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Abstract—This work introduces the Active Learning of Pareto
fronts (ALP) algorithm, a novel approach to recover the Pareto
front of a multi-objective optimization problem. ALP casts the
identification of the Pareto front into a supervised machine
learning task. This approach enables an analytical model of the
Pareto front to be built. The computational effort in generating
the supervised information is reduced by an active learning
strategy. In particular, the model is learnt from a set of infor-
mative training objective vectors. The training objective vectors
are approximated Pareto-optimal vectors obtained by solving
different scalarized problem instances. The experimental results
show that ALP achieves an accurate Pareto front approximation
with a lower computational effort than state-of-the-art Estimation
of Distribution Algorithms and widely-known genetic techniques.

Index Terms—Multi-objective optimization, Gaussian process
regression, active learning, uncertainty sampling.

I. I NTRODUCTION

REAL-world optimization tasks usually require the op-
timization of several conflicting objectives: a solution

simultaneously optimizing all of them does not exist. There-
fore, the solution to the multi-objective optimization problem
(MOP) becomes the quantitative identification of trade-offs
between the multiple objectives. The trade-offs between the
competing objectives are captured by thePareto-optimalso-
lutions, for which any single objective cannot be improved
without compromising at least one of the others.

The set of the Pareto-optimal solutions in the decision space
(Pareto set or PS) and of the corresponding objective vectors in
the objective space (Pareto front or PF) typically have a large
or even infinite cardinality, as it is the case for continuous
problems. In these cases, the typical solution consists of an
approximation of the Pareto set (Pareto front) by a finite
number of representative solutions (objective vectors). The
better the approximation of the Pareto front, the better the
choice of the favorite compromise between the objectives that
is offered to the decision maker.

The traditional approach to obtain a finite set of Pareto-
optimal solutions (and the corresponding images in the PF)
involves the sequential generation and solution of scalarized
instances of the MOP. Scalarization [1] consists of trans-
forming the original MOP into asingle-objective optimization
problem (SOP). The generated SOP is a parametric combi-
nation of the multiple objectives of the original MOP into a
single objective. This combination may involve the generation
of additional constraints not included in the original MOP.
Different Pareto-optimal solutions can be obtained by appro-
priately varying the scalarization parameters. The generated
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SOP can be solved by applying common methods and widely
developed theory for single-objective optimization. However,
scalarization-based methods are usually sensitive to the shape
or continuity of the Pareto front [2]. For example, non-convex
parts of the Pareto front cannot be recovered by optimizing
convex combinations of the objective functions.

Rather than relying on scalarization techniques, current state
of the art approaches for MOPs are represented by the Evolu-
tionary Multi-objective optimization algorithms (EMOAs)[3],
which are less susceptible to the shape of the Pareto front,
handling, e.g., discontinuous or concave shapes. EMOAs are
heuristic techniques generating an approximation of the whole
PF in a single run and without using any derivative (i.e., gradi-
ent) information. The approximation is obtained by repeatedly
improving a set of candidate solutions in the decision space
(referred to as “population” within the Evolutionary metaphor)
until their images in the objective space have converged to
the PF. However, neither the convergence to the PF, nor, in
case of convergence, a uniform distribution of the population
over the PF are guaranteed. Furthermore, the performance is
typically sensitive to the setting of the algorithm parameters
(e.g., population size, number of iterations, genetic operators
parameters), whose tuning depends on the specific problem
instance being solved.

The Active Learning of Pareto fronts algorithm introduced
in this paper is different from existing EMOAs. Because the
PF has infinite cardinality in the case of continuous MOPs,
ALP generates ananalytical representationof the PF, rather
than an approximation by a finite and preset number of points.
An analytical representation of the entire Pareto front may
significantly improve the decision making process, particularly
when the preferences of the Decision Maker (DM) cannot be
stateda priori. The compact analytical representation of the
PF offers to the DM the possibility of visually inspecting the
front, and of focusing on the preferred regions and selecting
the favorite solution̂z, as the desired compromise between
the different objectives. ALP can then identify the solution in
the decision space corresponding toẑ. With a large number
of objectives, dimensionality reduction techniques [4] may be
employed to enable the investigation of the learnt analytical
PF representation in a three or two dimensional visualization.

The ALP algorithm generates the analytical PF represen-
tation by learning a model of the PF from atraining set
of approximated Pareto-optimal vectors, which are obtained
by solving different SOP instances. In order to minimize the
computational effort (measured as number of evaluations of
the MOP objective functions), informative training objective
vectors are selected by applying active learning principles
(AL). In particular, the learning stage is accomplished by
Gaussian process (GP) regression [5], as it provides an explicit
measure of predictive uncertainty that can be used to guide
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the selection of the training examples (active learning by
uncertainty sampling [6]). The adoption of the AL paradigm
also favors theanytimeproperty: when increasing the number
of function evaluations, the accuracy of the analytical PF
representation improves. Furthermore, the GP method offers
a natural termination criterion for ALP: when theinformation
gain obtained by including any additional training example is
negligible, the algorithm stops. The training objective vectors
are generated by solving different instances of a scalarized
optimization problem. ALP does not require any derivative
information and is a generic framework: neither the ML
method learning the PF model, nor the AL principles and the
optimization techniques for solving SOPs instances are limited
to the ones discussed in this paper.

Let us note that there are two possible connections between
machine learning and multi-objective optimization. The first
connection arises because machine learning problems contain
challenging multi-objective optimization tasks, from general
cases like the trade-off between intra-cluster similarityand
inter-cluster dissimilarity in clustering problems, to specific
cases, such as reinforcement learning problems with multiple
conflicting reward functions [7], [8]. The second connection,
implemented by our work, goes in the opposite direction: it
uses learning techniques from the machine learning commu-
nity to solve the general multi-objective optimization problem.

The next Section describes the problem settings assumed
in this work. Details of the ALP algorithm are provided
in Sec. III, while Sec. IV describes the Gaussian process
regression technique used to model the Pareto front. Sec. V
reviews different active learning strategies for regression tasks,
with a particular emphasis about the uncertainty sampling
principle applied within the Gaussian process regression,as
this is the strategy adopted by ALP. Related work is discussed
in the following section. An experimental comparison between
ALP and state-of-the-art EMOAs is reported in Sec. VII,
while the ability of ALP in learning disconnected Pareto
fronts is evaluated in Sec. VIII. The experiments in Sec. IX
validate the choice of the active learning strategy based on
the predictive uncertainty of the GP regression model. Finally,
possible generalizations of ALP and interesting directions for
future research are discussed in Sec. X. A more comprehensive
explanation of Gaussian process regression, an exhaustive
discussion of the related work and a more detailed description
of the experiments performed can be found in the preprint
technical report of this work [9].

II. PROBLEM SETTINGS

The ALP algorithm introduces a new strategy to tackle multi-
objective optimization problems (MOPs). In this Section, we
give the formal definition of the MOP, specifying the termi-
nology used throughout the paper, and define the properties of
the Pareto front which our algorithm relies on.

