Kernel Machines

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Kernel Machines

Kernel Machines

Kernel trick

@ Feature mapping @(-) can be very high dimensional (e.g.
think of polynomial mapping)

@ |t can be highly expensive to explicitly compute it

@ Feature mappings appear only in dot products in dual
formulations

@ The kernel trick consists in replacing these dot products
with an equivalent kernel function:
k(x,X') = &(x)T o (x)

@ The kernel function uses examples in input (not feature)
space

Kernel Machines

Kernel trick

Support vector classification

@ Dual optimization problem

m m

1 T

max, /21: o~ 3 /,'221 ajajyiy; P(X;) " ®(x;)
- 7 k(x;,X;)

subjectto 0<o; <C i=1,....m
m
> aiyi=0
i=1
@ Dual decision function

f(x) = > aiyi 9(x;)"(x)
=

k(xi,X)

Kernel Machines

Kernel trick

Polynomial kernel

@ Homogeneous:

o Eg. (d=2)
Xq X1/ . / /12
k((X >’<Xé)) = (X1Xq + X2X3)
= (X1X})? + (X2X4)? + 2x1 X] X2 X}
T X2
— <x12 V2x1 X x22) \@xéxé
X/
o(x)7 +
P(x!

Kernel Machines

Kernel trick

Polynomial kernel

@ Inhomogeneous:
k(x,x") = (1 +x"x)?

o Eg. (d=2)
X X{
(2)-(4)-tts ot
=14+ (xq1X])2 + (XX5)? + 2X1 X} 4 2XpXb + 2X1 X XpXb
1
2x{
T Dx!
= (1 V2x1 V2xa X2 V2x1x xg) \52(2
y 1
o (0T 2x1%;
b
—_———
d(x’)

Kernel Machines

Valid Kernels
Dot product in feature space

@ A valid kernel is a (similarity) function defined in cartesian
product of input space:

k:Xx&X—=R

@ corresponding to a dot product in a (certain) feature space:

k(x,x') = &(x)"d(x')

@ The kernel generalizes the notion of dot product to
arbitrary input space (e.g. protein sequences)

@ It can be seen as a measure of similarity between objects

Kernel Machines

Valid Kernels

Gram matrix

@ Given examples {xy,...,Xn} and kernel function k

@ The Gram matrix K is the (symmetric) matrix of pairwise
kernels between examples:

Kij = k(xj,%;) Vi,j

Kernel Machines

Valid Kernels
Positive definite matrix

@ A symmetric m x m matrix K is positive definite (p.d.) if

m
) cigK; >0, VeeR™
i j=1
If equality only holds for ¢ = 0, the matrix is strictly positive
definite (s.p.d)

v

Alternative conditions

@ All eigenvalues are non-negative (positive for s.p.d.)

@ There exists a matrix B such that

K=B"B

Kernel Machines

Valid Kernels
Positive definite kernels

@ A positive definite kernel is a function k : X x X — IR giving
rise to a p.d. Gram matrix for any mand {X1,...,Xm}

@ Positive definiteness is necessary and sufficient condition
for a kernel to correspond to a dot product of some feature
map ¢

How to verify kernel validity
@ Prove its positive definiteness (difficult)

@ Find out a corresponding feature map (see polynomial
example)

@ Use kernel combination properties (we’ll see)

Kernel Machines

Kernel machines

Support vector regression

@ Dual problem:

1 l * * T
nye?lg(m 5 ;(O‘i —aj)(ef —) B(x;) " O(x;)
= K(X;,X;)
m m
_52(011 + o) + ZYI(a: a;j)
i=1 i=1
m

subject to Z(a,- —a;j)=0 aja; €[0,C] Vie[l,m]
i=1

@ Regression function:
m

f(X) =W O(X) + wp = Y (0 — o) D(x;) T d(X) +wp
e —

k(X,‘,X)

Kernel Machines

Kernel machines

(Stochastic) Perceptron: f(x) = w'x

Q Initializew =0
Q lterate until all examples correctly classified:
@ For each incorrectly classified training example (x;, y;):

W < W+ nyiX;

Kernel Perceptron: f(x) = Y-, ajk(X;, X)
Q Initialize a; = 0 Vi
Q lterate until all examples correctly classified:

@ For each incorrectly classified training example (x;, y;):

aj < aj +nYyi

Kernel Machines

Kernels

Basic kernels

@ linear kernel:

Tl

k(x,x') =x"x

@ polynomial kernel:

ka.c(x,x') = (x"x' 4 ¢)?

Kernel Machines

Kernels

Gaussian kernel

k,(x,x") = ex w — ex xTx —2x"x + x'Tx/
TR 202 - P 2072

@ Depends on a width parameter o

@ The smaller the width, the more prediction on a point only
depends on its nearest neighbours

@ Example of Universal kernel: they can uniformly

approximate any arbitrary continuous target function (pb of
number of training examples and choice of o)

Kernel Machines

Kernels
Kernels on structured data

@ Kernels are generalization of dot products to arbitrary
domains

@ It is possible to design kernels over structured objects like
sequences, trees or graphs

@ The idea is designing a pairwise function measuring the
similarity of two objects

@ This measure has to satisfy the p.d. conditions to be a
valid kernel

Match (or delta) kernel

1 ifx=x'
0 otherwise.

ks(x,x') = 6(x,x') = {

@ Simplest kernel on structures
@ x does not need to be a vector! (no boldface to stress it)

Kernel Machines

Kernels

Kernel combination

@ Simpler kernels can combined using certain operators (e.g.
sum, product)

@ Kernel combination allows to design complex kernels on
structures from simpler ones

@ Correctly using combination operators guarantees that
complex kernels are p.d.

