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Abstract— Deep learning (DL) has proved successful in
medical imaging and, in the wake of the recent COVID-
19 pandemic, some works have started to investigate DL-
based solutions for the assisted diagnosis of lung dis-
eases. While existing works focus on CT scans, this paper
studies the application of DL techniques for the analysis
of lung ultrasonography (LUS) images. Specifically, we
present a novel fully-annotated dataset of LUS images
collected from several Italian hospitals, with labels indicat-
ing the degree of disease severity at a frame-level, video-
level, and pixel-level (segmentation masks). Leveraging
these data, we introduce several deep models that address
relevant tasks for the automatic analysis of LUS images.
In particular, we present a novel deep network, derived
from Spatial Transformer Networks, which simultaneously
predicts the disease severity score associated to a input
frame and provides localization of pathological artefacts
in a weakly-supervised way. Furthermore, we introduce a
new method based on uninorms for effective frame score
aggregation at a video-level. Finally, we benchmark state
of the art deep models for estimating pixel-level segmenta-
tions of COVID-19 imaging biomarkers. Experiments on the
proposed dataset demonstrate satisfactory results on all
the considered tasks, paving the way to future research on
DL for the assisted diagnosis of COVID-19 from LUS data.

Index Terms— COVID-19, Lung ultrasound, Deep learning

I. INTRODUCTION

The rapid global SARS-CoV-2 outbreak resulted in a
scarcity of medical equipment. In addition to a worldwide

Copyright (c) 2019 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org. Manuscript submitted on April 14, 2020. S.
Oei∗, B. Luijten∗, I. Huijben∗, N. Chennakeshava∗, and R.J.G. van
Sloun† are with the Dept. of Electrical Engineering, Eindhoven Uni-
versity of Technology, The Netherlands (e-mail: r.j.g.v.sloun@tue.nl).
S. Roy∗, C. Saltori∗, E. Fini∗, W. Menapace∗, P. Rota†, E. Ricci†, A.
Passerini† are with the Dept. of Information Engineering and Computer
Science, University of Trento, Trento, Italy (e-mail: e.ricci@unitn.it, an-
drea.passerini@unitn.it). S. Roy and E. Ricci† are with FBK, Trento,
Italy. F. Mento∗, A. Sentelli, E. Peschiera, R. Trevisan, G. Maschietto,
and L. Demi† are with ULTRa, Dept. of Information Engineering and
Computer Science, University of Trento, Trento, Italy (e-mail: liber-
tario.demi@unitn.it) E. Torri is with Bresciamed, Italy. R. Inchingolo
and A. Smargiassi are with the Dept. of Cardovascular and Thoracic
Sciences-Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy.
G. Soldati is with the Diagnostic and Interventional Ultrasound Unit,
Valle del Serchio General Hospital, Lucca, Italy. ∗joint first authors
contributed equally to this work. †joint lead authors contributed equally
to this work.

shortage of mouth masks and mechanical ventilators, testing
capacity has been severely limited. Priority of testing was
therefore given to suspected patients and hospital staff [1].
However, extensive testing and diagnostics are of great im-
portance in order to effectively contain the pandemic. Indeed,
countries that have been able to achieve large-scale testing
of possibly infected people combined with massive citizen
surveillance, reached significant containment of the SARS-
CoV-2 virus [2]. The insufficient testing capacity in most
countries has therefore spurred the need and search for alterna-
tive methods that enable diagnosis of COVID-19. In addition,
the accuracy of the current lab test, reverse transcription
polymerase chain reaction (RT-PCR) arrays, remains highly
dependent on swab technique and location [3].

COVID-19 pneumonia can rapidly progress into a very
critical condition. Examination of radiological images of over
1,000 COVID-19 patients showed many acute respiratory dis-
tress syndrome (ARDS)-like characteristics, such as bilateral,
and multi-lobar glass ground opacifications (mainly posteri-
orly and/or peripherally distributed) [4], [5]. As such, chest
computed tomography (CT) has been coined as a potential
alternative for diagnosing COVID-19 patients [4]. While RT-
PCR may take up to 24 hours and requires multiple tests for
definitive results, diagnosis using CT can be much quicker.
However, use of chest CT comes with significant drawbacks:
it is costly, exposes patients to radiation, requires extensive
cleaning after scans, and relies on radiologist interpretability.