A. Multi-objective optimization problem

A multi-objective optimization problem (MOP) is formulated
as:

min
x

f(x) = {f1(x), . . . , fm(x)} (1)

subject to x ∈ Ω

wherex ∈ R
n is a vector ofn decision variables;Ω ⊂ R

n

is the feasible regionand is typically specified as a set of
constraints on the decision variables;f : Ω → Φ ⊂ R

m is made
of m objective functions which need to be jointly minimized.
Objective vectors are images of decision vectors and can
be written asz = f(x) = {f1(x), . . . , fm(x)}. Problem (1)
is ill-posed whenever objective functions are conflicting,a
situation which typically occurs in real-world applications.
In these cases, an objective vector is considered optimal if
none of its components can be improved without worsening
at least one of the others. An objective vectorz is said to
dominatez′, denoted asz ≻ z′, if zk ≤ z′k, k = 1, 2, . . . ,m,
and there exists at least oneh ∈ {1, 2, . . . ,m} such that
zh < z′h. A point x is Pareto-optimal if there is no other
x′ ∈ Ω such thatf(x′) dominatesf(x). The set of Pareto-
optimal solutions is calledPareto set(PS). The corresponding
set of Pareto-optimal objective vectors is calledPareto front
(PF). Theideal objective vector represents the best value of
each objective. It is generally infeasible and is obtained by
separately minimizing each objective function in the feasible
region, i.e.,zIDk = minx∈Ω fk(x). Analogously, theworst
objective vector contains the maximum possible value of
each objective over the entire search space. Another notable
vector in the objective space is theNadir point, whose k-th
component is the maximum value of the k-th objective among
all the Pareto-optimal vectors:zNk = maxx∈Ω∗ fk(x), where
Ω∗ ⊂ Ω is the set of the Pareto-optimal solutions. The ideal
and Nadir points define the range of values that the Pareto-
optimal objective vectors may attain.

B. Assumptions

Under mild smoothness conditions, the Pareto front of contin-
uous MOPs is an(m − 1)-dimensional piecewise-continuous
manifold [1], [10], with m being the number of objectives.
The dominance relation defined in the objective space enables
a further characterization of the PF by expressing an arbitrary
objectivezd (dependent function variable) as a function of the
remaining objectiveszI (independent function variables):zd =
g(zI). Without loss of generality the m-th objective of a m-
objective problem is considered the dependent objective, i.e.,
zm = g(zI), with zI including objectiveszi, i = 1, . . . ,m−1.

In this work, we focus on bi-objective optimization prob-
lems, where the PF is characterized by the continuous function
z2 = g(z1). The only assumption of ALP is the knowledge of
the domain ofg. When the PF is connected, the domain ofg

is a closed interval of real numbers, and it is thus completely
specified by the lower and the upper bound of the interval.
While the lower bound can be easily obtained by computing
the valuezID1 of the ideal point, the upper bound can be
specified by the decision maker herself, which is often aware
of a critical threshold defining the set of interesting values for
a given objective. When the decision maker cannot provide
the desired information, the upper bound defining the domain
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Fig. 1. Bi-objective minimization problem. The gray-shaded area denotes
the feasible objective space, with the PF being depicted by the bold-marked
curve. The ideal and Nadir points bounding the PF are highlighted.

of g is represented by the valuezN1 of the Nadir point, which,
in the case of bi-objective problems, can be computed exactly
(see Fig. 1). In fact, in the case of bi-objective optimization
problems, each component of the Nadir point is obtained from
the Pareto-optimal objective vector containing the ideal value
for the other component. Therefore, the componentzN1 can be
determined by solving the following program:

zN1 = min
x

f1(x) (2)

subject to f2(x) = zID2

x ∈ Ω

For MOPs with more than two objectives or bi-objective MOPs
with a disconnected PF, the domain of functiong cannot
be defined by just a couple of (user supplied) points. In
Sec. VIII, our approach is generalized to bi-objective MOPs
with disconnected Pareto fronts, where the a priori knowledge
of the domain ofg is an impractical assumption. Finally,
Sec. X outlines a possible generalization of ALP to tackle
MOPs with a number of objectives larger than two.

III. T HE ALP ALGORITHM

The dominance relation enables a functional formulation ofthe
PF, by expressing an arbitrary objectivezd as a continuous
function g of the remaining objectiveszI . Without loss of
generality, in this work the objectivezm is expressed as
a function of the remaining objectives. The ALP algorithm
recovers ananalytical model of the PF, by solving a supervised
regression task with input feature vectorzI and outputzm.
The supervised information consists of approximated Pareto-
optimal vectors, providing training examples in the form
(zI , zm). This section first motivates the choice of modeling
the PF and then presents the ALP framework in detail.

A. Motivation for our approach

Continuous MOPs have an infinite number of Pareto-optimal
vectors, each one representing a compromise among the
conflicting objectives, and the PF is usually is a continuous
manifold. The Evolutionary techniques approximate the PF
by identifying a finite and discrete number of Pareto-optimal
vectors (discrete PF representation). On the contrary, the ALP
algorithm learns ananalytical representationof the PF. This

approach provides to the DM the ability of evaluating and
selectingany possible Pareto-optimal vector, thus improving
the decision making process, particularly when the DM pref-
erences cannot be clearly stateda priori.

Learning an analytical model of the PF is a more affordable
task than recovering an analytical approximation of the PS.
As a matter of fact, a functional formulation of the PS is
not possible. Under mild smoothness conditions, the PS is
a manifold [11], but its dimensionality, larger or equal to
m−1, is in general unknown. Furthermore the PS manifold is
embedded in the decision space, and the dimensionality of the
decision space is usually much larger than that of the objective
space(n ≫ m). Learning an analytical model of the arbitrarily
complicated PS shape is therefore computationally more ex-
pensive, and, in general, even not necessary. Once an analytical
model of the PF is provided to the DM, he can search for
any preferred compromisezDM among the objectives. The
feasible solution in the decision space associated with the
selected compromise vector can be identified by minimizing
w.r.t. x ∈ Ω the distance betweenf(x) andzDM .

B. Framework

Let us assume that a supervisor, which provides the valuezm
for each training inputzI , is available. Given an initial setT of
training examples in the form(zI , zm) (initialization phase),
ALP iteratively learns a model̃g (refinement phase), providing
the analytical representation of the PF. Each refinement iter-
ation consists of training the modelg̃ on the current training
setT and, based on the learnt model, selecting a new training
vector ẑI . The new training example(ẑI , ẑm), where ẑm is
the supervised information, is included inT . The update of
the training setT completes the refinement iteration.

The pseudo-code of ALP is in Fig 2. In the following, we
provide the details of the algorithm.

1) Initialization phase. The initial training setT is gen-
erated by selectingv vectors uniformly at random within the
input spaceS of the regression task, spanned by them − 1
independent objectiveszI . Supervised information for each
selected vector is generated.

