Kernel Machines

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Kernel Machines

Kernel Machines

Kernel trick

@ Feature mapping @(-) can be very high dimensional (e.g.
think of polynomial mapping)

@ |t can be highly expensive to explicitly compute it

@ Feature mappings appear only in dot products in dual
formulations

@ The kernel trick consists in replacing these dot products
with an equivalent kernel function:
k(x,X') = &(x)T o (x)

@ The kernel function uses examples in input (not feature)
space

Kernel Machines

Kernel trick

Support vector classification

@ Dual optimization problem

m m

1 T

max, /21: o~ 3 /,'221 ajajyiy; P(X;) " ®(x;)
- 7 k(x;,X;)

subjectto 0<o; <C i=1,....m
m
> aiyi=0
i=1
@ Dual decision function

f(x) = > aiyi 9(x;)"(x)
=

k(xi,X)

Kernel Machines

Kernel trick

Polynomial kernel

@ Homogeneous:

o Eg. (d=2)
Xq X1/ . / /12
k((X >’<Xé)) = (X1Xq + X2X3)
= (X1X})? + (X2X4)? + 2x1 X] X2 X}
T X2
— <x12 V2x1 X x22) \@xéxé
X/
o(x)7 +
P(x!

Kernel Machines

Kernel trick

Polynomial kernel

@ Inhomogeneous:
k(x,x") = (1 +x"x)?

o Eg. (d=2)
X X{
(2)-(4)-tts ot
=14+ (xq1X])2 + (XX5)? + 2X1 X} 4 2XpXb + 2X1 X XpXb
1
2x{
T Dx!
= (1 V2x1 V2xa X2 V2x1x xg) \52(2
y 1
o (0T 2x1%;
b
—_———
d(x’)

Kernel Machines

Valid Kernels
Dot product in feature space

@ A valid kernel is a (similarity) function defined in cartesian
product of input space:

k:Xx&X—=R

@ corresponding to a dot product in a (certain) feature space:

k(x,x') = &(x)"d(x')

@ The kernel generalizes the notion of dot product to
arbitrary input space (e.g. protein sequences)

@ It can be seen as a measure of similarity between objects

Kernel Machines

Valid Kernels

Gram matrix

@ Given examples {xy,...,Xn} and kernel function k

@ The Gram matrix K is the (symmetric) matrix of pairwise
kernels between examples:

Kij = k(xj,%;) Vi,j

Kernel Machines

Valid Kernels
Positive definite matrix

@ A symmetric m x m matrix K is positive definite (p.d.) if

m
) cigK; >0, VeeR™
i j=1
If equality only holds for ¢ = 0, the matrix is strictly positive
definite (s.p.d)

v

Alternative conditions

@ All eigenvalues are non-negative (positive for s.p.d.)

@ There exists a matrix B such that

K=B"B

Kernel Machines

Valid Kernels
Positive definite kernels

@ A positive definite kernel is a function k : X x X — IR giving
rise to a p.d. Gram matrix for any mand {X1,...,Xm}

@ Positive definiteness is necessary and sufficient condition
for a kernel to correspond to a dot product of some feature
map ¢

How to verify kernel validity
@ Prove its positive definiteness (difficult)

@ Find out a corresponding feature map (see polynomial
example)

@ Use kernel combination properties (we’ll see)

Kernel Machines

Kernel machines

Support vector regression

@ Dual problem:

1 l * * T
nye?lg(m 5 ;(O‘i —aj)(ef —) B(x;) " O(x;)
= K(X;,X;)
m m
_52(011 + o) + ZYI(a: a;j)
i=1 i=1
m

subject to Z(a,- —a;j)=0 aja; €[0,C] Vie[l,m]
i=1

@ Regression function:
m

f(X) =W O(X) + wp = Y (0 — o) D(x;) T d(X) +wp
e —

k(X,‘,X)

Kernel Machines

Kernel machines

(Stochastic) Perceptron: f(x) = w'x

Q Initializew =0
Q lterate until all examples correctly classified:
@ For each incorrectly classified training example (x;, y;):

W < W+ nyiX;

Kernel Perceptron: f(x) = Y-, ajk(X;, X)
Q Initialize a; = 0 Vi
Q lterate until all examples correctly classified:

@ For each incorrectly classified training example (x;, y;):

aj < aj +nYyi

Kernel Machines

Kernels

Basic kernels

@ linear kernel:

Tl

k(x,x') =x"x

@ polynomial kernel:

ka.c(x,x') = (x"x' 4 ¢)?