Lately, ultrasound imaging, a more widely available, cost-
effective, safe and real-time imaging technique, is gaining
attention. In particular, lung ultrasound (LUS) is increasingly
used in point-of-care settings for detection and management
of acute respiratory disorders [6], [7]. In some cases, it
demonstrated better sensitivity than chest X-ray in detecting
pneumonia [8]. Clinicians have recently described use of LUS
imaging in the emergency room for diagnosis of COVID-19
[9]. Findings suggest specific LUS characteristics and imaging
biomarkers for COVID-19 patients [10]–[12], which may be
used to both detect these patients and manage the respiratory
efficacy of mechanical ventilation [13]. The broad range of
applicability and relatively low costs make ultrasound imaging
an extremely useful technique in situations when patient
inflow exceeds the regular hospital imaging infrastructure
capabilities. Thanks to its low costs, it is also accessible for
low- and middle-income countries [14]. However, interpreting
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Fig. 1: Overview of the different tasks considered in this work. Given a LUS image sequence, we propose approaches for: (orange) prediction
of the disease severity score for each input frame and weakly supervised localization of pathological patterns; (pink) aggregation of frame-level
scores for producing predictions on videos; (green) estimation of segmentation masks indicating pathological artifacts.

ultrasound images can be a challenging task and is prone to
errors due to a steep learning curve [15].

Recently, automatic image analysis by machine and deep
learning (DL) methods have already shown promise for re-
construction, classification, regression and segmentation of
tissues using ultrasound images [16], [17]. In this paper
we describe the use of DL to assist clinicians in detecting
COVID-19 associated imaging patterns on point-of-care LUS.
In particular, we tackle three different tasks on LUS imaging
(Fig. 1): frame-based classification, video-level grading and
pathological artifact segmentation. The first task consists of
classifying each single frame of a LUS image sequence into
one of the four levels of disease severity, defined by the scoring
system in [12]. Video-level grading aims to predict a score for
the entire frame sequence based on the same scoring scale.
Segmentation instead comprises pixel-level classification of
the pathological artifacts within each frame.

This paper advances the state of the art in the automatic
analysis of LUS images for supporting medical personnel
in the diagnosis of COVID-19 related pathologies in many
directions. (1) We propose an extended and fully-annotated
version of the ICLUS-DB database [18]. The dataset contains
labels on the 4-level scale proposed in [12], both at frame and
video-level. Furthermore, it includes a subset of pixel-level
annotated LUS images useful for developing and assessing
semantic segmentation methods. (2) We introduce a novel deep
architecture which permits to predict the score associated
to a single LUS image, as well as to identify regions
containing pathological artifacts in a weakly supervised
manner. Our network leverages Spatial Transformers Network
(STN) [19] and consistency losses [20] to achieve disease
pattern localization and from a soft ordinal regression
loss [21] for robust score estimation. (3) We introduce a
simple and lightweight approach based on uninorms [22]
to aggregate frame-level predictions and estimate the score
associated to a video sequence. (4) We address the problem
of automatic localization of pathological artifacts evaluating
the performance of state-of-the-art semantic segmentation
methods derived from fully convolutional architectures.
(5) Finally, we conduct an extensive evaluation of our
methods on all the tasks, showing that accurate prediction
and localization of COVID-19 imaging biomarkers can be
achieved with the proposed solutions. Dataset and code
are available at https : //iclus − web.bluetensor .ai and at

https : //github.com/mhug − Trento/DL4covidUltrasound .

II. RELATED WORK

DL has proven to be successful in a multitude of computer
vision tasks ranging from object recognition and detection to
semantic segmentation. Motivated by these successes, more
recently, DL has been increasingly used in medical applica-
tions, e.g. for biomedical image segmentation [23] or pneu-
monia detection from chest X-ray [24]. These seminal works
indicate that, with the availability of data, DL can lead to the
assistance and automation of preliminary diagnoses which are
of tremendous significance in the medical community.