2) Refinement phase (active learning).Training examples
generation is expensive, as computing the supervised informa-
tion involves the evaluation of the objective functionsf of the
MOP. In order to minimize the number of training examples
without affecting the accuracy of the learnt model, training
inputs are selected by theuncertainty samplingprinciple [6].
At each refinement iteration, the new training input is the
feature vector̂zI in S on which the prediction of the cur-
rent model ismost uncertain. The couple(ẑI , ẑm), with ẑm
being the supervised regression output, is considered themost
informativetraining data for the current model.

Given the training setT , the model̃g approximating the PF
is learnt by applyingGaussian process regression(GPR). This
choice is motivated by the ability of GP learners in quantifying
prediction uncertainties, which enables a suitable application
of the uncertainty sampling principle. GP learners providea
Gaussian distributionN (µ(z̄I), σ(z̄I)) of the values predicted
for any single test input̄zI . The meanµ(z̄I) of the predictive
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1. procedure ALP
2. input: multi-objective optimization problem
3. output: analytical PF representation
4. Let S the input space of the regression task

5. /* Initialization phase */
6. Selectv training inputszI uniformly at random inS
7. Generate regression outputzm for each training input by solvingv instances of problem (3)/* Supervision */
8. Initialize training setT by thev instances(zI , zm)
9. Remove dominated training examples fromT /* Dominance-based filtering */
10. /* Refinement phase */
11. do
12. Train GP regression model on setT /* Modeling */
13. Select most informative training input̂zI /* Active learning */
14. Generate regression outputẑm for ẑI by solving problem (3)/* Supervision */
15. Include training example(ẑI , ẑm) in T
16. Remove dominated training examples fromT /* Dominance-based filtering */
17. until (termination criterion)
18. return learnt GP model/* Analytical PF representation */

Fig. 2. Pseudo-code for the ALP algorithm generating the analytical PF representation by iteratively refining the learnt GP model.

distribution can be interpreted as the predictionz̃m of the GPR
model g̃ when applied on test input̄zI , while the variance of
the distribution quantifies the confidence of the model about
the prediction. Large variance means that the test sample is
not represented by the model learnt on the current training
examples. Therefore, the point̂zI in S maximizing σ(zI)
is used to generate aninformative training example for the
current model̃g. A description of GPR including all aspects
relevant to our algorithm is reported in Section IV.

3) Supervised information generation.Supervised infor-
mation consists of the regression output, i.e., the value of
the dependent objectivêzm, for a given input feature vector
ẑI . The couple(ẑI , ẑm) constitutes a training example. The
value ẑm is obtained by solving the following mathematical
problem:

min
x,ǫ

fm(x) (3)

subject to

fj(x) = ẑj + ǫj , j = 1, . . . ,m− 1,

|ǫj | ≤ 10−2

x ∈ Ω

where Ω ⊆ R
n identifies the feasible region of the MOP.

Let x̂ be the solution of problem (3). Then,̂zm = fm(x̂).
The objective vector̂z = {ẑI , ẑm} is Pareto-optimal. Slack
variables ǫj in problem (3) relax the equality constraints
fj(x) = ẑj . Equality constraints relaxation is introduced to
solve instances of problem (3) suffering from the presence of
local minima. When|ǫj | > 0 for at least one value of indexj,
the new training input is a point̃zI in the neighborhood of̂zI .
As position z̃I is located in the region where the predictive
uncertainty is higher, it represents an informative query point.
The tolerance value of10−2 in problem (3) is in general
related to the input range and to the objective functions, the
value of10−2 is adequate for all benchmark problems (and the
experimental results show that this choice is a robust setting).

4) Dominance-based filtering.When the solution of prob-
lem (3) is anapproximationx̃ of the Pareto-optimal solution

x̂, anoisytraining example(z̃I , z̃m), with z̃m = fm(x̃) > ẑm,
may be generated. Therefore, when new training examples
are included in the training setT , a “dominance check” is
performed to detect and remove training examples which are
dominated by the new training examples.

5) Termination criterion. The ALP approach is a general
framework to solve MOPs, enabling different termination
criteria. A simple one is provided by the AL paradigm. When
the information gain obtained fromany additional training
example is negligible, the accuracy of the learnt PF model
is not expected to improve in a significant manner, and
the algorithm stops. The information gain is estimated by
the uncertainty of the model about its predictions for the
candidate training examples. Alternative termination criteria
for the iterative learning process include a limit on the number
of refinement iterations or an upper bound on the number of
evaluations of the MOP objectives (limit on the computational
effort).

6) Computational complexity. The computational com-
plexity of ALP is dominated by the GP training, which
takes timeO(|T |3) (see Sec. IV). However, because of the
limited number of training examples that can be used by ALP
to efficiently recover the PF, the GP training is completed
in a negligible amount of time. Furthermore, in real-world
MOPs, the run-time bottleneck is typically represented by the
evaluation of the objective functions. The fitness computation
may involve, for example, time-consuming experiments or
simulations. In some real-world cases, the analytical formu-
lation of the fitness surface may even not exist, e.g., when
one objective is the optimization of quantitative judgments
provided by the decision maker.

Training the GP does not require the evaluation of the
objective functions, which is instead needed by the generation
of the training outputs (Eq. (3)). Therefore, the computational
cost of ALP corresponds to the effort spent in generating the
supervised information.
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IV. GAUSSIAN PROCESS REGRESSION

The ALP algorithm learns an analytical approximating of
the PF by applyingGaussian process regression(GPR) [5],
[12]. This choice is motivated by the ability of GP learners
to provide an explicit uncertainty model for the individual
predictions, therefore enabling a suitable application ofthe
uncertainty sampling principle [6]: an input on which the
current learner has maximum uncertainty is selected as new
training example.

In this section we describe the regression based on Gaussian
processes. First, we show how the traditional regression task
is tackled by using Gaussian processes. Subsection IV-B
elucidates how to make predictions from a trained Gaussian
process. The training (i.e., learning) of a GP model is ex-
plained in Subsection IV-C.

A. Gaussian process model

The traditional regression task consists of estimating a latent
functiong(x) from a noisy training datasetT = {(xi, yi), i =
1, . . . , |T |}. A Gaussian process (GP) is a collection of random
variables, any finite subset of which have consistent joint
Gaussian distributions. The consistency requirement means
that the joint distribution of any finite subset of random
variables is obtained from the joint distribution of any arbi-
trary superset of the original subset by marginalizing out the
additional variables.

When a GP is used to model the regression task, the random
variables represent the values of the latent functiong(x) at dif-
ferent locationsx. Therefore, the random (function) variables
can be indexed by the continuous functiong(x). In this paper,
gi denotes the random function variable associated with the
input xi which characterizes the possible values forg(xi).
By definition of GP,n arbitrary random function variables
g = {g1, g2, . . . , gn} have a joint Gaussian distribution:

p(g|X) = N (ḡ,K) (4)

whereX is the set of corresponding inputs (indexes),X =
{x1,x2, . . . ,xn}, andN (ḡ,K) denotes a multivariate Gaus-
sian distribution with mean vector̄g and covariance matrix
K.

