Scientific Programming

Course introduction

Andrea Passerini

Università degli Studi di Trento

2019/09/22

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Organization

145540 Scientific Programming (12 ECTS, LM QCB) 145685 Scientific Programming (12 ECTS, LM Data Science)

Part A - Programming (23/9-31/10)

Introduction to the Python language and to a collection of programming libraries for data analysis.

• Mutuated as 145912 Scientific Programming (LM Math, 6 credits)

Part B - Algorithms (4/11-12/12)

Design and analysis of algorithmic solutions. Presentation of the most important classes of algorithms and evaluation of their performance.

Course syllabus - Part A

- Introduction to Python
- Data types
 - Numbers
 - Strings
 - Lists, tuples, dictionaries
- Input-Output
 - Raw input
 - File system
- Complex statements
 - If
 - For, while
 - Nested statements

- Functions
 - Definition
 - Calls
 - Return values
- Programs
 - Structuring a program
 - Importing external modules
- Libraries
 - Pandas
 - Numpy
 - MatPlotLib

Course syllabus - Part B

- Introduction
 - Recursion
 - Algorithm analysis
 - Asymptotic notations
- Data structures
 - High level overview
 - Sequences, maps (ordered/unordered), sets
 - Data structure implementations in Python
- Trees
 - Data structure definition
 - Visits

- Graphs
 - Data structure definition
 - Visits
 - Algorithms on graphs
- Algorithmic techniques
 - Divide-et-impera
 - Dynamic programming
 - Greedy
 - Backtrack
 - NP class: brief overview

Objectives of the course – Part A

At the end of the module, students are expected to:

- Remember the syntax and semantics of the Python language;
- Understand programs written by others individuals;
- Analyze a simple data analysis task and reformulate it as a programming problem;
- Evaluate which features of the language (and related scientific libraries) can be used to solve the task;
- Construct a Python program that appropriately solves the task;
- Evaluate the results of the program.

Objectives of the course – Part B

At the end of the module, students are expected to:

- evaluate algorithmic choices and select the ones that best suit their problems;
- analyze the complexity of existing algorithms and algorithms created on their own;
- design simple algorithmic solutions to solve basic problems.

What you will learn

Programming expertise

- Content: a brief overview of the main problems in algorithmics and their solution
- Approach: the principles and the techniques that can be used to solve such problems

Content: list of algorithms

- Read their code
- Understand why they work
- Try to implement them

Approach: abstract thinking

• Develop new solutions for unusual problems

About interaction during the lecture

Ask questions!!

- If I'm not clear enough, stop me!
- If you want additional information, ask!

He who asks a question is a fool for a minute; he who does not ask a question remains a fool forever

Chinese proverb

Course website

http://disi.unitn.it/~passerini/teaching/2019-2020/sci-pro/

- Slides and notes (in development)
- Links to additional material

Instructors: Part A - Programming

- Instructor: Prof. Andrea Passerini
 - Theory lectures, programming exercises
 - andrea.passerini [AT] unitn.it
- Teaching assistant: Dr. Luca Bianco
 - Python lab sessions (QCB)
 - luca.bianco [AT] fmach.it
- Teaching assistant: Dr. David Leoni
 - Python lab sessions (data science)
 - david.leoni [AT] unitn.it

Instructors: Part B - Algorithms

- Instructor: Dr. Luca Bianco
 - Theory lectures, algorithmic exercises
 - luca.bianco [AT] fmach.it
- Teaching assistant: Dr. Massimiliano Luca
 - Lab sessions on algorithms (QCB)
 - massimiliano.luca [AT] unitn.it
- Teaching assistant: Dr. David Leoni
 - Lab sessions on algorithms (data science)
 - david.leoni [AT] unitn.it

Schedule

Week day	Time	Room	Description
Monday	14.30-16.30	A107	Lecture
Tuesday	15.30-17.30	A107	Lab. QCB
Tuesday	15.30-17.30	A103	Lab. Data Science
Wednesday	11.30-13.30	A107	Lecture
Thursday	15.30-17.30	A107	Lab. QCB
Thursday	15.30-17.30	A208	Lab. Data Science

Exam

145540,145685 Scientific Programming (12 credits)

• Lab exam

- Python programming
- Simple algorithmic problems
- Questions about computational complexity

145912 Scientific Programming (6 credits, Math)

- Lab exam
 - Python programming

Dates

Midterms

Midterm 1 (1.5h)

Midterm 2 (1.5h)

Beginning of November? Week before XMas?

Full exams	
January (3h)	TBD
February (3h)	TBD
June (3h)	TBD
July (3h)	TBD
September (3)	TBD

Tell us something of yourselves

Non-anonymous survey about you

https://tinyurl.com/y6nlnx71