In the wake of the current pandemic, recent works have fo-
cused on the detection of COVID-19 from chest CT [25], [26].
In [27], a U-Net type network is used to regress a bounding
box for each suspicious COVID-19 pneumonia region on con-
secutive CT scans, and a quadrant-based filtering is exploited
to reduce possible false positive detections. Differently, in [28]
a threshold-based region proposal is first used to retrieve the
region of interests (RoIs) in the input scan and the Inception
network is exploited to classify each proposed RoI. Similarly,
in [29], a VNET-IR-RPN model pre-trained for pulmonary
tuberculosis detection is used to propose RoIs in the input CT
and a 3D version of Resnet-18 is employed to classify each
RoI. However, very few works using DL on LUS images can
be found in the literature [30]. A classification and weakly-
supervised localization method for lung pathology is described
in [17]. Based on the same idea, in [18] a frame-based
classification and weakly-supervised segmentation method is
applied on LUS images for COVID-19 related pattern detec-
tion. Here, Efficientnet is trained to recognize COVID-19 in
LUS images, after which class activation maps (CAMs) [31]
are exploited to produce a weakly-supervised segmentation
map of the input image. Our work has several differences
compared to all the previous works. First, while in [18] CAMs
are used for localization, in this work we exploit STN to
learn a weakly-supervised localization policy from the data
(i.e. not exploiting explicit labelled locations but inferring it
from simple frame-based classification labels). Second, while
in [18] a classification problem is solved, we focus on ordinal
regression, predicting not only the presence of COVID-19
related artifacts, but also a score connected to the disease
severity. Third, we move a step forward compared to all
previous methods by proposing a video-level prediction model
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Fig. 2: The distribution of the probes and the scores of frames grouped by hospital and overall statistics.

built on top of the frame-based method. Finally, we propose
a simple yet effective method to predict segmentation masks
using an ensemble of multiple state-of-the-art convolutional
network architectures for image segmentation. Additionally,
the model’s predictions are accompanied with uncertainty
estimates to facilitate interpretation of the results.

III. ICLUS-DB: DATA COLLECTION AND ANNOTATION

We here present the Italian COVID-19 Lung Ultrasound
DataBase (ICLUS-DB), which currently includes a total of 277
lung ultrasound (LUS) videos from 35 patients, corresponding
to 58,924 frames1. The data were acquired within different
clinical centers (BresciaMed, Brescia, Italy, Valle del Serchio
General Hospital, Lucca, Italy, Fondazione Policlinico Univer-
sitario A. Gemelli IRCCS, Rome, Italy, Fondazione Policlinico
Universitario San Matteo IRCCS, Pavia, Italy, Tione General
Hospital, Tione (TN), Italy) and using a variety of ultra-
sound scanners (MindrayDC-70 Exp®, EsaoteMyLabAlpha®,
ToshibaAplio XV®, WiFi Ultrasound Probes - ATL). Both
linear and convex probes were used, depending on necessities.
Of the 35 patients, 17 were confirmed positive to COVID-19
by swab technique (49 %), 4 were COVID-19 suspected (11
%), and 14 were healthy and symptomless individuals (40 %).

A recent proposal by Soldati et al. describes how specific
imaging biomarkers in LUS can be used in the manage-
ment of COVID-19 patients [12]. Specifically, to evaluate the
progression of the pathology, a 4-level scoring system was
devised [32], with scores ranging from 0 to 3. Score 0 indicates
the presence of a continuous pleural-line accompanied by
horizontal artifacts called A-lines [33], which characterize a
healthy lung surface. In contrast, score 1 indicates the first
signs of abnormality, i.e., the appearance of alterations in the
pleural-line in conjunction with vertical artifacts. Scores 2 and
3 are representative of a more advanced pathological state,
with the presence of small or large consolidations, respectively.
Finally score 3 is associated with the presence of a wider
hyperechogenic area below the pleural surface, which can be
referred to as “white lung”.

A total of 45,560 and 13,364 frames, acquired using re-
spectively convex and linear probes, were labelled according
to the scoring system defined above. Of the 58,924 LUS
frames forming the dataset, 5,684 were labeled score 3 (10%),
18,972 score 2 (32%), 14,295 score 1 (24%), 19,973 score
0 (34%). A plot showing the distribution of the scores and
probes per hospital is shown in Fig. 2. To guarantee objective

1https://iclus-web.bluetensor.ai.

annotation, the labelling process was stratified into 4 levels:
1) score assigned frame-by-frame by four master students
with ultrasound background knowledge, 2) validation of the
assigned scores performed by a PhD student with expertise in
LUS, 3) second level of validation performed by a biomedical
engineer with more than 10 year of experience in LUS and
4) third level of validation and agreement between clinicians
with more than 10 years of experience in LUS.