A GP is aconditionalprobabilistic model. The distribution
p(x) on the inputs is not specified, and only the conditional
distribution p(g|X) is actually modeled. For notational sim-
plicity, in the rest of this paper the explicit conditioningon
the input is omitted, with the convention thatp(g) stands for
p(g|X), whereX represents the appropriate inputs where the
function variablesg are conditioned on.

A Gaussian process is completely specified by the mean
µ(x) and the covariancec(xi,xj) functions. The mean func-
tion is usually set to zero (bias and offsets can be sub-
tracted from the data without loosing generality), therefore
the definition of the GP reduces to the choice of the suitable
covariance function, which measures the similarity between
inputs x by computing the covariance among the function
variablesg associated with the inputs. The covariance matrix
K in Eq. (4) is calculated from the covariance function:
Ki,j = cov(gi, gj) = c(xi,xj).

B. Gaussian process prediction

Gaussian process regression (GPR) assumes that the observa-
tionsyi = g(xi)+ǫ are affected by white noiseǫ, following an
independent and identically distributed Gaussian distribution
with zero mean and varianceσ2

n. Let y = {y1, y2, . . . , y|T |}.
Analogously to the symbolp(g), in this paperp(y) is used
as short notation forp(y|X), whereX is the set of training
inputs corresponding to the observationsy.

GPR is aBayesianprobabilistic method. A Gaussian process
is used to express theprior belief about the functiong(x)
to be modeled,before considering any training observation.
This Gaussian process is thus referred to asprior GP. By
using a prior Gaussian process, the joint distribution of the
latent function variablesg given the training inputsX is
a multivariate Gaussianp(g) = N (ḡ,K). This probability
distribution defines theprior for Bayesian inference. The
components of̄g are usually set to zero, thus the Gaussian
can be rewritten asp(g) = N (0,K). Under the assumption of
Gaussian white noise affecting the observationsy, a suitable
noise model (orlikelihood) is p(y|g) = N (g, σ2

nI), where
I is the identity matrix. By integrating over the unobserved
function variablesg, the marginal likelihood(or evidence) is
obtained:

p(y) =

∫
p(y|g)p(g)dg = N (0,K + σ2

nI) (5)

The termmarginal refers to the marginalization overg. With
the prior, the likelihood and the evidence (Eq. (5)) components,
Bayesian inference can be applied to make a prediction on
a test inputx∗. In particular, GPR estimates the probability
distribution p(g∗|y) over the candidate values forg(x∗) at
the test inputx∗, rather than providing a single prediction
(estimated best guess) forg(x∗). The predictive distribution
p(g∗|y) is a GaussianN (ḡ∗, σ

2(g∗)), with mean and variance
given by:

ḡ∗ = µ(x∗) = k′
∗(K + σ2

nI)
−1y (6)

σ2(g∗) = k∗ − k′
∗(K + σ2

nI)
−1k∗ (7)

The valueµ(x∗) is used as the estimation forg∗, while the
varianceσ2(g∗) defines how much the GP model is confident
with the estimation (larger variance means smaller confidence).

The Cholesky decomposition of matrixK + σ2
nI enables a

fast and numerically stable implementation of Equations (6)
and (7). However, the complexity of inverting the matrix
K + σ2

nI is O(|T |3), where|T | is the number of training ob-
servations. Therefore, the application of GPR with more than
few thousands of training examples is prohibitive. However,
within our problem settings, much smaller data sets are used
by the ALP algorithm, as the generation of training examples
is expensive.

C. Gaussian process training (model selection)

The covariance function of a GP model typically has a set
of free hyperparameters that control the shape of the Gaus-
sian distributions. Training a GP model consists of tuning
the covariance function hyperparameters, together with the
Gaussian noise variance, to fit the current data. In the rest of
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this paper, the hyperparameters of the GP model, consisting
of the covariance function parameters and the noise variance
σ2
n, will be collectively referred to by the vectorθ.
The optimal value ofθ can be inferred from the observations

y by maximizing w.r.t.θ the marginal likelihood defined in
Eq. (5). For numerical reasons, the marginal log-likelihood is
used:

−
|T |

2
log 2π −

1

2
log |K + σ2

nI| −
1

2
y′(K + σ2

nI)
−1y (8)

The above quantity represents the log-evidence for the specific
GP model defined by the hyperparameters settingsθ.

In general, maximizing the log-likelihood is a non-convex
optimization task. Standard gradient-based optimizationalgo-
rithms, e.g., conjugate gradient techniques or quasi-Newton
methods, are typically adopted to search for locally-optimal
points. The cost of computing the log-marginal likelihood and
its gradient is dominated by the inversion of the covariance
matrix K + σ2

nI.
In addition to the optimization of the covariance function

hyperparameters, the model selection procedure may also
include the discrete choice between different functional forms
(i.e., models) for the covariance function. In particular,the
functional form can be selected by simply comparing the
maximum likelihood values computed for each candidate
model. Finally, rather than resorting to a zero-mean prior GP,
a parametric formulation for the mean function can also be
specified. Its hyperparameters are included in the vectorθ and
optimized together with the noise model and the covariance
function hyperparameters.

V. ACTIVE LEARNING FOR REGRESSION TASKS

This section provides an overview of different strategies for
the active learning of real-valued functions, starting from the
uncertainty sampling principle adopted by ALP within the
GPR framework. In particular, we show how GPR enables
a sound application of the uncertainty sampling principle.

Acquiring training examples for supervised learning tasks
is a typically expensive and time consuming process.Active
learning approaches attempt to reduce this cost by actively
suggesting inputs for which supervision should be collected,
in an iterative process alternating learning and feedback
elicitation. At each iteration,active learning methods select
the inputs maximizing aninformativeness measure, which
estimates how much an input would improve the current model
if it was added to the current training set. The informativeness
of the query inputs can be defined in different ways and several
active learning techniques exist (see [13] for a recent review).

The uncertainty sampling(US) principle [13] considers
the input with highest predictive uncertainty as the most
informative training example for the current model. The US
paradigm therefore requires a learning model that can quantify
its predictive uncertainty. The ability of GPR in estimating
the confidence for individual predictions enables a suitable
application of the uncertainty sampling principle. A large
varianceσ2(g∗) of the predictive distributionN (ḡ∗, σ

2(g∗))
for a single test inputx∗ means that the test sample is not
represented by the GP model learnt from the training data. The

predictive variance quantifies the predictive uncertaintyof the
GP model, and therefore the input maximizing the predictive
variance is selected by the uncertainty sampling principle.
With GPR, the predictive uncertainty grows in regions away
from training inputs.

