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Active learning of Pareto fronts

Paolo Campigotto, Andrea Passerini, and Roberto Bagdipw, |IEEE

Abstract—This work introduces the Active Learning of Pareto SOP can be solved by applying common methods and widely
fronts (ALP) algorithm, a novel approach to recover the Pareto developed theory for single-objective optimization. Hoes
front of a multi-objective optimization problem. ALP casts the scalarization-based methods are usually sensitive torthpes

identification of the Pareto front into a supervised machine tinuity of the Pareto front [21. F |
learning task. This approach enables an analytical model of the or continuity of the Pareto front [2]. For example, non-oexv

Pareto front to be built. The computational effort in generating Parts of the Pareto front cannot be recovered by optimizing
the supervised information is reduced by an active learning convex combinations of the objective functions.

strategy. In particular, the model is learnt from a set of infor- Rather than relying on scalarization techniques, curraté s
mative training objective vectors. The training objective vecbrs ot the art approaches for MOPs are represented by the Evolu-

are approximated Pareto-optimal vectors obtained by solving .. AR L .
different scalarized problem instances. The experimental results tionary Multi-objective optimization algorithms (EMOAE]],

show that ALP achieves an accurate Pareto front approximation Which are less susceptible to the shape of the Pareto front,
with a lower computational effort than state-of-the-art Estimation  handling, e.g., discontinuous or concave shapes. EMOAs are
of Distribution Algorithms and widely-known genetic techniques. heuristic techniques generating an approximation of thelevh
PF in a single run and without using any derivative (i.e.dgra
Index Terms—Multi-objective optimization, Gaussian process ent) information. The approximation is obtained by repeiste

regression, active learning, uncertainty sampling. improving a set of candidate solutions in the decision space
(referred to as “population” within the Evolutionary mettap)
[. INTRODUCTION until their images in the objective space have converged to

EAL-world optimization tasks usually require the Opihe PF. However, neither the convergence to the PF, nor, in
R timization of several conflicting objectives: a solutiorfase of convergence, a uniform distribution of the popoiati
simultaneously optimizing all of them does not exist. Ther@®Ver the PF are guaranteed. Furthermore, the performance is
fore, the solution to the multi-objective optimization ptem typically sensitive to the setting of the algorithm paraenst
(MOP) becomes the quantitative identification of tradesoff€-g-, population size, number of iterations, genetic ajes
between the multiple objectives. The trade-offs between tRarameters), whose tuning depends on the specific problem
competing objectives are captured by tRareto-optimalso- instance being solved.
lutions, for which any single objective cannot be improved The Active Learning of Pareto fronts algorithm introduced
without compromising at least one of the others. in this paper is different from existing EMOAs. Because the
The set of the Pareto-optimal solutions in the decisionespa@F has infinite cardinality in the case of continuous MOPs,
(Pareto set or PS) and of the corresponding objective &itor ALP generates amanalytical representatiorof the PF, rather
the objective space (Pareto front or PF) typically have gdarthan an approximation by a finite and preset number of points.
or even infinite cardinality, as it is the case for continuou8n analytical representation of the entire Pareto front may
problems. In these cases, the typical solution consistsnof ggnificantly improve the decision making process, palidy
approximation of the Pareto set (Pareto front) by a finit¢hen the preferences of the Decision Maker (DM) cannot be
number of representative solutions (objective vectorg)e TStateda priori. The compact analytical representation of the
better the approximation of the Pareto front, the better tifd- offers to the DM the possibility of visually inspectingeth
choice of the favorite compromise between the objectivas tHront, and of focusing on the preferred regions and selgctin
is offered to the decision maker. the favorite solutionz, as the desired compromise between
The traditional approach to obtain a finite set of Paretde different objectives. ALP can then identify the solntia
optimal solutions (and the corresponding images in the P#)e decision space correspondingzoWith a large number
involves the sequential generation and solution of scaddri Of objectives, dimensionality reduction techniques [4]yrbe
instances of the MOP. Scalarization [1] consists of tran§Mmployed to enable the investigation of the learnt anajtic
forming the origina] MOP into aing|e.objective Optimization PF representation in a three or two dimensional visuabtimati
problem (SOP). The generated SOP is a parametric combiThe ALP algorithm generates the analytical PF represen-
nation of the multiple objectives of the original MOP into dation by learning a model of the PF from teaining set
single objective. This combination may involve the gerierat Of approximated Pareto-optimal vectors, which are obthine
of additional constraints not included in the original MORY solving different SOP instances. In order to minimize the
Different Pareto-optimal solutions can be obtained by apprcomputational effort (measured as number of evaluations of
priately varying the scalarization parameters. The geedrathe MOP objective functions), informative training objeet
vectors are selected by applying active learning prinsiple

P.  Campigotto, A. Passerini and R. Batiiti are with the De¢Al) In particular, the learning stage is accomplished by
partment of Information Engineering and Computer Science,vesni

sity of Trento, Via Sommarive 14, [-38123 Povo, TN, ltaly. E-mai Gaussian proces; (GP) regres;ion [5]’ asit provides aicéexp!
{campigotto,passerini,batf@disi.unitn.it. measure of predictive uncertainty that can be used to guide
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the selection of the training examples (active learning by

uncertainty sampling [6]). The adoption of the AL paradigm . B

also favors theanytimeproperty: when increasing the number . fx) = {/1(x),- s Fm ()} (1)

of function evaluations, the accuracy of the analytical PF subject to x €}

representation improves. Furthermore, the GP methodsoffer, " - . n
o - i . : Wherex € R™ is a vector ofn decision variables§? C R

a natural termination criterion for ALP: when tigformation . ; . . . I

; : . : o - is the feasible regionand is typically specified as a set of

gain obtained by including any additional training example is

. : o 2 constraints on the decision variablés;X) — & C R™ is made
negligible, the algorithm stops. The training objectivetoes Lo . . - L
. X . ._of m objective functions which need to be jointly minimized.
are generated by solving different instances of a scaldri

e, . . ) .
L2 : - ive vectors are im f ision vectors an n
optimization problem. ALP does not require any derivati BbJeCt e vectors are images of decision vectors and ca

\ :
information and is a generic framework: neither the Mll_gse"\f ”g:g da\?\fh%ej\s)e()r gb'{e{: {ci(\)/(e);fﬁﬁl:ﬁggg}z.arsrggﬁﬁlti(l)
method learning the PF model, nor the AL principles and the P ) %,

optimization techniques for solving SOPs instances aridom situation which typlcall.y oceurs 1n rgal-worl_d appllca@ .
. L In these cases, an objective vector is considered optimal if
to the ones discussed in this paper.