<

@ Simplest constructive approach to build valid kernels

Kernel Machines

Kernel combination

Kernel Sum

@ The sum of two kernels corresponds to the concatenation
of their respective feature spaces:

(ki + k) (x,X') = ki(x,x') + ka(x, X)
®1(x)7 ®1(x') + Da(x) " ba(x')

= @10 0200) (o159)

@ The two kernels can be defined on different spaces (direct
sum, e.g. string spectrum kernel plus string length)

Kernel Machines

Kernel combination

Kernel Product

@ The product of two kernels corresponds to the Cartesian
products of their features:

(ki x k)(x,x") = k1(x X ko (x, x")

— Zcbh (I>1, ZCDZJ ¢2/

= Y Prak(X)Prak(X) = Pr2(x) T P12(x)

@ where ®15(x) = d¢(x) x ®2(x) is the Cartesian product

@ the product can be between kernels in different spaces
(tensor product)

Kernel Machines

Kernel combination

Linear combination

@ A kernel can be rescaled by an arbitrary positive constant:
ks(x,x") = Bk(x,x")

@ We can e.g. define linear combinations of kernels (each
rescaled by the desired weight):

K
ksum(Xa X/) = Z ﬁkkk(x7 X/)

k=1

@ The weights of the linear combination can be learned
simultaneously to the predictor weights (the alphas)

@ This amounts at performing kernel learning

Kernel Machines

Kernel combination

@ Kernel values can often be influenced by the dimension of
objects

@ E.g. alonger string has more substrings — higher kernel
value

@ This effect can be reduced normalizing the kernel

v

Cosine normalization

@ Cosine normalization computes the cosine of the dot
product in feature space:

k(x,x")

k(x,x) = k(x, x)k(x', x")

Kernel Machines

Kernel combination

Kernel composition

@ Given a kernel over structured data k(x, x’)

@ it is always possible to use a basic kernel on top of it, e.g.:

(kacok)(x.X) = (k(x,x')+c)?

(ky o K)(x,x') = exp (_ k(x,x) — 2/((2)(07;(/) + k(X' X

@ it corresponds to the composition of the mappings
associated with the two kernels

@ E.g. all possible conjunctions of up to d k-grams for string
kernels

Kernel Machines

Kernels on sequences

x = ABAABA x' = AAABB

D(z) \ / D(a')

AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB

oS = =

k(z,2') =1

CoOOoOHONKO
cooc o~

Spectrum kernel

@ Feature space is space of all possible k-grams
(subsequences)

@ An efficient procedure based on suffix trees allows to
compute kernel without explicitly building feature maps

Kernel Machines

Kernels on graphs

Weistfeiler-Lehman graph kernel

@ Efficient graph kernel for large graphs

@ Relies on (approximation of) Weistfeiler-Lehman test of
graph isomorphism
@ Defines a family of graph kernels

Kernel Machines

Kernels on graphs

Weistfeiler-Lehman (WL) isomorphism test

Given G= (V,€)and G' = (V', &), with n = |V| = |V'|. Let
L(G) = {l(v)|v € V} be the set of labels in G, and let

L(G) == L(G). Let label(s) be a function assigning a unique
label to a string.

@ Set [p(v) = I(v) for all v.

@ Forie[l,n—1]
@ For each node vin Gand G’
Q Let Mi(v) = {li_1(u)|u € neigh(v)}
© Concatenate the sorted labels of M;(v) into s;(v)
Q Let/i(v) = label(li_1(v) o si(v)) (o is concatenation)
Q If Li(G) # L(@)
@ Return Fail

@ Return Pass

Kernel Machines

WL isomorphism test: string determination

> (2345

Kernel Machines

WL isomorphism test: relabeling

BT Tl

26 —> 7 5,2 —
41 —> 8 123 —> 14
51 —» 135 —>
2,14 —> 10 1,2346 —> 16
412 —» 13456 — 17

Kernel Machines

Kernels on graphs

Weistfeiler-Lehman graph kernel
o Let{Gy, G1,...,Gp} ={(V, &, b)), V, &, h),...,(V,E, Ih)}
be a sequence of graphs made from G, where /; is the
node labeling of the i-th WL iteration.

@ Let k: G x G — R be any kernel on graphs.
@ The Weistfeiler-Lehman graph kernel is defined as:

h
ki (G, G) =Y _k(G;, G)
i=0

Kernel Machines

Example: WL subtree kernel

12 45 78 10 12 14 16 17

Kernel Machines

References

kernel trick C. Burges, A tutorial on support vector machines
for pattern recognition, Data Mining and
Knowledge Discovery, 2(2), 121-167, 1998.

kernel properties J.Shawe-Taylor and N. Cristianini, Kernel
Methods for Pattern Analysis, Cambridge
University Press, 2004 (Section 3)

kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods

for Pattern Analysis, Cambridge University Press,
2004 (Section 9)

graph kernels N. Shervashidze, P. Schweitzer, E. Jan van
Leeuwen, K. Mehlhorn, and K. Borgwardt.
Weisfeiler-Lehman Graph Kernels. J. Mach.
Learn. Res., 2011.

Kernel Machines