Active learning strategies more sophisticated than the US
principle exist, but they usually demand more expensive
computation. Thequery-by-committeestrategy [13] maintains
a committee of models, trained on the current set of exam-
ples and representing competing hypotheses. Each committee
member votes on the output value of the candidate inputs and
the input considered most informative is the one on which
they disagree most. Theexpected model changeprinciple [13]
considers as the most informative query the input that, when
added to the training set, would yield the greatest change in
the current model (i.e., that has the greatest influence on the
model parameters). Theexpected error reductioncriterion [13]
selects the input that is expected to yield the greatest reduction
in the generalization error of the current model. Computing
the expected generalization error is however computationally
expensive, and, in general, it even cannot be expressed ana-
lytically. To overcome this limitation, thevariance reduction
approach [13] queries the input that minimize the model
variance. The generalization error can in fact be decomposed
into three components, refereed to as the noise, the bias
and the model variance. The noise component defines the
variance of the output distribution given the input and it is
independent of the model and the training set. The bias error
is introduced by the model class (e.g., a linear model class
adopted to approximate a non-linear function). The model
variance estimates how much the model predictions vary when
changing the training set. Because the model parameters can
influence neither the noise nor the bias, the only way to
reduce the future generalization error consists of minimizing
the model variance. An effective application of the variance
reduction approach is possible only under the assumption that
the bias error is negligible.

VI. RELATED WORK

Estimation of Distribution algorithms (EDAs) are Evolutionary
techniques which generate a probability distribution of promis-
ing solutions based on statistical information extracted from
the current population. The probability distribution models
the pattern characterizing the set of promising solutions.The
pattern is generated by dependencies among the decision
variables, often referred to asvariable linkages[3]. At each
generation of an EDA, the probability distribution is sampled
to obtain new candidate solutions which are used to refine the
current population. The motivation for EDAs is given by the
limitation of common genetic operators: when two parents are
in the PS, their offspring may not be close to the PS.

Among the Evolutionary methods, EDAs are closest to our
approach, sharing with ALP the extraction of global statistical
information from the current data. However, our technique
is not developed within the Evolutionary framework. EDAs
typically generate a probability distribution of promising so-
lutions in the decision space. Afinite PF approximation is
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provided by the population of the EDA. On the contrary, the
model learnt by ALP is ananalytical PF approximation and
the training examples are Pareto-optimal vectors generated by
solving different SOPs. Furthermore, the SOPs are not fixed
at the initialization phase, but they are dynamically generated
based on the predictive uncertainty of the current PF model.
Selecting the new training inputs based on the predictive
model uncertainty provides two advantages. First, it enables
a computationally cheaperand accurate PF approximation.
Second, because the predictive uncertainty increases when
moving away from the current training inputs, adiversified
set of Pareto-optimal solutions, corresponding to objective
vectors distributed over the whole PF, is provided to the
decision maker. A more comprehensive discussion of the
related works can be found in the preprint technical report
of this work [9], including a description of the state-of-the-
art MMEA algorithm [14], which is the ALP benchmark
technique in our experimental studies.

VII. E XPERIMENTAL RESULTS

ALP is tested over the RM-MEDA benchmark problems
introduced in [11] to evaluate the ability of EDAs in re-
covering the Pareto front. As the best results over the RM-
MEDA benchmark problems has been achieved by the MMEA
algorithm [14], the latter represents the touchstone in our
experimental studies. In particular, the optimal setting of
MMEA parameters is taken from paper [14].

The experimental studies are described as follows. First, the
RM-MEDA benchmark is outlined. The setting of the ALP
algorithm is then detailed and a single ALP run is showed, in
order to provide a paradigmatic case of the PF approximation
refinement observed during the learning iterations. The com-
parison with the MMEA algorithm is given in Subsec. VII-E,
following the description of the comparison metric adopted.
In the preprint technical report of this work [9], ALP is also
tested over the welded beam design MOP [15], a widely-used
benchmark introduced in the spirit of real world optimization
tasks.

A. The RM-MEDA benchmark problems

For a comparison with ALP, we consider the bi-objective
problems of the RM-MEDA benchmark [11]. By using the
numbering adopted in paper [14], the benchmark set is thus
formed by the instances ZZJ08-F1, ZZJ08-F2, ZZJ08-F3,
ZZJ08-F5, ZZJ08-F6 and ZZJ08-F7. These instances are
derived from the widely-known Zitzler-Deb-Thiele (ZDT) test
problems [16]. The PS of the bi-objective ZDT problems
is parallel to the coordinate axes, because of the lack of
dependencies among the decision variables. This deficiency
introduces a bias in favor of the commonly used crossover
operator: if two solutions are Pareto-optimal, their offspring
is likely to be Pareto-optimal. Furthermore, variable linkages
exist in many applications and their inclusion into test suites
has been suggested by different works [17], proposing variable
transformations for introducing dependencies among the deci-
sion variables. The RM-MEDA instances F1, F2, F3 introduce
linear linkages in the formulation of the ZDT1, ZDT2 and

ZDT6 test problems [16]. Nonlinear dependencies among the
decision variables have been added to the definition of the
same ZDT instances to generate the RM-MEDA problems F5,
F6, F7. Their Pareto sets consist of bounded continuous curves.

B. ALP setting

In order to avoid any bias favouring our method over the
competitor, the PF manifold is arbitrarily expressed by con-
sidering z2 as a function ofz1: z2 = g(z1). To apply the
ALP algorithm, the Ideal and Nadir pointszID andzN of the
above MOPs are computed offline. In particular, the domain
[zID1 , zN1 ] of the regression task is equal to[0, 1] for all
the considered MOPs, with the exception of problemsF3
and F7 where the domain is the interval[0.281, 1]. ALP is
implemented in Matlab R2008a. In particular, the optimization
problem (3) generating supervised information is solved by
using the continuous local search algorithms for constrained
optimization provided by the Matlab Optimization ToolboxTM

library. In detail, a sequential quadratic programming algo-
rithm [18], [19] is used, except for problemsF3 andF7, where
an interior-point method [20] is adopted. The choice of the
optimization strategy is based on the observed convergence
rate to the (local) optima of the functionfm. Both strategies
are implemented by the “fmincon” Matlab routine. A single
run of “fmincon” algorithm is performed, initializing at ran-
dom the starting point and limiting the number of scalarized
function evaluations to3000. For the considered MOPs, within
the value of3000, the algorithm usually converges to a (local)
minimum of the functionfm. In general, ALP is a flexible
framework enabling the usage of alternative constrained op-
timization algorithms (e.g., derivative-free approaches) rather
than the “fmincon” routine to solve problem (3).

ALP training set is initialized by selecting two training
examples uniformly at random within the input space. In the
performed experiments, the mean function of the prior GP
is the line a ∗ x + b, with {a, b} being the mean function
hyperparameters. Three candidate forms for the covariance
function are considered: the squared exponential, the neural
network and the Matérn covariance functions (see book [5]
for their formulation). In combination with the mean and
covariance functions, we make use of a white Gaussian noise
model with varianceρ2n. The hyperparameters vectorθ thus
includesρ2n, the mean function hyperparametersa and b and
the covariance function hyperparameters. The model selection
phase consists of two tasks: 1) the choice of the functional
form for the covariance function, 2) the optimization of the
hyperparametersθ. Both tasks are accomplished in one step
by evidence maximization (see Eq. (8)): for each candidate
covariance function, the vectorθ is optimized. The setting
with largest likelihood value is then selected. In particular, the
optimization task is solved by applying a conjugate gradient
algorithm. Ten runs of the algorithm are performed, each one
consisting of50 conjugate gradient steps. A different starting
point θinit is used for each run. A suitable selection of the
starting point, based on the prior knowledge about the desired
PF model, drives the optimization algorithm towards (local)
minima which provide plausible interpretations of the training
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data. In particular, the slopea of the mean function in vector
θinit is initialized to the value−1. In fact, any connected PF
of a bi-objective minimization problem can be modelled by
a strictly decreasing function. The gain from the inclusionof
prior knowledge in the starting point design is more significant
at the initial iterations of the ALP algorithm, when the number
of training examples is limited.