Let us note that there are two possible connections betwegn - of its components can be improved without worsening
. . _two po: S V& least one of the others. An objective vectis said to
machine learning and multi-objective optimization. Thestfir

. . X . . ominatez, denoted ag >~ 7, if z;, < z;, k =1,2,...,m,
connection arises because machine learning problemsiconta

) s o hd there exists at least orfe 1,2,... such that
challenging multi-objective optimization tasks, from geal € {1,2,....,m}

- i . S 2, < z,. A point x is Pareto-optimal if there is no other
cases like thg tr.ad_e qﬁ petween |_ntra cluster S|mllaqt}d x' € Q such thatf(x’) dominatesf(x). The set of Pareto-
inter-cluster dissimilarity in clustering problems, toesffic

cases. such as reinforcement learning problems with nialti optimal solutions is calleareto setPS). The corresponding
o : gp et of Pareto-optimal objective vectors is calleareto front
conflicting reward functions [7], [8]. The second connegtio

implemented by our work, goes in the opposite direction: LFF). Theideal objective vector represents the best value of

uses learning techniaues from the machine learnina com ach objective. It is generally infeasible and is obtaingd b
. 9 q S 1€ learning n%%parately minimizing each objective function in the fbhsi
nity to solve the general multi-objective optimization plem.

region, i.e.,z/? = minyeq fi(x). Analogously, theworst

The next Section describes the problem settings assUM@fiactive vector contains the maximum possible value of

in this work. Details of the ALP algorithm are prOV'dedeach objective over the entire search space. Another motabl

in Sec. lll, while Sec. IV describes the Gaussian Proces8 tor in the objective space is tiadir point, whose kh

reg_ressgr;ftech:uqt;e ulsed t.o m?dfl the I]:-’areto fro$r2. kSecC mponent is the maximum value of thetkebjective among
reviews different active learning strategies for regm@ssasks, 4o Pareto-optimal vectors:Y — masxxeq- fi(x), where

with a particular emphasis about the uncertainty samplityg. C Q is the set of the Pareto-optimal solutions. The ideal

pr_inc_:iple applied within the Gaussian process re_gre§shsn, and Nadir points define the range of values that the Pareto-
this is the strategy adopted by ALP. Related work is dlsaﬂjssgptimal objective vectors may attain

in the following section. An experimental comparison betwe
ALP and state-of-the-art EMOASs is reported in Sec. VII )

while the ability of ALP in learning disconnected Paret®- Assumptions

fronts is evaluated in Sec. VIII. The experiments in Sec. IX)nder mild smoothness conditions, the Pareto front of centi
validate the choice of the active learning strategy based vaus MOPs is arfm — 1)-dimensional piecewise-continuous
the predictive uncertainty of the GP regression model.Ifina manifold [1], [10], with m being the number of objectives.
possible generalizations of ALP and interesting directitor The dominance relation defined in the objective space esable
future research are discussed in Sec. X. A more comprelensiiurther characterization of the PF by expressing an artyitr
explanation of Gaussian process regression, an exhaustibgectivez, (dependent function variable) as a function of the
discussion of the related work and a more detailed deseriptiremaining objectives; (independent function variables); =

of the experiments performed can be found in the prepriptz;). Without loss of generality the riir objective of a m-
technical report of this work [9]. objective problem is considered the dependent objectige, i
zm = g(zr), with z; including objectives;,i = 1,...,m—1.

In this work, we focus on bi-objective optimization prob-
lems, where the PF is characterized by the continuous famcti
The ALP algorithm introduces a new strategy to tackle multk, = g(z1). The only assumption of ALP is the knowledge of
objective optimization problems (MOPSs). In this Sectiore wthe domain ofg. When the PF is connected, the domaingof
give the formal definition of the MOP, specifying the termiis a closed interval of real numbers, and it is thus completel
nology used throughout the paper, and define the propefttiespecified by the lower and the upper bound of the interval.
the Pareto front which our algorithm relies on. While the lower bound can be easily obtained by computing
the valuez{? of the ideal point, the upper bound can be
specified by the decision maker herself, which is often aware
of a critical threshold defining the set of interesting valder
A multi-objective optimization problem (MOP) is formulate a given objective. When the decision maker cannot provide
as: the desired information, the upper bound defining the domain

Il. PROBLEM SETTINGS

A. Multi-objective optimization problem
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approach provides to the DM the ability of evaluating and
selectingany possible Pareto-optimal vector, thus improving
the decision making process, particularly when the DM pref-
Nadil point erences cannot be clearly statgbriori.

Learning an analytical model of the PF is a more affordable
task than recovering an analytical approximation of the PS.
As a matter of fact, a functional formulation of the PS is
Ideal point not possible. Under mild smoothness conditions, the PS is

a manifold [11], but its dimensionality, larger or equal to
z, m—1, is in general unknown. Furthermore the PS manifold is
embedded in the decision space, and the dimensionalityeof th
Fig. 1. Bi-objective minimization problem. The gray-shadedaadenotes decision space is usually much larger than that of the disgect
the feasible objective space, with the PF being depictechbybbld-marked  space(n >>> m). Learning an analytical model of the arbitrarily
curve. The ideal and Nadir points bounding the PF are hiptei complicated PS shape is therefore computationally more ex-
pensive, and, in general, even not necessary. Once aniaahlyt
h model of the PF is provided to the DM, he can search for
'C?ny preferred compromise”™ among the objectives. The
easible solution in the decision space associated with the
oilected compromise vector can be identified by minimizing
w.rt. x € Q the distance betweef{x) and 2P,

2,

of g is represented by the valug of the Nadir point, whic
in the case of hi-objective problems, can be computed gxa
(see Fig. 1). In fact, in the case of bi-objective optimiaati
problems, each component of the Nadir point is obtained fr
the Pareto-optimal objective vector containing the idedli®

for the other component. Therefore, the componghtan be

determined by solving the following program: B. Framework

2 = min f1(x) (2) Let us assume that a supervisor, which provides the vgjue
x for each training input;, is available. Given an initial sét of

training examples in the fornz;, z,,) (initialization phasg,

x€Q ALP iteratively learns a model (refinement phadeproviding

For MOPs with more than two objectives or bi-objective MOP@_e analyti_cal repres_e_ntation of th~e PF. Each refinem_e_nt ite
with a disconnected PF, the domain of functigncannot ation consists of training the modglon the c_urrent trammg_
be defined by just a couple of (user supplied) points. setT a[]d, based on th(_e !earnt modeI,A seJectlng angw t_rammg
Sec. VIII, our approach is generalized to bi-objective MOP&ECIOr 7. The new training examplézy, Z,), where 2, is
with disconnected Pareto fronts, where the a priori knogted (N€ Supervised information, is included i The update of

of the domain ofg is an impractical assumption. Finally,the training sefl’ completes t_he_ refl_nement |terat|on..

Sec. X outlines a possible generalization of ALP to tackle 1€ Pseudo-code of ALP is in Fig 2. In the following, we

MOPs with a number of objectives larger than two. provide the details of the algorithm. ,
1) Initialization phase. The initial training setT" is gen-

erated by selecting vectors uniformly at random within the
input spaceS of the regression task, spanned by the— 1
independent objectiveg;. Supervised information for each
selected vector is generated.