Additionally, a subset of 60 videos sampled across all
35 patients was selected and video-level annotations were
provided for them. These annotations use the same scoring
system defined for the frame-level annotations. In order to
address subjective biases in the evaluation of the videos,
five different clinicians provided their evaluation for each
sequence. We assess the complexity of this task by calculating
the inter-operator agreement, comparing the evaluation of the
predictions of each doctor against the average prediction of
the remaining four. The resulting average agreement is about
67% among the available labels.

Finally, for 33 patients, a total of 1,005 and 426 frames
respectively acquired using convex and linear probes, were
semantically annotated at a pixel-level by contouring the
aforementioned imaging biomarkers using the annotation tool
LabelMe [34]. For the frames acquired using the linear probe,
relative pixel-level occurrences for scores 0, 1, 2, and 3
are 6.4%, 0.080%, 0.67%, and 3.7%, respectively. For the
convex probe, these statistics are 1.9%, 0.074%, 1.8%, and
2.1%, respectively. Notably, a large proportion of pixels is
not associated to either of these scores. These pixels do not
display clear characteristics of a specific class, and are referred
to as background (BG). A few images and the corresponding
annotations are shown in the supplementary material.

IV. DEEP LEARNING-BASED ANALYSIS OF LUS IMAGES

This paper tackles several challenges towards the develop-
ment of automatic approaches for supporting medical person-
nel in the diagnosis of COVID-19 related pathologies (see
Fig. 1). In particular, following the COVID-19 LUS scoring
system in [12] we present a novel deep architecture which
automatically predicts the pathological scores associated to
all frames of a LUS image sequence (Section IV-A) and
optimally fuse them to produce a disease severity score at
video-level (Section IV-B). We also show that the proposed
model automatically identifies regions in an image which are
associated to pathological artifacts without requiring pixel-
level annotation. Finally, to further improve the accuracy in
the automatic detection of disease-related patterns, we also
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consider a scenario where frames are provided with pixel-level
annotations and we propose a segmentation model derived
from a state of the art convolutional network architecture
(Section IV-C). In the following, we describe the proposed
deep learning models.

A. Frame-based score prediction

1) Problem formulation and notation: With the purpose of
supporting medical personnel in the analysis of LUS images,
in this paper we introduce an approach for predicting the
presence or the absence of a pathological artifact in each frame
of a LUS image sequence and for automatically assessing
the severity score of the disease related to such patterns
according to the COVID-19 LUS scoring system [12]. We
are also interested in the spatial localisation of a pathological
artifact in the frame without assuming any annotation about
such artifact positions in a frame. The weak localization is
achieved through the use of Spatial Transformer Networks
(STN) [19]. The use of STN stems from the fact that most
of the pathological artifacts are concentrated in a relatively
small area of the image, and, hence the entire image should
not be considered by the network to make predictions. The
problem can be formalized as follows.

Let X denote the input space (i.e. the image space) and
S the set of possible scores. During training, we are given a
training set T = {(xn, sn)}Nn=1 where xn ∈ X and sn ∈ S.

2) Model definition: We are interested in learning a mapping
Φ : X → S, which given an input LUS image outputs
the associated pathological score label. We model Φ as the
composition of two functions Φ = Φstn ◦ Φcnn where Φstn :
X → X estimates an affine transformation and applies it to
the input image x and Φcnn : X → S assigns the score to the
transformed image. Intuitively, Φstn learns to localize regions
of interest in the input image and provides Φcnn with an
image crop where information about the score is most salient.
Consequently, Φstn produces as a side effect the localization
of pathological artifacts in the frame. The mapping Φcnn is
composed by a convolutional feature extractor and a linear
layer with |S|-dimensional output logits. The model Φstn is
implemented as a deep neural network derived STN [19].
Fig. 3 shows an overview of the proposed deep architecture.

In the context of deep learning the generalization capability
of a network is of critical importance. To this end, data aug-
mentation has shown to be very effective [35] in improving the
performance of a network. Previous works [18] showed that
augmenting a dataset composed of LUS images can drastically
improve the ability of the network to discriminate healthy
and ill patients. Another way to achieve robust predictions is
to enforce some consistency between two perturbed versions
(colour jitter, dropout, etc.) of the same image [20], [36]. This
makes the network produce smoothed predictions by attending
to the salient features in an image. Inspired by this idea, we
propose to use STN [19] to produce two different crops from
a single image and enforce the predictions of the network
to be similar. We name our approach Regularised Spatial
Transformer Networks (Reg-STN).