C. A single ALP run in detail

A single run of the ALP algorithm over MOP ZZJ08-F2 is
shown in Fig. 3. The predictive GP model is depicted by
the solid line, while the dotted line represents the unknown
Pareto frontz2 = g(z1). The shaded area represents the 95%
confidence interval for the predictive GP model. At the first
iteration, with a couple of training examples only, the learnt PF
model is a line, while the order of magnitude of the predictive
variance is10−6 and thus the shaded area cannot be visualized.
The inclusion of the new training example located at input
z1 = 0.01 (triangular marker over thex-axis) changes the
slope of the line, while constant predictive uncertainty over the
input space is observed. In this case, the ALP algorithm places
the new query point at the inputz1 maximizing the minimum
distance from the training examples. At the third iteration, the
accuracy of the learnt model improves. Predictive uncertainty
increases when moving away from training examples and
the shaded area entails the Pareto front to be modeled. The
uncertainty sampling method selects the inputz1 = 0.29
as the new training example. At the fourth iteration, with
1536 evaluations of the MOP objective functionsf(x), the
PF is successfully recovered. Additional refinement iterations
slightly improve the accuracy of the learnt model (however
the improvements cannot be visually observed), while the
predictive uncertainty becomes null. In general, the adoption
of the active learning to generate the training examples favours
the anytime property: when increasing the number of functions
evaluations, the PF approximation improves.

D. Comparison metric

The performance of the ALP and MMEA algorithms is eval-
uated by measuring the quality of the recovered PF approx-
imation w.r.t. the number of objective function evaluations.
The quality of the PF approximation is estimated by the
inverted generational distance (IGD) metric. It evaluatesthe
quality of the PF approximation recovered by an evolutionary
multi-objective algorithm (EMOA) by measuring both the
convergence and the diversity of its population. The adopted
metric is calculated according to the procedure described in
paper [14].

A test setP ∗ of Pareto-optimal objective vectors uniformly
spread over the PF is generated. WithP denoting the popula-
tion of the EMOA, the IGD metric is defined as follows:

IGD(P ∗, P ) =

∑
z
∗∈P∗ d(z∗, P )

|P ∗|
(9)

whered(z∗, P ) is the minimumEuclidean distance from the
Pareto-optimal vectorz∗ to any objective vector inP , while
|P ∗| indicates the cardinality ofP ∗. According to the notation

used in paper [14], the IGD metric is denoted as IGDF because
it measures the quality of the PF approximation (i.e., P is a
set of objective vectors andd(z∗, P ) is the Euclidean distance
in the objective space). The lower is the value IGDF(P ∗, P ),
the better is the quality of the populationP approximating the
PF.

The IGDF metric measures the quality of a finite set of
points (population) approximating the PF. In the case of ALP,
which recovers an analytical PF modelg̃ rather than a discrete
PF representation, the populationP is computed by sampling
the analytical PF model. In particular,|P ∗| sample vectors
of the form z̃ = {z∗I , g̃(z

∗
I)} are generated by evaluating

g̃(z∗I) for each z∗ ∈ P ∗. Any dominated objective vector
among the|P ∗| samples generated is discarded. The IGDF
metric can be used to evaluate analytical PF models which
are (partially) infeasible (this behaviour has been occasionally
observed during the initial refinement iterations of ALP), as it
is based on a distance measure.

E. Detailed comparative results

Fig. 4 compares the performance of the ALP and MMEA
algorithms. The curves depict the evolution of the IGDF metric
over the number of evaluations of the MOP objective vector
f(x). The dashed and solid lines correspond to the ALP and
MMEA algorithms, respectively. Each point is the median
value over 20 runs, executed with different seeds. Error bars
denote the interquartile range (IQR) of data distribution.

With the exception of MOPsF3 andF5, the ALP algorithm
dominates the MMEA technique, achieving on average a PF
approximation with sensibly better quality. For example, over
MOP F1, within 10000 function evaluations, a more accurate
Pareto front is recovered by the ALP algorithm, and after
10000 evaluations, the quality of ALP solution is at least
twelve times better than the quality of MMEA solution.

A stable behavior is observed for both algorithms. The large
size of the ALP error bars in the case of MOPF2 is due
to the logarithmic scale. In fact, the order of magnitude of
ALP IQR values for MOPF2 is actually lower than that of
MMEA ones. For example, when70000 function evaluations
are performed, the orders of magnitude of the IQR values for
ALP and MMEA results are10−5 and10−3, respectively.

There is no qualitative difference in terms of the IGDF
metric among ALP and MMEA results for MOPF5. When
more than30000 function evaluations are used to solve MOP
ZZJ08-F3, the performance of ALP is not better than that
of MMEA. However, within 20000 function evaluations, the
quality of ALP solution is better by at least a factor ten thanthe
PF recovered by MMEA. Reasonable approximations obtained
within few function evaluations are in many cases preferredto
more accurate solutions which require a heavier computational
effort. In fact, as noted by Lovison in work [10], “even a
roughly sketched global picture of the whole situation can
give crucial information on the problem at hand, suggesting
correctly the location of paramount zones”.

Due to space limitations, the results observed when using
the hypervolume difference metric [14] rather than the IGDF
metric are not included here. They can be found in the preprint
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Fig. 3. Generation of most informative training examples whilesolving MOPF2. Each figure depicts the PF (dotted line) of the learnt model (solid line).
The Figures refer to the first, second, third and fourth refinement iterations, respectively. Shaded area denotes the 95% confidence interval for the predictive
GP model. On thex-axis, the most informative training example, selected by active learning, is showed by a triangular marker. At the fourth iteration (second
row, right figure) the PF is correctly learnt.

technical report of this work [9]. In general, they are consistent
with the performance measured by the IGDF metric, with
the exception of MOPF5, where ALP achieves a sensibly
better performance w.r.t MMEA in terms of the hypervolume
difference metric.

VIII. H ANDLING DISCONNECTEDPARETO FRONTS

The ALP framework described in Sec. III assumes to know the
domain of the functionzd = g(zI) characterizing the PF. In
the case of bi-objective MOPs with connected PF characterized
by z2 = g(z1), this prior information can be easily obtained
by computing the componentszID1 and zN1 of the ideal and
the Nadir point, respectively, or by asking the decision maker
for the interval of the interesting values of the objectivez1.