2) Refinement phase (active learning)Training examples
eneration is expensive, as computing the supervisechiafor
on involves the evaluation of the objective functidhsf the
MOP. In order to minimize the number of training examples

without affecting the accuracy of the learnt model, tragnin

The supervised information consists of approximated Bare}nputs are selected by thencertainty samplingrinciple [6].

optimal vectors, provujmg training exampk_as in the fo.m;&t each refinement iteration, the new training input is the
(21, 2m). This section first motivates the Cho'c? of mo.de“ngeature vectorz; in S on which the prediction of the cur-
the PF and then presents the ALP framework in detail. rent model ismost uncertain The couple(z;, %), with 2,

being the supervised regression output, is considerechtis
A. Motivation for our approach informativetraining data for the current model.
Continuous MOPs have an infinite number of Pareto-optimal Given the training sel’, the modelg approximating the PF
vectors, each one representing a compromise among ihéearnt by applyingsaussian process regressi@BPR). This
conflicting objectives, and the PF is usually is a continuouoice is motivated by the ability of GP learners in quaiidy
manifold. The Evolutionary techniques approximate the Ritediction uncertainties, which enables a suitable apptio
by identifying a finite and discrete number of Pareto-optimaf the uncertainty sampling principle. GP learners prowide
vectors liscrete PF representatignOn the contrary, the ALP Gaussian distribution (x(z;), o(zr)) of the values predicted
algorithm learns aranalytical representatiorof the PF. This for any single test inpuz;. The mearu(z;) of the predictive

subject to  fo(x) = 24P

I1l. THE ALP ALGORITHM

The dominance relation enables a functional formulatiotihef
PF, by expressing an arbitrary objectigg as a continuous
function ¢ of the remaining objectiveg;. Without loss of

generality, in this work the objective,, is expressed as
a function of the remaining objectives. The ALP algorithr[g
recovers amnalytical model of the PPy solving a supervised
regression task with input feature vectar and outputz,,.
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1. procedure ALP

2. input: multi-objective optimization problem

3. output: analytical PF representation

4 Let S the input space of the regression task

5 /* Initialization phase */

6. Selectw training inputsz; uniformly at random inS

7. Generate regression output, for each training input by solving instances of problem (3f Supervision */
8 Initialize training setl’ by the v instanceszz, zm,)

9 Remove dominated training examples fra@m/* Dominance-based filtering */

10. /* Refinement phase */

11. do

12 Train GP regression model on sBt/* Modeling */

13, Select most informative training inpat /* Active learning */

14, Generate regression outpiyt, for z; by solving problem (3)* Supervision */
15, Include training exampléz;, 2,,) in T’

16. Remove dominated training examples fra@m* Dominance-based filtering */
17. until (termination criterion)

18, return learnt GP model* Analytical PF representation */

Fig. 2. Pseudo-code for the ALP algorithm generating thdyéinal PF representation by iteratively refining the léaGP model.

distribution can be interpreted as the predictignof the GPR %, anoisytraining examplez;, z,,,), with Z,,, = f,(X) > Z,,,,
model g when applied on test inpat;, while the variance of may be generated. Therefore, when new training examples
the distribution quantifies the confidence of the model aboate included in the training sét, a “dominance check” is
the prediction. Large variance means that the test samplepé&formed to detect and remove training examples which are
not represented by the model learnt on the current trainidgminated by the new training examples.
examples. Therefore, the poiay in S maximizing o(z;)
is used to generate ainformative training example for the 5) Termination criterion. The ALP approach is a general
current modelg. A description of GPR including all aspectsframework to solve MOPs, enabling different termination
relevant to our algorithm is reported in Section IV. criteria. A simple one is provided by the AL paradigm. When
3) Supervised information generation.Supervised infor- the information gain obtained frorany additional training
mation consists of the regression output, i.e., the value @ample is negligible, the accuracy of the learnt PF model
the dependent objectivg,,, for a given input feature vectoris not expected to improve in a significant manner, and
z7. The couple(zz, 2,,) constitutes a training example. Thethe algorithm stops. The information gain is estimated by
value 2, is obtained by solving the following mathematicathe uncertainty of the model about its predictions for the

problem: candidate training examples. Alternative terminatiortecia
for the iterative learning process include a limit on the bem
I;ligl fm(x) (3)  of refinement iterations or an upper bound on the number of
subject" to evaluations of the MOP objectives (limit on the computagion
~ . effort).
fix)=%2+¢,j=1,...,m—1,
le;] <1072 6) Computational complexity. The computational com-
x e plexity of ALP is dominated by the GP training, which

takes timeO(|T|?) (see Sec. V). However, because of the

where @ C R" identifies the feasible region of the MOPJimited number of training examples that can be used by ALP
Let x be the solution of problem (3). Then,, = f.,.(X). to efficiently recover the PF, the GP training is completed
The objective vectog: = {z;, 2,,} is Pareto-optimal. Slack in a negligible amount of time. Furthermore, in real-world
variables¢; in problem (3) relax the equality constraintavOPs, the run-time bottleneck is typically representedtsy t
[j(x) = 2;. Equality constraints relaxation is introduced t@valuation of the objective functions. The fitness companat
solve instances of problem (3) suffering from the preserice may involve, for example, time-consuming experiments or
local minima. Wherje;| > 0 for at least one value of index  simulations. In some real-world cases, the analytical torm
the new training input is a point; in the neighborhood of;. Ilation of the fitness surface may even not exist, e.g., when
As positionz; is located in the region where the predictiveone objective is the optimization of quantitative judgnsent
uncertainty is higher, it represents an informative quesyn provided by the decision maker.
The tolerance value of0~2 in problem (3) is in general
related to the input range and to the objective functions, th Training the GP does not require the evaluation of the
value of10~2 is adequate for all benchmark problems (and thebjective functions, which is instead needed by the geiwerat
experimental results show that this choice is a robustrggtti of the training outputs (Eq. (3)). Therefore, the compotai

4) Dominance-based filtering.When the solution of prob- cost of ALP corresponds to the effort spent in generating the
lem (3) is anapproximationx of the Pareto-optimal solution supervised information.
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IV. GAUSSIAN PROCESS REGRESSION B. Gaussian process prediction

The ALP algorithm learns an analytical approximating oGaussian process regression (GPR) assumes that the ebserva
the PF by applyingGaussian process regressi¢@®PR) [5], tionsy; = g(x;)+e¢ are affected by white noise following an
[12]. This choice is motivated by the ability of GP learnerindependent and identically distributed Gaussian distidin
to provide an explicit uncertainty model for the individualvith zero mean and varianee;. Lety = {y1,y2,...,y7}-
predictions, therefore enabling a suitable applicationthe Analogously to the symbab(g), in this paperp(y) is used
uncertainty sampling principle [6]: an input on which thes short notation fop(y|X), where X is the set of training
current learner has maximum uncertainty is selected as niywuts corresponding to the observatigns
training example. GPR is aBayesiamrobabilistic method. A Gaussian process
In this section we describe the regression based on Gausstansed to express thgrior belief about the functiorny(x)
processes. First, we show how the traditional regressisk tao be modeledpefore considering any training observation.
is tackled by using Gaussian processes. Subsection IVFBis Gaussian process is thus referred topasr GP. By
elucidates how to make predictions from a trained Gaussiaging a prior Gaussian process, the joint distribution & th
process. The training (i.e., learning) of a GP model is elatent function variableg given the training inputsX is

plained in Subsection IV-C. a multivariate Gaussiap(g) = N (g, K). This probability
distribution defines theprior for Bayesian inference. The
A. Gaussian process model components ofg are usually set to zero, thus the Gaussian