STN [19] is a differentiable module that applies a learnable
affine transformation to an input image, or more in general to a

Fig. 3: Illustration of the architecture for frame-based score predic-
tion. An STN modeled by Φstn predicts two transformations θ1 and
θ2 which are applied to the input image producing two transformed
versions x1 and x2 that localize pathological artifacts. The feature
extractor Φcnn is applied to x1 to generate the final prediction.

feature map, conditioned on the input itself. It consists of three
parts: (i) a localization network that predicts the parameters of
the affine transformation, (ii) a grid generator which selects
the grid co-ordinates in the source image, to be sampled from,
and (iii) a sampler that warps the input image based on the
transformation, producing the output map.

For what concerns the localization network, it is trained to
output a transformation matrix θ such that:(

αs

βs

)
= θ

 αt

βt

1

 (1)

where αs, βs, αt, βt, are the source and target coordinates
in the input and output feature map respectively. In principle
θ can describe any affine transformation, however, keeping in
mind the properties of LUS images we restrict the space of
possible transformations to rotation, translation, and isotropic
scaling:

θ =

[
σ r1 τα
r2 σ τβ

]
(2)

In our proposed method, an input image, x is processed by
the Φstn that predicts two set of transformations θ1 and θ2,
instead of one θ. Subsequently, the transformations are applied
to x, generating cropped images x1 and x2, respectively. The
network Φcnn is then applied to x1 and x2, producing two
sets of logits for the same image under different transfor-
mations. As a side effect, the intermediate images x1 and
x2 are produced and can be interpreted as the localization
of the pathological artifacts in the input image x. Finally,
the Φcnn(x1) branch then can be trained with any standard
supervised classification loss and (Φcnn(x1), Φcnn(x2)) is
trained with a consistency enforcing loss (see below).

3) Loss definition: As stated before, we are interested in
devising a deep network Φ for automatically predicting the 4-
level scores identified in [12]. While this problem can trivially
be cast within a classification framework, in this paper we
argue that ordinal regression [37] is more appropriate as we
are interested in predicting labels from an ordinal scale. The
rationale behind the choice of ordinal regression is that there
exist certain categories that are more correct than others with
respect to the true label, as opposed to an independent class
scenario, in which the order of the levels does not matter. In
fact, errors on low-distance levels should be less penalized
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with respect to long-distance error. For instance, predicting a
severely ill patient (score 3) as healthy (score 0) should be
strongly discouraged, while sometimes the difference between
score 1 and score 2 can be subtle and the network should not
be overly penalized.

While ordinal regression can be implemented resorting on
the traditional approach of decomposing the problem assuming
a |S|-rank formulation [38], following [21] we introduce a
lightweight approach for Soft ORDinal regression (SORD).
In practice, we implement an ordinal regression framework by
using a carefully devised label smoothing mechanism. Instead
of one-hot representations of labels, we encode the ground
truth information into soft-valued vectors (SORD vectors) ŝ ∈
R|S|, where S is the set of possible scores for a frame. Hence,
for a frame x with score s ∈ S the i-th element of the SORD
vector is computed as follows:

ŝi =
e−δ(s,i)∑
j∈S e

−δ(j,i) (3)

where δ is a manually defined distance function between
scores/levels for which we use square distance multiplied
by a constant factor. This formulation produces a smooth
probability distribution over S, in which the magnitude of
the elements decreases while the distance to the ground
truth increases. Encoding ground truth labels as probability
distributions seamlessly blends with common classification
loss functions that use a softmax output. Therefore, at training
time, we simply train the network Φ using cross entropy:

LSORD = −
|S|∑
i=0

ŝi log

(
exp(Φ (x)i)∑|S|
j exp(Φ (x)j)

)
(4)

The result is a loss function that yields a smaller cost for
predictions that are in the neighbourhood of the ground
truth label, which, in turn generates smaller gradients, hence
discouraging drastic updates of the network for small errors.
Empirically, we found that our algorithm works best when we
increase the distance of score 0 from the others. As mentioned
before, this is also validated by the semantics of the scores.