When the PF isdisconnected, the functiong is discontinu-
ous and its domain cannot be defined by a couple ofz1 values
only. Therefore, assuming a priori knowledge of the domain of
g is impractical. However, a disconnected PF can be identified
by learning a regression functionz2 = h(z1) approximating
the entire lower boundary of the feasible objective region,
including the dominated portions of the boundary (e.g., the
concave parts). As a matter of fact, the PF is a subset of the
objective boundary and thus a model of the disconnected PF
can be extracted straightforwardly by sampling the function h

and keeping the non-dominated samples only (e.g., the points
lying in the concavities of the functionh are discarded). For
example, Fig. 5 (left) shows the feasible objective region of
the ZDT3 problem, taken from the ZDT benchmark suite [16].
The boundary of the feasible region (gray-shaded area) is the
thin black curve, consisting of both convex and concave parts.

The disconnected PF is depicted by the bold-marked portions
of the black curve.

When the ALP algorithm is used to learn the functionh,
both dominated and non-dominated examples are needed. The
former are in fact used to model the concave portions of
the boundary (to be discarded when presenting the PF). In
order to allow this, the dominance-based filtering discarding
false Pareto-optimal training examples has to be switched off.
Otherwise, the learning phase may get stuck when trying to
model the concavities of the boundary, as other dominating
training examples will likely be present in this case (see Fig. 5
(right)).

In order to model entire feasible region boundaries, an
additional functional form has been included in the set of
candidate covariance functions considered by the GP model
selection procedure. This consists of a combined function,
obtained summing up a periodic covariance functioncp with
a squared exponential covariance functioncs (see [5] for their
formulation). The rationale for the choice of functioncp is
the modelling of the concavities characterizing the boundary
of the feasible area. The combination with functioncs enables
a decay away from exact periodicity, as the boundary shape
is not expected to be exactly periodic. Furthermore, the
squared exponential covariance function models the smooth
trend characterizing disconnected Pareto fronts, which, in the
case of bi-objective minimization problems, are monotonically
decreasing piecewise continuous functions.

Let us note that this combined covariance function is not
designed for a specific MOP, but is a general choice driven by
the typical form of feasible region boundaries. Furthermore,
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we are not imposing this covariance function in the prior
GP, but only suggesting it to the model selection procedure
as a candidate covariance function. The identification of the
covariance function (and its parameters setting) that bestfits
(i.e., explains) the training data is performed by the model
selection procedure.

No further modifications are required to adapt the ALP
algorithm presented in Sec. III to model disconnected PFs.

A. Case studies with disconnected PF

The ability of ALP in learning disconnected Pareto fronts
is evaluated over four well-known MOPs: the ZDT3 [16],
D99 [2], [21], TNK [22] and KUR [23] problems. The
selected MOPs differ from each other in several features. The

preprint technical report of this work [9] provides the problems
formulation and compares their features.

The MMEA algorithm, which was used as touchstone in
the experiments of Sec. VII, has been designed for connected
Pareto fronts and cannot represent a fair ALP competitor over
the four selected problems. ALP is therefore compared with
both the popular state-of-the-art genetic algorithm NSGA-
II [24] and with the state-of-the-art Estimation of Distribution
algorithm RM-MEDA [11]. We used the original NSGA-
II code provided by the authors (version1.1.6) and, for
each MOP, the specific setting of the NSGA-II parameters
available with the code (the parameter values are detailed in
the preprint technical report of this work [9]). For RM-MEDA,
the original implementation is used, together with the default
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robust parameter setting specified in the original paper [11]
(the alternative parameter settings tested in our investigation
did not yield any sensible performance improvement).

ALP algorithm outperforms NSGA-II and RM-MEDA over
the ZDT3, D99 and TNK MOPs, while it fails in learning an
accurate model of the KUR PF. Fig. 6 reports the convergence
of ALP, NSGA-II and RM-MEDA to the Pareto front of
the ZDT3 (left graph), D99 (middle graph) and TNK (right
graph) MOPs. The blue dashed, red solid and black dotted
curves plot the average IGDF performance (median value over
20 runs) of the ALP, NSGA-II and RM-MEDA algorithms.
The error bars plot the interquartile range (IQR) of the data
distribution. A detailed description of the experimental results
is provided by the preprint technical report of this work [9],
including also sample PF approximations showing that the
difference among the IGDF values observed in Fig. 6 for ALP
and for the benchmark algorithms is statistically significant
and substantial. The rest of this section summarizes the main
results obtained for each MOP.
ZDT3 MOP. Within 6000 function evaluations (left graph in
Fig. 6), the performance of ALP is comparable with that of
NSGA-II and about one order of magnitude better than that
of RM-MEDA. When progressively increasing the number of
function evaluations from6000 up to 20000, the quality of
the ALP model improves more rapidly than that of NSGA-II
and RM-MEDA. Eventually, the ALP performance converges
to an IGDF value less than10−3, about one and three orders
of magnitude better than that of NSGA-II and RM-MEDA,
respectively.
D99 MOP. The superior performance of ALP w.r.t. NSGA-
II and RM-MEDA observed for ZDT3 is confirmed. The
quality of the PF approximation returned by ALP rapidly
improves after 300 evaluations (middle graph in Fig. 6),
converging to a value smaller than10−6 after 600 evaluations.
On the other hand, after 1000 objective function evaluations
the performance of both NSGA-II and RM-MEDA is still five
orders of magnitude worse than the ALP performance.
TNK MOP. The quality of the PF approximation returned
by ALP converges to the IGDF value of4e−3 within 6000
function evaluations (right graph in Fig. 6). When considering
a bounded computational budget of 600 up to 3000 function
evaluations, the results by NSGA-II and RM-MEDA are
two or three times worse than ALP performance. However,
with 6000 function evaluations, the rank of the algorithms
changes, with RM-MEDA asymptotically dominating ALP.
As a matter of fact, ALP learns a reasonable approximation
within fewer function evaluations than NSGA-II and RM-
MEDA, but it misses a small portion of the PF (see [9]
for details). This weakness is due to the poor quality of the
training examples generated in the interval considered. Onthe
other hand, NSGA-II and RM-MEDA reach a uniform spread
of the individuals of the population over the whole PF, but
at a computational cost larger (sensibly larger, in the caseof
NSGA-II) that the number of function evaluations performed
by ALP at convergence.
KUR MOP. For this problem, the sequential quadratic pro-
gramming algorithm [18], [19] used by ALP to generate
training examples (Eq. (3)) returns extremely poor-quality

approximations of the Pareto-optimal solutions. Based on this
very noisy training information, an accurate PF model cannot
be recovered. However, ALP can easily realize the poor quality
of the learned model by measuring its predictive uncertainty,
which is exceptionally large also in regions densely populated
of training examples. Possible countermeasures for this sub-
optimal behavior can be found in [9].