. . . o can be rewritten as(g) = N (0, K'). Under the assumption of
;I'hett_radltlonefll regression tta;k_ cor:j&tsts q(;f_estlm.atl_ngtﬁm_ta Gaussian white noise affecting the observatigns suitable
fune '0’}9("/1 fom a noisy taining datas —”{(?“yl)f” — oise model (orikelihood) is p(ylg) = N(g,021), where

oo [T} aussian process (GP) is a collection of rando is the identity matrix. By integrating over the unobserved

variables, any finite subset of which have consistent JOIﬂﬁnction variablegz, the marginal likelihood(or evidence) is

Gaussian distributions. The consistency requirement geal ined:

that the joint distribution of any finite subset of random ' i

variables is obtained from the joint distribution of any iarb ply) = / p(ylg)p(g)dg = N(0, K + o21) (5)
trary superset of the original subset by marginalizing tat t

additional variables. The termmarginal refers to the marginalization ovey. With

When a GP is used to model the regression task, the randga prior, the likelihood and the evidence (Eq. (5)) compuse
variables represent the values of the latent funcgicn) at dif-  Bayesian inference can be applied to make a prediction on
ferent locationsx. Therefore, the random (function) variables test inputx,. In particular, GPR estimates the probability
can be indexed by the continuous functigix). In this paper, distribution p(g.|y) over the candidate values fgr(x.) at
g; denotes the random function variable associated with tiige test inputx,, rather than providing a single prediction
input x; which characterizes the possible values §gx;). (estimated best guess) fg(x.). The predictive distribution
By definition of GP,n arbitrary random function variablesp(g,|y) is a GaussiaV (7., o%(g.)), with mean and variance

g =1{91,99,...,9,} have a joint Gaussian distribution: given by:
o Jx = * =kl (K 2] -1 6
p(g|X) = N(g, K) ) ge = p(xs) = K (K +0,1) "y (6)
2 _ 27\—1
where X is the set of corresponding inputs (indexeX),= 0°(g+) = kx = KL(K + 0,,1) " ks ()
{x1,%2,...,x,}, and N'(g, K) denotes a multivariate Gaus-The valuey(x,) is used as the estimation fgt, while the

sian distribution with mean vectgg and covariance matrix variances?(g,) defines how much the GP model is confident

K. ] N o ~_with the estimation (larger variance means smaller confieen
A GP is aconditional probabilistic model. The distribution 11 Cholesky decomposition of matriX + 021 enables a

p(x) on the inputs is not specified, and only the conditionghst ang numerically stable implementation of Equations (6
distribution p(g|X) is actually modeled. For notational sim-5 (7). However, the complexity of inverting the matrix
plici'_[y, in _the rest of this paper the e_xplicit conditioniran K + 021 is O(|T|?), where|T| is the number of training ob-
the input is omitted, with the convention thatg) stands for sapyations. Therefore, the application of GPR with moretha
p(g|X), where X represents the appropriate inputs where thgy, thousands of training examples is prohibitive. However
function variablesg are conditioned on. within our problem settings, much smaller data sets are used

A Gaussian process is completely specified by the megp e ALP algorithm, as the generation of training examples
u(x) and the covariance(x;,x;) functions. The mean func- jg expensive.

tion is usually set to zero (bias and offsets can be sub-

tracted from the data without loosing generality), therefo ) o ]

the definition of the GP reduces to the choice of the suitafle Gaussian process training (model selection)

covariance function, which measures the similarity betwedhe covariance function of a GP model typically has a set
inputs x by computing the covariance among the functionf free hyperparameters that control the shape of the Gaus-
variablesg associated with the inputs. The covariance matrsian distributions. Training a GP model consists of tuning

K in Eqg. (4) is calculated from the covariance functionthe covariance function hyperparameters, together with th

K; ; =cov(g;, ;) = c(x4,%;). Gaussian noise variance, to fit the current data. In the fest o
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this paper, the hyperparameters of the GP model, consistimgdictive variance quantifies the predictive uncertaoftyhe

of the covariance function parameters and the noise variar@®@P model, and therefore the input maximizing the predictive

o2, will be collectively referred to by the vectdr. variance is selected by the uncertainty sampling principle
The optimal value 08 can be inferred from the observationdVith GPR, the predictive uncertainty grows in regions away

y by maximizing w.r.t.0 the marginal likelihood defined in from training inputs.

Eq. (5). For numerical reasons, the marginal log-likelithd® Active learning strategies more sophisticated than the US
used: principle exist, but they usually demand more expensive
IT| 1 ) 1, N 8 computation. Thejuery-by-committestrategy [13] maintains
——5log 2m — Jlog |K + oy 1| — 5y (K + 0, 1)y (8) a committee of models, trained on the current set of exam-
CpIes and representing competing hypotheses. Each coramitte
member votes on the output value of the candidate inputs and
the input considered most informative is the one on which

)t(hey disagree most. Thexpected model changeinciple [13]

considers as the most informative query the input that, when
. . added to the training set, would yield the greatest change in
methods, are typically adopted to search for IocaIIy-op’nmthe current model (i.e., that has the greatest influence en th

points. '!'he cost of computing the _Iog-mgrgmal Ilkellhocrd_ja model parameters). Thexpected error reductioariterion [13]
its gradient is dominated by the inversion of the covariance

: 5 Seélects the input that is expected to yield the greatesttiuiu
matrix K + o 1. . - .
i, L . ._in the generalization error of the current model. Computing
In addition to the optimization of the covariance function - . .
! he expected generalization error is however computdtiona
hyperparameters, the model selection procedure may alsg

. . . . ) Xpensiv nd, in general, it even cann Xpr na-
include the discrete choice between different functiopais = Pchove: @ d, in ge eral, t'e en ca OF be exp es;ed ana
. : . . lytically. To overcome this limitation, theariance reduction

(i.e., models) for the covariance function. In particultdre

. . . aepproach [13] queries the input that minimize the model
functional form can be selected by simply comparing the " o .
. - . _Vvariance. The generalization error can in fact be decontpose
maximum likelihood values computed for each candidate . :
. . . into three components, refereed to as the noise, the bias
model. Finally, rather than resorting to a zero-mean priBr G : . .
. . . and the model variance. The noise component defines the
a parametric formulation for the mean function can also be . L . . o
o : . variance of the output distribution given the input and it is
specified. Its hyperparameters are included in the vettomd . L :
L . ! .__independent of the model and the training set. The bias error
optimized together with the noise model and the covariance. :
function hyperparameters IS introduced by th_e model class_ (e.g., a I|r_1ear model class
' adopted to approximate a non-linear function). The model
variance estimates how much the model predictions vary when
V. ACTIVE LEARNING FOR REGRESSION TASKS changing the training set. Because the model parameters can
This section provides an overview of different strategies finfluence neither the noise nor the bias, the only way to
the active learning of real-valued functions, startingrirthe reduce the future generalization error consists of miriingiz
uncertainty sampling principle adopted by ALP within thehe model variance. An effective application of the varenc
GPR framework. In particular, we show how GPR enableeduction approach is possible only under the assumptiain th
a sound application of the uncertainty sampling principle. the bias error is negligible.