Another desirable property of the network is to extract im-
portant semantic features of the input image, in order to enable
accurate frame score prediction. This can be strengthened by
resorting to a regularization in the form of consistency loss
on the two branch predictions (Φcnn(x1), Φcnn(x2)) with
the rationale that two different crops from the same image
should have similar predictions. In our case, these two crops
are produced by the Φstn. In details, the consistency loss is
defined on the network representations as following:

LMSE = ‖Φcnn (x1)− Φcnn (x2)‖22 (5)

Unfortunately, LMSE coupled with learnable affine transfor-
mations produces degenerate solutions in which the localiza-
tion network of the STN learns to output identical parameters
for the affine transformations. In fact, it is enough to impose
θ1 = θ2 to minimize LMSE . To prevent this pathological be-
haviour of the network, we enforce a prior on the parameters of
the transformations. In particular, we stimulate the localization
network to produce reasonably scaled patches by minimizing
|σ − σp|, where σp is a fixed prior. Now, in order to enable

the STN into yielding different parameters θ1 6= θ2, we simply
choose σp1 6= σp2. Hence, a loss is defined as follows:

LP = |σ1 − σp1|+ |σ2 − σp2| (6)

Finally, the proposed Reg-STN model is trained end-to-end
minimizing the following joint loss function:

LTOT = LSORD + LMSE + LP (7)

4) Training strategy: We split the ICLUS-DB dataset into a
train and test split. The test split comprises 80 videos from 11
patients, with a total of 10,709 frames. All the frames from
the remaining videos are included in the train set. The split
is performed at patient level, such that the sets of patients
in the training and test set are disjoint. The STN is modeled
by a ConvNet similar to [17]. Specifically, we removed the
Average Pooling and the output layer and replaced it with
two fully connected layers to predict the affine transformation
parameters. The CNN architecture [17] is kept unchanged.
The STN and CNN are jointly trained by using the Adam
optimizer with an initial learning rate of 1e− 4, a batch size
of 64 and trained for 120 epochs. We also used similar data
augmentation strategies and learning rate decay as suggested
in [17], [18]. We set the values of σ1 and σ2 to 0.50 and
0.75 respectively, leveraging the prior knowledge about LUS
images that pathological artifacts roughly covers 25% to 50%
area of the image.

B. Video-level score aggregation
1) Problem formulation and notation: The identification of

potentially pathological artifacts in LUS images is a crucial
step towards diagnosis support. However, frame-based pre-
dictions should be turned into a single video-based score
prediction in order to assess the pathological state of a patient.
The video-based score aggregation problem can be formalized
as follows. Let v = {xi}Mi=1, be a video, V be the set of videos
of any length, and S the set of scores. The goal of video-level
score prediction is learning a mapping Ψ : V → S.

In principle the mapping Ψ could be obtained by taking
the maximum score assigned to any frame of the current
video because the identification of an artifact of score s in
a frame implies that the patient has a severity level of at
least s. This hard rule, however, is inapplicable in practice
when dealing with machine-predicted scores, as even a single
frame-based prediction error could harm the overall prediction.
Thus, in this section we propose a more flexible aggregation
mechanism devised for predicting the score associated to a
video, leveraging the video-level annotations provided in the
ICLUS-DB (Section III).

2) Model definition: In designing the model Ψ, we consider
the fact that it needs to operate in a low-data regime, where
few videos are provided with annotations as in the current
version of the ICLUS-DB. Inspired by the hard rule previously
mentioned, we propose a simple strategy that combines frame-
level predictions using a parameterized aggregation layer, i.e.:

Ψ(v) = ΨU (Φ(x1), . . . ,Φ(xM )) (8)

Here Φ is the frame-level mapping and ΨU is an aggregation
function based on uninorms [39], which are a principled way
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to soften the hard rule. A uninorm U is a monotonic increas-
ing, commutative and associative mapping from [0, 1]× [0, 1]
to [0, 1] with neutral element e ∈ [0, 1]. This means that
U(a, e) = U(e, a) = a for all a ∈ [0, 1]. If e = 1, U is
fully non-compensatory (like taking the minimum between
a and b), while it is fully compensatory if e = 0 (like the
taking maximum). Choosing e ∈ (0, 1) allows the uninorm
to have a hybrid behaviour. Note that being associative,
uninorms can be applied to an arbitrary number of inputs
(e.g., U(a, b, c) = U(U(a, b), c)). Following [22], we learn
the appropriate value for the neutral element e from data.
Our aggregation layer takes as input the sequence of frame-
based prediction scores Φ(x), aggregates them along each
dimension/score using a uninorm U and returns the softmax
of the resulting aggregation as a video-based prediction. The
layer has only four parameters, which are the neutral elements
for each candidate score {0, 1, 2, 3}, and it is thus amenable
to training with little supervision.

