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Valid Kernels
Positive definite matrix

@ A symmetric m x m matrix K is positive definite (p.d.) if

m
) cigK; >0, VeeR™
i j=1
If equality only holds for ¢ = 0, the matrix is strictly positive
definite (s.p.d)

v

Alternative conditions

@ All eigenvalues are non-negative (positive for s.p.d.)

@ There exists a matrix B such that

K=B"B
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Valid Kernels
Positive definite kernels

@ A positive definite kernel is a function k : X x X — IR giving
rise to a p.d. Gram matrix for any mand {X1,...,Xm}

@ Positive definiteness is necessary and sufficient condition
for a kernel to correspond to a dot product of some feature
map ¢

How to verify kernel validity
@ Prove its positive definiteness (difficult)

@ Find out a corresponding feature map (see polynomial
example)

@ Use kernel combination properties (we’ll see)
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Kernel machines

Support vector regression

@ Dual problem:

1 l * * T
nye?lg(m 5 ;(O‘i —aj)(ef — ) B(x;) " O(x;)
= K(X;,X;)
m m
_52(011 + o) + ZYI(a: a;j)
i=1 i=1
m

subject to Z(a,- —a;j)=0 aja; €[0,C] Vie[l,m]
i=1

@ Regression function:
m

f(X) =W O(X) + wp = Y (0 — o) D(x;) T d(X) +wp
e —

k(X,‘,X)

Kernel Machines




Kernel machines

(Stochastic) Perceptron: f(x) = w'x

Q Initializew =0
Q lterate until all examples correctly classified:
@ For each incorrectly classified training example (x;, y;):

W < W+ nyiX;

Kernel Perceptron: f(x) = Y-, ajk(X;, X)
Q Initialize a; = 0 Vi
Q lterate until all examples correctly classified:

@ For each incorrectly classified training example (x;, y;):

aj < aj +nYyi
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Kernels

Basic kernels

@ linear kernel:

Tl

k(x,x') =x"x

@ polynomial kernel:

ka.c(x,x') = (x"x' 4 ¢)?

Kernel Machines



Kernels

Gaussian kernel

k,(x,x") = ex w — ex xTx —2x"x + x'Tx/
TR 202 - P 2072

@ Depends on a width parameter o

@ The smaller the width, the more prediction on a point only
depends on its nearest neighbours

@ Example of Universal kernel: they can uniformly

approximate any arbitrary continuous target function (pb of
number of training examples and choice of o)
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Kernels
Kernels on structured data

@ Kernels are generalization of dot products to arbitrary
domains

@ It is possible to design kernels over structured objects like
sequences, trees or graphs

@ The idea is designing a pairwise function measuring the
similarity of two objects

@ This measure has to satisfy the p.d. conditions to be a
valid kernel

Match (or delta) kernel

1 ifx=x'
0 otherwise.

ks(x,x') = 6(x,x') = {

@ Simplest kernel on structures
@ x does not need to be a vector! (no boldface to stress it)
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Kernels

Kernel combination

@ Simpler kernels can combined using certain operators (e.g.
sum, product)

@ Kernel combination allows to design complex kernels on
structures from simpler ones

@ Correctly using combination operators guarantees that
complex kernels are p.d.

<

@ Simplest constructive approach to build valid kernels
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Kernel combination

Kernel Sum

@ The sum of two kernels corresponds to the concatenation
of their respective feature spaces:

(ki + k) (x,X') = ki(x,x') + ka(x, X)
®1(x)7 ®1(x') + Da(x) " ba(x')

= @10 0200) (o159 )

@ The two kernels can be defined on different spaces (direct
sum, e.g. string spectrum kernel plus string length)
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Kernel combination

Kernel Product

@ The product of two kernels corresponds to the Cartesian
products of their features:

(ki x k)(x,x") = k1(x X ko (x, x")

— Zcbh (I>1, ZCDZJ ¢2/

= Y Prak(X)Prak(X) = Pr2(x) T P12(x)

@ where ®15(x) = d¢(x) x ®2(x) is the Cartesian product

@ the product can be between kernels in different spaces
(tensor product)
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Kernel combination

Linear combination

@ A kernel can be rescaled by an arbitrary positive constant:
ks(x,x") = Bk(x,x")

@ We can e.g. define linear combinations of kernels (each
rescaled by the desired weight):

K
ksum(Xa X/) = Z ﬁkkk(x7 X/)

k=1

@ The weights of the linear combination can be learned
simultaneously to the predictor weights (the alphas)

@ This amounts at performing kernel learning
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Kernel combination

@ Kernel values can often be influenced by the dimension of
objects

@ E.g. alonger string has more substrings — higher kernel
value

@ This effect can be reduced normalizing the kernel

v

Cosine normalization

@ Cosine normalization computes the cosine of the dot
product in feature space:

k(x,x")

k(x,x) = k(x, x)k(x', x")
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Kernel combination

Kernel composition

@ Given a kernel over structured data k(x, x’)

@ it is always possible to use a basic kernel on top of it, e.g.:

(kacok)(x.X) = (k(x,x')+c)?

(ky o K)(x,x') = exp (_ k(x,x) — 2/((2)(07;(/) + k(X' X

@ it corresponds to the composition of the mappings
associated with the two kernels

@ E.g. all possible conjunctions of up to d k-grams for string
kernels
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Kernels on sequences

x = ABAABA x' = AAABB

D(z) \ / D(a')

AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB

oS = =

k(z,2') =1

CoOOoOHONKO
cooc o~

Spectrum kernel

@ Feature space is space of all possible k-grams
(subsequences)

@ An efficient procedure based on suffix trees allows to
compute kernel without explicitly building feature maps
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Kernels on graphs

Weistfeiler-Lehman graph kernel

@ Efficient graph kernel for large graphs

@ Relies on (approximation of) Weistfeiler-Lehman test of
graph isomorphism
@ Defines a family of graph kernels
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Kernels on graphs

Weistfeiler-Lehman (WL) isomorphism test

Given G= (V,€)and G' = (V', &), with n = |V| = |V'|. Let
L(G) = {l(v)|v € V} be the set of labels in G, and let

L(G) == L(G). Let label(s) be a function assigning a unique
label to a string.

@ Set [p(v) = I(v) for all v.

@ Forie[l,n—1]
@ For each node vin Gand G’
Q Let Mi(v) = {li_1(u)|u € neigh(v)}
© Concatenate the sorted labels of M;(v) into s;(v)
Q Let/i(v) = label(li_1(v) o si(v)) (o is concatenation)
Q If Li(G) # L(@)
@ Return Fail

@ Return Pass
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WL isomorphism test: string determination

> (2345
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WL isomorphism test: relabeling

BT Tl

26 —> 7 5,2 —
41 —> 8 123 —> 14
51 —» 135 —>
2,14 —> 10 1,2346 —> 16
412 —» 13456 — 17
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Kernels on graphs

Weistfeiler-Lehman graph kernel
o Let{Gy, G1,...,Gp} ={(V, &, b)), V, &, h),...,(V,E, Ih)}
be a sequence of graphs made from G, where /; is the
node labeling of the i-th WL iteration.

@ Let k: G x G — R be any kernel on graphs.
@ The Weistfeiler-Lehman graph kernel is defined as:

h
ki (G, G) =Y _k(G;, G)
i=0
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Example: WL subtree kernel

12 45 78 10 12 14 16 17
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