Acquiring training examples for supervised learning tasks
is a typically expensive and time consuming procesgive
learning approaches attempt to reduce this cost by actively
suggesting inputs for which supervision should be colcteEstimation of Distribution algorithms (EDAS) are Evolutary
in an iterative process alternating learning and feedbatdchniques which generate a probability distribution afnpis-
elicitation. At each iterationactive learning methods selecting solutions based on statistical information extractexnf
the inputs maximizing arinformativeness measyravhich the current population. The probability distribution mtsde
estimates how much an input would improve the current modéke pattern characterizing the set of promising solutidinee
if it was added to the current training set. The informatasn pattern is generated by dependencies among the decision
of the query inputs can be defined in different ways and sevevariables, often referred to agriable linkages[3]. At each
active learning techniques exist (see [13] for a recenewe\i generation of an EDA, the probability distribution is sastpl

The uncertainty sampling(US) principle [13] considers to obtain new candidate solutions which are used to refine the
the input with highest predictive uncertainty as the mosurrent population. The motivation for EDAs is given by the
informative training example for the current model. The U$mitation of common genetic operators: when two parengs ar
paradigm therefore requires a learning model that can duanin the PS, their offspring may not be close to the PS.
its predictive uncertainty. The ability of GPR in estimatin Among the Evolutionary methods, EDAs are closest to our
the confidence for individual predictions enables a suitabhpproach, sharing with ALP the extraction of global stad#gt
application of the uncertainty sampling principle. A largénformation from the current data. However, our technique
varianceo?(g.) of the predictive distribution\V/(g.,c%(g.)) is not developed within the Evolutionary framework. EDAs
for a single test inpuk, means that the test sample is notypically generate a probability distribution of promigiso-
represented by the GP model learnt from the training date. Tlations in the decision space. Anite PF approximation is

The above quantity represents the log-evidence for thefgpe
GP model defined by the hyperparameters settéhgs

In general, maximizing the log-likelihood is a non-conve
optimization task. Standard gradient-based optimizagig-
rithms, e.g., conjugate gradient techniques or quasi-biewt

VI. RELATED WORK
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provided by the population of the EDA. On the contrary, thEDT6 test problems [16]. Nonlinear dependencies among the
model learnt by ALP is aranalytical PF approximation and decision variables have been added to the definition of the
the training examples are Pareto-optimal vectors gergtiate same ZDT instances to generate the RM-MEDA problems F5,
solving different SOPs. Furthermore, the SOPs are not fixe6, F7. Their Pareto sets consist of bounded continuougsurv
at the initialization phase, but they are dynamically gatest
based on the predictive uncertainty of the current PF model. _
Selecting the new training inputs based on the predicti ALP setting

model uncertainty provides two advantages. First, it esmblin order to avoid any bias favouring our method over the
a computationally cheapeand accurate PF approximation. competitor, the PF manifold is arbitrarily expressed by-con
Second, because the predictive uncertainty increases whkatering z; as a function ofz;: z; = g(z1). To apply the
moving away from the current training inputs,diversified ALP algorithm, the Ideal and Nadir poingg” andz of the

set of Pareto-optimal solutions, corresponding to objectiabove MOPs are computed offline. In particular, the domain
vectors distributed over the whole PF, is provided to the!”,2{¥] of the regression task is equal {0,1] for all
decision maker. A more comprehensive discussion of tliee considered MOPs, with the exception of probleR%
related works can be found in the preprint technical repcahd F7 where the domain is the intervé.281,1]. ALP is

of this work [9], including a description of the state-okth implemented in Matlab R2008a. In particular, the optimat
art MMEA algorithm [14], which is the ALP benchmarkproblem (3) generating supervised information is solved by

technique in our experimental studies. using the continuous local search algorithms for constichin
optimization provided by the Matlab Optimization ToolB¢x
VIl. EXPERIMENTAL RESULTS library. In detail, a sequential quadratic programmingoalg

ALP is tested over the RM-MEDA benchmark probleméithr_n [15_3]’ [19_] IS used, except _for problerfig andF7, yvhere
introduced in [11] to evaluate the ability of EDAs in rean interior-point method [20] is adopted. The choice of the

covering the Pareto front. As the best results over the Rijpimization strategy is based on the observed convergence

MEDA benchmark problems has been achieved by the MMERTE to the (local) optima of the functiof),,. Both strategies

algorithm [14], the latter represents the touchstone in oflf® implemented by the “imincon” Matlab routine. A single

experimental studies. In particular, the optimal setting %un th fmltnc?n alg_ortlthmdlls_, p_ﬁrformed, |n|tk|)aI|2|r;g atlna_ q
MMEA parameters is taken from paper [14]. om the starting point and limiting the number of scalarize

The experimental studies are described as follows. Firet, tfunct|on evaluations t8000. For the considered MOPs, within

RM-MEDA benchmark is outlined. The setting of the AI_F,the value of3000, the algorithm usually converges to a (local)

algorithm is then detailed and a single ALP run is showed, inimum of the functionf,.. In general, ALP is a flexible

order to provide a paradigmatic case of the PF approximati ﬁ\r_nework enabling the usage of alternative constrained op

refinement observed during the learning iterations. The-co%ﬂmzat'on algorithms (e.g., derivative-free approaghresher

parison with the MMEA algorithm is given in Subsec. VII-E, an the f'm.mcon rqutllnc'a.to. solve problem (3). -
following the description of the comparison metric adopted ALP training set Is initialized _by selec_tlng two_training
In the preprint technical report of this work [9], ALP is alsoexamples unlforn_"lly at random within the_ nput space._ln the
tested over the welded beam design MOP [15], awidely-usgarformed experiments, the mean function of the prior GP

benchmark introduced in the spirit of real world optimipati 'S e lin€a x x + b, with {a,b} being the mean function
tasks. hyperparameters. Three candidate forms for the covariance

function are considered: the squared exponential, theaheur

network and the Ma&rn covariance functions (see book [5]
A. The RM-MEDA benchmark problems for their formulation). In combination with the mean and
For a comparison with ALP, we consider the bi-objectiveovariance functions, we make use of a white Gaussian noise
problems of the RM-MEDA benchmark [11]. By using themodel with variancep?. The hyperparameters vectérthus
numbering adopted in paper [14], the benchmark set is thasludesp?, the mean function hyperparameterand b and
formed by the instances ZZJ®&, Z7J08F2, ZZJ08F3, the covariance function hyperparameters. The model $etect
ZZJ08F5, ZZJO08F6 and ZZJO8F7. These instances arephase consists of two tasks: 1) the choice of the functional
derived from the widely-known Zitzler-Deb-Thiele (ZDT)ste form for the covariance function, 2) the optimization of the
problems [16]. The PS of the bi-objective ZDT problem&yperparameteré. Both tasks are accomplished in one step
is parallel to the coordinate axes, because of the lack lmf evidence maximization (see Eq. (8)): for each candidate
dependencies among the decision variables. This deficiemoyariance function, the vectd is optimized. The setting
introduces a bias in favor of the commonly used crossoweith largest likelihood value is then selected. In partcpthe
operator: if two solutions are Pareto-optimal, their offisg optimization task is solved by applying a conjugate gradien
is likely to be Pareto-optimal. Furthermore, variable figks algorithm. Ten runs of the algorithm are performed, each one
exist in many applications and their inclusion into testesii consisting of50 conjugate gradient steps. A different starting
has been suggested by different works [17], proposing blria point 8,,,;; is used for each run. A suitable selection of the
transformations for introducing dependencies among tlce destarting point, based on the prior knowledge about the e@sir
sion variables. The RM-MEDA instances F1, F2, F3 introdudeF model, drives the optimization algorithm towards (Iycal
linear linkages in the formulation of the ZDT1, ZDT2 andninima which provide plausible interpretations of theriiag
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data. In particular, the slope of the mean function in vector used in paper [14], the IGD metric is denoted as IGDF because
0,,.:; is initialized to the value-1. In fact, any connected PFit measures the quality of the PF approximation (i.e., P is a
of a bi-objective minimization problem can be modelled bget of objective vectors ant{z*, P) is the Euclidean distance

a strictly decreasing function. The gain from the inclusan in the objective space). The lower is the value IGDF, P),

prior knowledge in the starting point design is more sigaific the better is the quality of the populatidghapproximating the

at the initial iterations of the ALP algorithm, when the nuenb PF.