Any uninorm with neutral element e can be written as [39]:

Ue(a, b) =


eT (ae ,

b
e ) if a, b ∈ [0, e]

e+ (1− e)S(a−e1−e ,
b−e
1−e ) if a, b ∈ [e, 1]

Û(a, b) otherwise
(9)

for a certain choice of T , S and Û(a, b) such that min(a, b) ≤
Û(a, b) ≤ max(a, b). The functions T and S are called t-norm
and t-conorm respectively, and model the non-compensatory
and compensatory behaviour. Different choices for these func-
tions lead to different uninorms. We found the product t-
norm T (a, b) = ab (and corresponding t-conorm S(a, b) =
a + b − ab) to be the most effective choice as it allows the
gradient to flow the most. Concerning the function Û(a, b),
common choices are min(a, b) and max(a, b), producing the
so-called min-uninorms and max-uninorms respectively. We
found min-uninorms to be the best choice in our setting (with
respect to max(a, b) but also mean(a, b)), likely because of
their fully non-compensatory behaviour in the area of highest
discrepancy between frame-based predictions.

3) Loss definition: The architecture is trained using the
SORD loss described in Eq. (5) computed over the video-level
prediction.

4) Training strategy: The frame-based predictor outputs pre-
diction scores with a distribution that differs between the
training and the test set. In order not to overfit the video-based
predictor on the training scores distribution, we completely
separate the training sets of the frame-based and video-based
predictor. We train the frame-based predictor on all video
sequences T without any video-based annotation, and evaluate
it on the remaining sequences T ′ . We then train and evaluate
the video-based predictor on T ′, using a k-fold cross validation
procedure (k = 5) with splits made at the patient level (i.e.
all videos from the same patient are in the same fold). We
choose to use as video-level annotations the ones produced
by the first annotator, the clinician with the highest expertise.
We train our model using an Adam optimizer with learning
rate 10−2 without weight decay and with no learning rate
scheduling. For each epoch, we compute the loss for each
train video sequence and accumulate its gradients, performing
a single optimization step at the end of each epoch. We train

the model for a maximum of 30 epochs and use the loss on
the training set to define an early stopping strategy.

Note that the entire architecture including the frame-level
component could be trained entirely end-to-end. However, this
solution is not effective given the vast disproportion in the
amount of supervision at the video and frame levels currently
available in ICLUS-DB. We thus trained the aggregation layer
after freezing the weights of the frame-based architecture. Full
end-to-end training combining frame-based and video-based
supervision will be investigated in future work.

C. Semantic Segmentation
1) Problem formulation and notation: Let X = Ri×j and Y

denote the input (i.e. the image space) and output (i.e. the
segmentation masks) space, respectively. In the earlier pre-
sented frameworks for image- and video-based classification,
the score set was defined as S = {0, 1, 2, 3}. For semantic
segmentation we however distinguish five different scores, i.e.
the four scores in S, complemented by the background (BG)
score, assigned to pixels that were not annotated for showing
markers associated with any of the classes in S. As such,
Y = {0, 1, 2, 3,BG}i×j .

2) Model definition: We are interested in learning a mapping
Ω : X → Y , which given an input LUS image, outputs the
associate pathological segmentation mask. To model Ω, we
compare several network architectures for end-to-end image
segmentation, such as the vanilla U-Net [23], and the more
recently proposed U-Net++ [40], and Deeplabv3+ [41].

Our baseline U-Net model has three encoding layer blocks,
each comprising two convolutional layers with ReLU activa-
tions and one maxpool layer (pooling across 2, 2, and 5 pixels
in both dimensions, respectively), a latent layer, and a mirrored
decoder (where pooling is replaced by nearest neighbour up-
sampling). We use skip connections between each layer block
of the encoder and decoder. To mitigate overfitting we apply
dropout (p = 0.5) during training at the latent bottleneck of
the model. The Unet++ variant leverages the first four encoder
blocks of the ResNet50 model [42] to construct a latent space.
The latent space is upsampled in the decoder stage by means
of transpose 2D convolutional layers. The decoder contains
residual blocks, and also exploits skip connections between
(same-sized) hidden layer outputs in the ResNet50 encoder
and the decoder. The Deeplabv3+ model similarly employs an
encoder-decoder structure, where features are extracted using
spatial pyramid pooling (i.e. pooling at different grid scales)
and atrous convolutions, resulting in decoded segmentation
maps with detailed object boundaries.