Kernel Machines

Kernels

Gaussian kernel

k,(x,x") = ex w — ex xTx —2x"x + x'Tx/
TR 202 - P 2072

@ Depends on a width parameter o

@ The smaller the width, the more prediction on a point only
depends on its nearest neighbours

@ Example of Universal kernel: they can uniformly

approximate any arbitrary continuous target function (pb of
number of training examples and choice of o)

Kernel Machines

Kernels
Kernels on structured data

@ Kernels are generalization of dot products to arbitrary
domains

@ It is possible to design kernels over structured objects like
sequences, trees or graphs

@ The idea is designing a pairwise function measuring the
similarity of two objects

@ This measure has to sastisfy the p.d. conditions to be a
valid kernel

Match (or delta) kernel

1 ifx=x'
0 otherwise.

ks(x,x') = 6(x,x') = {

@ Simplest kernel on structures
@ x does not need to be a vector! (no boldface to stress it)

Kernel Machines

E.g. string kernel: 3-gram spectrum kernel

X = ABAABA x' = AAARB

O(x) \ / D(2')

AAA 0 1
AAB]]

ABA 9 0

ABB 0 1 ,
BAA] 0 A=
BAB 0 0

BBA 0 0

BBB 0 0

Kernel Machines

Kernels

Kernel combination

@ Simpler kernels can combined using certain operators (e.g.
sum, product)

@ Kernel combination allows to design complex kernels on
structures from simpler ones

@ Correctly using combination operators guarantees that
complex kernels are p.d.

<

@ Simplest constructive approach to build valid kernels

Kernel Machines

Kernel combination

Kernel Sum

@ The sum of two kernels corresponds to the concatenation
of their respective feature spaces:

(ki + k) (x,X') = ki(x,x') + ka(x, X)
®1(x)7 ®1(x') + Da(x) " ba(x')

= @10 0200) (o159)

@ The two kernels can be defined on different spaces (direct
sum, e.g. string spectrum kernel plus string length)

Kernel Machines

Kernel combination

Kernel Product

@ The product of two kernels corresponds to the Cartesian
products of their features:

(ki x k)(x,x") = k1(x X ko (x, x")

— Zcbh (I>1, ZCDZJ ¢2/

= Y Prak(X)Prak(X) = Pr2(x) T P12(x)

@ where ®15(x) = d¢(x) x ®2(x) is the Cartesian product

@ the product can be between kernels in different spaces
(tensor product)

Kernel Machines

Kernel combination

Linear combination

@ A kernel can be rescaled by an arbitrary positive constant:
ks(x,x") = Bk(x,x")

@ We can e.g. define linear combinations of kernels (each
rescaled by the desired weight):

K
ksum(Xa X/) = Z ﬁkkk(x7 X/)

k=1

@ The weights of the linear combination can be learned
simultaneously to the predictor weights (the alphas)

@ This amounts at performing kernel learning

Kernel Machines

Kernel combination

Decomposition kernels

@ Use the combination operators (sum and product) to define
kernels on structures.

@ Rely on a decomposition relationship R(x) = (x1,...,Xp)
breaking a structure into its parts

E.g. for strings

@ R(x) = (x4,...,xp) could be break string x into substrings
such that xy o ... xp = x (where o is string concatenation)

@ E.g. (D = 3, empty string not allowed):

A A ABB AA A BB
X = AAABB R(x) = A AA BB AA AB B

A AAB B AAA B B

Kernel Machines

Kernel combination

Convolution kernels

@ decomposition kernels defining a kernel as the convolution
of its parts:

D
(ky*- - -xkp)(x, x') = Z Z H ka(Xd, Xg)

(X1, XD)ER(X) (X, X)ER(X') d=T1

@ where the sums run over all possible decompositions of x
and x’.

Kernel Machines

Convolution kernels

@ Let R(x) be the set membership relationship (written as €)
@ Let Kmemper(&,€') be a kernel defined over set elements
@ The set kernel is defined as:

kset X X Z Z kmember f ‘f

geXeeX

Set intersection kernel

@ For delta membership kernel we obtain:

ka(X, X') = [X N X/|

Kernel Machines

Kernel combination

@ Kernel values can often be influenced by the dimension of
objects

@ E.g. alonger string has more substrings — higher kernel
value

@ This effect can be reduced normalizing the kernel

v

Cosine normalization

@ Cosine normalization computes the cosine of the dot
product in feature space:

k(x,x")

k(x,x) = k(x, x)k(x', x")

Kernel Machines

Kernel combination

Kernel composition

@ Given a kernel over structured data k(x, x’)

@ it is always possible to use a basic kernel on top of it, e.g.:

(kacok)(x.X) = (k(x,x')+c)?

(ky o K)(x,x') = exp (_ k(x,x) — 2/((2)(07;(/) + k(X' X

@ it corresponds to the composition of the mappings
associated with the two kernels

@ E.g. all possible conjunctions of up to d k-grams for string
kernels

Kernel Machines

References

kernel trick C. Burges, A tutorial on support vector machines
for pattern recognition, Data Mining and
Knowledge Discovery, 2(2), 121-167, 1998.

kernel properties J.Shawe-Taylor and N. Cristianini, Kernel
Methods for Pattern Analysis, Cambridge
University Press, 2004 (Section 3)

kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods
for Pattern Analysis, Cambridge University Press,
2004 (Section 9)

Kernel Machines