of training examples is limited. The IGDF metric measures the quality of a finite set of
points (population) approximating the PF. In the case of ALP
C. A single ALP run in detall which recovers an analytical PF modgtather than a discrete

PF representation, the populatiéhis computed by sampling

A single run of the ALP algorithm over MOP ZZJ0R2 is . . N
shown in Fig. 3. The predictive GP model is depicted bthe analytical PP model. In particulayP”| sample vectors

the solid line, while the dotted line represents the unkno ¢f the formz = {z},g(z;)} are generated by evaluating

Pareto frontz, = g(z1). The shaded area represents the 95%‘? (I) 21 fotrheesfq Zsarr€1 IIZ S' 'Z‘rr?érg?ergI?:lt?j?scc;%egsv?rhveeﬁgglz
confidence interval for the predictive GP model. At the first 9 ples g X

. : . - metric can be used to evaluate analytical PF models which
iteration, with a couple of training examples only, the fedF vt

. . . . . .. are (partially) infeasible (this behaviour has been ocrasly

\r/:‘(:i(:‘enl;: ﬁsll(l)n—% ::lilI'?hhhsetr?erzdser:a(gergaagggl::iir?:JttT)z Sirses:;it;;o served during the initial refinement iterations of ALR,ia
. . o . “1is’'based on a distance measure.

The inclusion of the new training example located at inpu

z; = 0.01 (triangular marker over the-axis) changes the

slope of the line, while constant predictive uncertaintgrahe E. Detailed comparative results
input space is observed. In this case, the ALP algorithn‘qslaq:ig_ 4 compares the performance of the ALP and MMEA

the new query point at the inpu§ maximizing the minimum  50rithms. The curves depict the evolution of the IGDF ietr
distance from the training examples. At the third iterafih®® o1 the number of evaluations of the MOP objective vector
accuracy of the learnt model improves. Predictive uno@yai ¢y The dashed and solid lines correspond to the ALP and
increases when moving away from training examples api\veA algorithms, respectively. Each point is the median
the shaded area entails the Pareto front to be modeled. Th&,e over 20 runs. executed with different seeds. Erros bar
uncertainty sampling method selects the input = 0.29 gengte the interquartile range (IQR) of data distribution.

as the new training example. At the fourth iteration, with With the exception of MOPE3 andF5, the ALP algorithm
1536 evaluations of the MOP objective functiorf¢x), the jominates the MMEA technique, achieving on average a PF
PF is supcessfully recovered. Additional refinement iteret alpproximation with sensibly better quality. For examplegro
slightly improve the accuracy of the learnt model (howevgyop £1 within 10000 function evaluations, a more accurate

the improvements cannot be visually observed), while the ey, front is recovered by the ALP algorithm, and after
predictive uncertainty becomes null. In general, the &dopt |, eyaluations, the quality of ALP solution is at least

of the active learning to generate the training examplestfes/ twelve times better than the quality of MMEA solution.

the anytime property: when increasing the number of funetio A stable behavior is observed for both algorithms. The large

evaluations, the PF approximation improves. size of the ALP error bars in the case of MOR is due

to the logarithmic scale. In fact, the order of magnitude of
D. Comparison metric ALP IQR values for MOPF2 is actually lower than that of

The performance of the ALP and MMEA algorithms is evalMMEA ones. For example, whem0000 function evaluations
uated by measuring the quality of the recovered PF appréXe performed, the orders of magnitude of the IQR values for
imation w.r.t. the number of objective function evaluaton ALP and MMEA results ard0~> and 10~?, respectively.
The quality of the PF approximation is estimated by the There is no qualitative difference in terms of the IGDF
inverted generational distance (IGD) metric. It evaluates metric among ALP and MMEA results for MOPS5. When
quality of the PF approximation recovered by an evolutignamore than30000 function evaluations are used to solve MOP
multi-objective algorithm (EMOA) by measuring both theZZJ08F3, the performance of ALP is not better than that
convergence and the diversity of its population. The adjbp'[@f MMEA. However, within 20000 function evaluations, the
metric is calculated according to the procedure describedquality of ALP solution is better by at least a factor ten thia
paper [14]. PF recovered by MMEA. Reasonable approximations obtained
A test setP* of Pareto-optimal objective vectors uniformlywithin few function evaluations are in many cases prefeteed
spread over the PF is generated. Witldenoting the popula- more accurate solutions which require a heavier computaitio
tion of the EMOA, the IGD metric is defined as follows: ~ effort. In fact, as noted by Lovison in work [10], “even a
D d(z*, P) rqughly ;ketphed glpbal picture of the whole situation can
zrelr ’ (9) give crucial information on the problem at hand, suggesting
[P correctly the location of paramount zones”.
whered(z*, P) is the minimumEuclidean distance from the Due to space limitations, the results observed when using
Pareto-optimal vectoz™ to any objective vector i, while the hypervolume difference metric [14] rather than the IGDF
| P*| indicates the cardinality aP*. According to the notation metric are not included here. They can be found in the preprin

IGD(P*, P) =
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Fig. 3. Generation of most informative training examples wbidving MOPF2. Each figure depicts the PF (dotted line) of the learnt moddiddine).
The Figures refer to the first, second, third and fourth refiewet iterations, respectively. Shaded area denotes the 8&fidence interval for the predictive
GP model. On the-axis, the most informative training example, selected byvadgarning, is showed by a triangular marker. At the fourthation (second
row, right figure) the PF is correctly learnt.

technical report of this work [9]. In general, they are cetemt The disconnected PF is depicted by the bold-marked portions
with the performance measured by the IGDF metric, witbf the black curve.

the exception of MOPF5, where ALP achieves a sensibly When the ALP algorithm is used to learn the functibn
better performance w.r.t MMEA in terms of the hypervoluméoth dominated and non-dominated examples are needed. The

difference metric. former are in fact used to model the concave portions of
the boundary (to be discarded when presenting the PF). In
VIIl. H ANDLING DISCONNECTEDPARETO FRONTS order to allow this, the dominance-based filtering discaydi

The ALP framework described in Sec. lll assumes to know tli@lse Pareto-optimal training examples has to be switcliied o

domain of the functiorz; = g(z;) characterizing the PF. In Otherwise, the learning phase may get stuck when trying to

the case of bi-objective MOPs with connected PF charaetgriznodel the concavities of the boundary, as other dominating

by 2o = g(z1), this prior information can be easily obtainedraining examples will likely be present in this case (seg bi

by computing the componentd” and z{ of the ideal and (right)).