IX. EFFICIENCY OF UNCERTAINTY SAMPLING

In order to learn a model of the PF, ALP generates training
examples in the regression domain. However, generating su-
pervised information is expensive, as it involves the evaluation
of the objective functions of the MOP. In order to decrease
the computational cost of the learning process, the next query
instance selected by ALP is the pointẑ1 in the regression
domain maximizing the predictive uncertainty of the learntPF
model (uncertainty sampling). The adoption of the uncertainty
sampling principle motivates the choice of the GPR method,
which can quantify the uncertainty of the predictive model.

The following experiments test the efficiency of the uncer-
tainty sampling (UNC) principle, by comparing it with an
alternative query selection strategy. The competing method
consists of picking the query points uniformly at random
within the regression domain. The random selection principle
(RND) is less informed than the UNC method, as it does
not exploit the learnt PF model. However, the RND principle
provides a robust approach w.r.t. the general shape of the PF,
thus representing a nontrivial competitor in our settings.

Fig. 7 reports the performance of both the UNC and RND
sampling principles when increasing the number of query
points to solve ZDT3 (left graph), D99 (middle graph) and
TNK (right graph). The dashed and solid lines refer to the
UNC and the RND strategies, respectively. For both strategies,
one hundred runs of ALP are performed, with different random
seeds. Median values of the IGDF metric over the different
runs are plotted, together with error bars denoting the 25-th
and the 75-th percentiles.

For ZDT3 (left graph), with ten (or less) training examples,
the UNC and RND strategies are statistically equivalent under
a Kolmogorov-Smirnov (KS) test with a Bonferroni-corrected
confidence level of 99.5%. With 15 query points, there is
statistical evidence for better results by the RND method (the
p-value is0.003). However, when increasing the number of
training examples, the UNC strategy keeps improving faster
than the RND strategy and significantly outperforms it if 25 or
more query points are generated. With more than 25 examples,
the order of magnitude of the observed p-values is lower than
1e−14, providing strong evidence against the null hypothesis
of equivalent performance.

The observed behavior is consistent with intuition. The
limited amount of supervised information generated by few
training examples, either selected passively (i.e., at random)
or actively, does not enable the learning of the PF. However,
when a larger number of training instances is considered, the
UNC strategy yields better results than the less informed RND
method. Finally, the UNC results are more stable than the RND
results, as clearly showed by the error bars.
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Fig. 6. Performance metric (median values) evolution over the number of function evaluations when solving the ZDT3 (left graph), D99 (middle graph) and
TNK (right graph) MOPs. Error bars represent the IQR of data distribution. The blue dashed line plots the ALP results, while the red solid line shows the
NSGA-II performance and the black dotted line depicts the observed RM-MEDA values. The right graph adopts the logarithmicx-scale to represent both the
early ALP convergence within 6000 evaluations, and the two crossover points of the performance, located at 6000 and at about 20000 function evaluations.

The middle graph refers to the D99 MOP. The previ-
ously observed behavior is confirmed. A superior asymptotic
performance of the UNC method over the RND strategy
is observed with large statistical confidence: the order of
magnitude of the p-values is lower than or equal to1e−20

when the number of query points is larger than 30 (the p-value
1e−8 is observed for 25 examples). The asymptotic difference
among the performance of the RND and UNC strategies is
even more pronounced that that observed for ZDT3. The more
complicated shape of the D99 PF, which consists of six non-
convex disconnected curves w.r.t. the five convex components
of the ZDT3 PF, is a likely explanation for this behaviour.

The experiments over TNK confirm the better performance
of the UNC strategy, whose curve dominates the curve corre-
sponding to the RND technique. As for D99, with 10 and 15
training examples there is no significant difference between the
two strategies. However, with more than 15 training examples
UNC significantly outperforms RND: the p-values lower than
1e−6 provide strong support for the superiority of the UNC
sampling strategy.

X. D ISCUSSION

This work introduces the Active Leaning of Pareto fronts
(ALP) algorithm. While current state of the art algorithms for
MOPs are developed within the Evolutionary framework, ALP
adopts a different strategy. Pareto-optimal objective vectors
are generated by combining the active learning paradigm with
the solution of a scalarized optimization problem. The Pareto-
optimal objective vectors recovered are used as training exam-
ples to learn a model of the PF. The model is iteratively refined
until the information gain obtained by the new candidate
training examples becomes negligible. The information gain
is estimated by the maximum predictive uncertainty of the
learnt model in the regression domain.

ALP enables ananalytical representation for the PF, which
simplifies the decision making process. When the analytical
PF representation is available, the decision maker (DM) is
free to select and compareany Pareto-optimal solution, in
particular within her preferred region. Once the favourite
Pareto-optimal vector is selected, an associated Pareto-optimal
solution is generated by solving a single instance of the

scalarized optimization problem (3). Furthermore, depending
on the optimization algorithm adopted for problem (3), ALP
may not require any derivative information. The experimental
results on the RM-MEDA benchmark show that ALP on
average generates theanalytical PF representation within a
lower number of function evaluations than that required by
the state-of-the-art MMEA algorithm to provide a discrete PF
approximation. On the ZDT3 and D99 MOPs with discon-
nected PF, better results are obtained when applying ALP
rather than the well-known NSGA-II algorithm (e.g., ALP
IGDF value is asymptotically one and five orders of magnitude
better than NSGA-II performance on the above mentioned
problems). For the TNK MOP, NSGA-II needs more than
12000 function evaluations to outperform ALP. With a lower
number of function evaluations, ALP performance is from two
up to five times better. ALP cannot learn an accurate model
of the KUR PF, due to the high noise affecting the training
set. However, ALP can detect the poor quality of the learnt
model, by simply observing the predictive variance, in this
case exceptionally high, also in regions densely populatedby
training examples.

We plan to extend this work along different directions. In the
case of MOPs with more than two objectives, the regression
domain in the subspace of the independent objectiveszI
cannot be specified by a couple of (user-supplied) vectors only.
We therefore plan to introduce a preliminary phase to learn the
regression domain. The investigation of strategies to reduce
the computational effort, in terms of MOP objectives evalua-
tion, required to solve the problem (3) is another interesting
direction for future research. Approaches tacklingexpensive
optimizationby the generation of surrogate models are suitable
for this purpose. Consider, for example, Gaussian processes
designed for global optimization of unknown functions [25].
By equipping ALP with a mechanism for learning the DM
preferences, the search may focus on themost relevantareas of
the PF, guided by the user feedback [26], [27]. The incorpora-
tion of the DM preferences reduces the waste of computational
resources occurring when modeling PF regions which are not
of any interest for the user. Finally, possible extensions of
ALP to recover the PF underchanging conditions(dynamic
multi-objective optimization [28], [29]) will be explored.
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Fig. 7. Comparison between active selection of training examples based on model uncertainty (UNC) and passive selection based on random sampling (RND).
The dashed lines plots the uncertainty sampling results (i.e., the performance of the original ALP algorithm), while the solid lines show the performance of
the ALP variant with uncertainty sampling replaced by randomsampling. Median IGDF values over 100 runs are plotted for an increasing number of training
examples, with error bars representing the IQR of data distribution. The left, middle and right graphs refer to the ZDT3, D99 and TNK MOPs.
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