the Nadir point, respectively, or by asking the decision erak In order to model entire feasible region boundaries, an

for the interval of the interesting values of the objectiye  additional functional form has been included in the set of
When the PF iglisconnectedthe functiong is discontinu- candidate covariance functions considered by the GP model

ous and its domain cannot be defined by a couple ofalues selection procedure. This consists of a combined function,

only. Therefore, assuming a priori knowledge of the doméin obtained summing up a periodic covariance funciigrwith

g is impractical. However, a disconnected PF can be identifiadsquared exponential covariance functigr(see [5] for their

by learning a regression functionn = h(z;) approximating formulation). The rationale for the choice of functiep is

the entire lower boundary of the feasible objective regiothe modelling of the concavities characterizing the boupnda

including the dominated portions of the boundary (e.g., thd the feasible area. The combination with functiarenables

concave parts). As a matter of fact, the PF is a subset of #helecay away from exact periodicity, as the boundary shape

objective boundary and thus a model of the disconnected BFnot expected to be exactly periodic. Furthermore, the

can be extracted straightforwardly by sampling the fumctio squared exponential covariance function models the smooth

and keeping the non-dominated samples only (e.g., thesoitiend characterizing disconnected Pareto fronts, whithhe

lying in the concavities of the functioh are discarded). For case of bi-objective minimization problems, are monotalyc

example, Fig. 5 (left) shows the feasible objective regibn olecreasing piecewise continuous functions.

the ZDT3 problem, taken from the ZDT benchmark suite [16]. Let us note that this combined covariance function is not

The boundary of the feasible region (gray-shaded areakis thesigned for a specific MOP, but is a general choice driven by

thin black curve, consisting of both convex and concavesparthe typical form of feasible region boundaries. Furthemmor
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Fig. 4. Performance metric (median values) evolution over thaber of function evaluations. Error bars represent the IQ®ata distribution. Dashed

and solid lines plot the ALP and MMEA results, respectivéligures in row one refer to the MOR=L (left), F2 (middle) andF3 (right). The second row
contains the results for the MO (left), F6 (middle) andF7 (right).
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Fig. 5. (Left) ZDT3 problem. The boundary (black thin curve)tbe feasible region (gray-shaded area) contains bothesoand concave parts. The
disconnected PF is formed by the bold-marked curve segmeright{RVhen the query point (triangular marker on thg-axis) does not belong to the
domain ofg, the exactsolution of the scalarized program providing supervisddrination generates an objective vect@rthat may be dominated by the
current training examples (poid in the graph).

we are not imposing this covariance function in the prigoreprint technical report of this work [9] provides the plerhs
GP, but only suggesting it to the model selection procedui@mulation and compares their features.
as a candidate covariance function. The identification ef th The MMEA algorithm, which was used as touchstone in
covariance function (and its parameters setting) that filsst the experiments of Sec. VII, has been designed for connected
(i.e., explains) the training data is performed by the modplhyreto fronts and cannot represent a fair ALP competitor ove
selection procedure. the four selected problems. ALP is therefore compared with
No further modifications are required to adapt the ALBoth the popular state-of-the-art genetic algorithm NSGA-
algorithm presented in Sec. Il to model disconnected PFs,) [24] and with the state-of-the-art Estimation of Disutipn
algorithm RM-MEDA [11]. We used the original NSGA-
A. Case studies with disconnected PF Il code provided by the authors (versiohl.6) and, for
The ability of ALP in learning disconnected Pareto frontsach MOP, the specific setting of the NSGA-Il parameters
is evaluated over four well-known MOPs: the ZDT3 [16]available with the code (the parameter values are detailed i
D99 [2], [21], TNK [22] and KUR [23] problems. The the preprint technical report of this work [9]). For RM-MEDA
selected MOPs differ from each other in several features. Tthe original implementation is used, together with the ditfa
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robust parameter setting specified in the original pape} [ldpproximations of the Pareto-optimal solutions. Basedhis t
(the alternative parameter settings tested in our invai$tig Vvery noisy training information, an accurate PF model canno
did not yield any sensible performance improvement). be recovered. However, ALP can easily realize the poor tyuali
ALP algorithm outperforms NSGA-II and RM-MEDA over of the learned model by measuring its predictive uncenaint
the ZDT3, D99 and TNK MOPs, while it fails in learning anwhich is exceptionally large also in regions densely pogda
accurate model of the KUR PF. Fig. 6 reports the convergenaktraining examples. Possible countermeasures for this su
of ALP, NSGA-Il and RM-MEDA to the Pareto front of optimal behavior can be found in [9].
the ZDT3 (left graph), D99 (middle graph) and TNK (right
graph) MOPs. The blue dashed, red solid and black dotted
curves plot the average IGDF performance (median value over
20 runs) of the ALP, NSGA-Il and RM-MEDA algorithms. In order to learn a model of the PF, ALP generates training
The error bars plot the interquartile range (IQR) of the dagxamples in the regression domain. However, generating su-
distribution. A detailed description of the experimenesults pervised information is expensive, as it involves the extitun
is provided by the preprint technical report of this work,[9]of the objective functions of the MOP. In order to decrease
including also sample PF approximations showing that tfilee computational cost of the learning process, the nextyque
difference among the IGDF values observed in Fig. 6 for ALPstance selected by ALP is the poiat in the regression
and for the benchmark algorithms is statistically significa domain maximizing the predictive uncertainty of the led?ft
and substantial. The rest of this section summarizes tha majodel (uncertainty sampling). The adoption of the uncetyai
results obtained for each MOP. sampling principle motivates the choice of the GPR method,
ZDT3 MOP. Within 6000 function evaluations (left graph in which can quantify the uncertainty of the predictive model.
Fig. 6), the performance of ALP is comparable with that of The following experiments test the efficiency of the uncer-
NSGA-II and about one order of magnitude better than thtginty sampling (UNC) principle, by comparing it with an
of RM-MEDA. When progressively increasing the number olternative query selection strategy. The competing ntktho
function evaluations fron6000 up to 20000, the quality of consists of picking the query points uniformly at random
the ALP model improves more rapidly than that of NSGA-Iwithin the regression domain. The random selection priacip
and RM-MEDA. Eventually, the ALP performance convergeRND) is less informed than the UNC method, as it does
to an IGDF value less thatD—3, about one and three ordershot exploit the learnt PF model. However, the RND principle
of magnitude better than that of NSGA-Il and RM-MEDA provides a robust approach w.r.t. the general shape of the PF
respectively. thus representing a nontrivial competitor in our settings.
D99 MOP. The superior performance of ALP w.r.t. NSGA- Fig. 7 reports the performance of both the UNC and RND
II and RM-MEDA observed for ZDT3 is confirmed. Thesampling principles when increasing the number of query
quality of the PF approximation returned by ALP rapidlypoints to solve ZDT3 (left graph), D99 (middle graph) and
improves after 300 evaluations (middle graph in Fig. 6)J,NK (right graph). The dashed and solid lines refer to the
converging to a value smaller than—% after 600 evaluations. UNC and the RND strategies, respectively. For both straggi
On the other hand, after 1000 objective function evaluatioene hundred runs of ALP are performed, with different random
the performance of both NSGA-Il and RM-MEDA is still fiveseeds. Median values of the IGDF metric over the different
orders of magnitude worse than the ALP performance. runs are plotted, together with error bars denoting theh25-t
TNK MOP. The quality of the PF approximation returnedand the 75-th percentiles.
by ALP converges to the IGDF value d@k—2 within 6000 For ZDT3 (left graph), with ten (or less) training examples,
function evaluations (right graph in Fig. 6). When considgri the UNC and RND strategies are statistically equivaleneund
a bounded computational budget of 600 up to 3000 functienKolmogorov-Smirnov (KS) test with a Bonferroni-corrette
evaluations, the results by NSGA-lIl and RM-MEDA areonfidence level of 99.5%. With 15 query points, there is
two or three times worse than ALP performance. Howevestatistical evidence for better results by the RND methbé (t
with 6000 function evaluations, the rank of the algorithmp-value is0.003). However, when increasing the number of
changes, with RM-MEDA asymptotically dominating ALP.training examples, the UNC strategy keeps improving faster
As a matter of fact, ALP learns a reasonable approximatidian the RND strategy and significantly outperforms it if 25 o
within fewer function evaluations than NSGA-Il and RM-more query points are generated. With more than 25 examples,
MEDA, but it misses a small portion of the PF (see [9lhe order of magnitude of the observed p-values is lower than
for details). This weakness is due to the poor quality of thiee~14, providing strong evidence against the null hypothesis
training examples generated in the interval consideredth®n of equivalent performance.
other hand, NSGA-Il and RM-MEDA reach a uniform spread The observed behavior is consistent with intuition. The
of the individuals of the population over the whole PF, bdimited amount of supervised information generated by few
at a computational cost larger (sensibly larger, in the cdsetraining examples, either selected passively (i.e., atigar)
NSGA-II) that the number of function evaluations performedr actively, does not enable the learning of the PF. However,
by ALP at convergence. when a larger number of training instances is consideres, th
KUR MOP. For this problem, the sequential quadratic proJNC strategy yields better results than the less informe®RN
gramming algorithm [18], [19] used by ALP to generatenethod. Finally, the UNC results are more stable than the RND
training examples (Eq. (3)) returns extremely poor-gualitresults, as clearly showed by the error bars.

IX. EFFICIENCY OF UNCERTAINTY SAMPLING
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Fig. 6. Performance metric (median values) evolution over timaber of function evaluations when solving the ZDT3 (leftgita D99 (middle graph) and
TNK (right graph) MOPs. Error bars represent the IQR of dastribution. The blue dashed line plots the ALP results, levithe red solid line shows the
NSGA-II performance and the black dotted line depicts theenled RM-MEDA values. The right graph adopts the logarithraacale to represent both the
early ALP convergence within 6000 evaluations, and the tressover points of the performance, located at 6000 and att #0900 function evaluations.

The middle graph refers to the D99 MOP. The previscalarized optimization problem (3). Furthermore, depend
ously observed behavior is confirmed. A superior asymptotin the optimization algorithm adopted for problem (3), ALP
performance of the UNC method over the RND strategyay not require any derivative information. The experinaént
is observed with large statistical confidence: the order ofsults on the RM-MEDA benchmark show that ALP on
magnitude of the p-values is lower than or equallto 2 average generates tlanalytical PF representation within a
when the number of query points is larger than 30 (the p-vall@ver number of function evaluations than that required by
le~8 is observed for 25 examples). The asymptotic differentee state-of-the-art MMEA algorithm to provide a discrefe P
among the performance of the RND and UNC strategies approximation. On the ZDT3 and D99 MOPs with discon-
even more pronounced that that observed for ZDT3. The marected PF, better results are obtained when applying ALP
complicated shape of the D99 PF, which consists of six norather than the well-known NSGA-II algorithm (e.g., ALP
convex disconnected curves w.r.t. the five convex compgneiBDF value is asymptotically one and five orders of magnitude
of the ZDT3 PF, is a likely explanation for this behaviour. better than NSGA-II performance on the above mentioned

The experiments over TNK confirm the better performanggoblems). For the TNK MOP, NSGA-Il needs more than
of the UNC strategy, whose curve dominates the curve cort2000 function evaluations to outperform ALP. With a lower
sponding to the RND technique. As for D99, with 10 and 1Bumber of function evaluations, ALP performance is from two
training examples there is no significant difference betwibe up to five times better. ALP cannot learn an accurate model
two strategies. However, with more than 15 training exasiplef the KUR PF, due to the high noise affecting the training
UNC significantly outperforms RND: the p-values lower thaset. However, ALP can detect the poor quality of the learnt
le~% provide strong support for the superiority of the UNGnodel, by simply observing the predictive variance, in this
sampling strategy. case exceptionally high, also in regions densely populbjed

training examples.

X. DiscussioN We plan to extend this work along different directions. la th
This work introduces the Active Leaning of Pareto frontsase of MOPs with more than two objectives, the regression
(ALP) algorithm. While current state of the art algorithms fodomain in the subspace of the independent objectives
MOPs are developed within the Evolutionary framework, ALRannot be specified by a couple of (user-supplied) vectdys on
adopts a different strategy. Pareto-optimal objectivetorsc We therefore plan to introduce a preliminary phase to |efaen t
are generated by combining the active learning paradigin witegression domain. The investigation of strategies to aedu
the solution of a scalarized optimization problem. The fare the computational effort, in terms of MOP objectives evalua
optimal objective vectors recovered are used as trainiagnex tion, required to solve the problem (3) is another intenegti
ples to learn a model of the PF. The model is iteratively refinalirection for future research. Approaches tackliexpensive
until the information gain obtained by the new candidateptimizationby the generation of surrogate models are suitable
training examples becomes negligible. The informatiomgafor this purpose. Consider, for example, Gaussian prosesse
is estimated by the maximum predictive uncertainty of thdesigned for global optimization of unknown functions [25]
learnt model in the regression domain. By equipping ALP with a mechanism for learning the DM

ALP enables aranalytical representation for the PF, whichpreferences, the search may focus onrnttust relevanareas of
simplifies the decision making process. When the analytidhle PF, guided by the user feedback [26], [27]. The incorpora
PF representation is available, the decision maker (DM) tion of the DM preferences reduces the waste of computdtiona
free to select and comparany Pareto-optimal solution, in resources occurring when modeling PF regions which are not
particular within her preferred region. Once the favouritef any interest for the user. Finally, possible extensiohs o
Pareto-optimal vector is selected, an associated Paptiimad ALP to recover the PF undezhanging conditiongdynamic
solution is generated by solving a single instance of thmulti-objective optimization [28], [29]) will be explored
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Fig. 7. Comparison between active selection of training exasipased on model uncertainty (UNC) and passive selectisgdban random sampling (RND).
The dashed lines plots the uncertainty sampling results the performance of the original ALP algorithm), while thdigdines show the performance of
the ALP variant with uncertainty sampling replaced by randsampling. Median IGDF values over 100 runs are plotted fomaresing number of training
examples, with error bars representing the IQR of data Higtan. The left, middle and right graphs refer to the ZDT390hd TNK MOPs.
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