3) Loss definition: We adopt a pixel-wise categorical cross-
entropy loss between he segmentation masks g(yn) and the
model predictions ŷn = Ω(h(xn)). Functions g(·), and h(·)
are pre-processing transformations applied prior to training.

Function h(·) comprises the resizing of all acquired B-mode
images to 260 × 200 pixels, preserving the original aspect
ratio of the scans by appropriate zero padding, and subsequent
normalization between -1 and 1.

4) Training strategy: Due to the larger (and more represen-
tative) set of pixel-level annotations for the convex probe,
compared to the linear probe acquisitions (1,005 and 426
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Fig. 4: Examples of the image crops produced by the Reg-STN network. The first column shows input images acquired with linear and
convex sensors, respectively. In the second column we report the heatmaps produced by GradCam [44] and the bounding boxes obtained
by thresholding. In the remaining columns, original image overlayed with bounding boxes and the two respective crops (in red and green)
produced when the Reg-STN models: a) only translation and a fixed scaling; b) all possible transformations viz. translation, scaling and
rotation, are shown. In each case the Reg-STN focuses on the most salient parts which contains the pathological artifacts.

annotations, respectively), we here specifically focus on the
convex acquisitions. We split our dataset into a train (70%) and
test set (30%) at a patient level, i.e. all movies and frames from
one patient fall into a specific set. Among the 1005 frames, a
total of 1158 imaging biomarkers were segmented.

During training, we are given a training set of N image-label
pairs T = {(xn,yn)}Nn=1 where xn ∈ X and yn ∈ Y . The
model parameters are learned by back-propagating the earlier
defined categorical cross-entropy using the Adam optimizer
(default settings), with a learning rate of 10−5. Training was
stopped upon convergence of the training loss.

Each training batch consists of 32 B-mode images and their
corresponding segmentation masks, which are balanced across
patients and scores to avoid biases resulting from the length
of the ultrasound scan (number of frames in a single video)
and population-level distribution of scores. While these biases
generally aid the overall accuracy, they hamper patient-level
decision making across demographics.

To promote invariance to common LUS image transforma-
tions and thereby improve generalization at inference, each
image-label pair is heavily manipulated on-line during training
by a set of augmentation functions that were each activated
on the image-label pair with a probability of 0.33. The set of
augmentation functions, each applied with a randomly sampled
strength bounded by a set maximum, consists of: affine trans-
formations (translation (max. ±15%), rotation (max. ±15◦),
scaling (max. ±45%), and shearing (max. ±4.5◦)), multiplica-
tion with a constant (max. ±45%), Gaussian blurring (σmax =
3
4 ), contrast distortion (max. ±45%), horizontal flipping (p =
0.5), and additive white Gaussian noise (σmax = 0.015).

5) Inference: To further boost robustness and performance,
we apply model ensembling and calculate the unweighted
average over predicted softmax logits of the U-net, U-net++,
and Deeplabv3+ models (all trained with data augmentation).

To allow for qualitatively assessment of the uncertainty of
the predictions, we produce pixel-level estimates of model
uncertainty by using Monte-Carlo (MC) dropout [43]. During
inference, we stochastically apply dropout in the latent space,
yielding multiple point estimates of our class predictions. The
amount of variation in the resulting predictions, ultimately
provides an indication of uncertainty for every pixel.

V. EXPERIMENTAL RESULTS

A. Frame-based score prediction
To evaluate the performance of our proposed frame-based

scoring method and its constituent components we consider
the following baselines: i) CNN trained with Cross Entropy
loss (CE), ii) CNN trained with SORD, iii) Resnet-18 trained
with SORD, iv) STN based CNN trained with SORD; v)
CNN+Random Crop+SORD, a CNN trained on SORD with
random crops rather than bounding boxes extracted by STN
and vi) Our proposed Reg-STN model.

In Table I, we evaluate the performance of our method
in terms of F1-score. Since, the annotations in LUS images
are quite subjective (see later) we also report results for
two additional metrics, which are then defined as Setting
2 and Setting 3, respectively. The metrics are: i) Setting 1
considers the F1 score computed on the entire test set, ii)
Setting 2 considers the F1 score computed on a modified
version of the test set obtained by dropping, for each video,
the K frames before and after each transition between two
different ground truth scores, potentially removing ambiguous
frames that present characteristics at the boundary between
two classes, thereby allowing us to identify the impact of noisy
labeling on the performance of the model; and iii) Setting 3,
we drop the most challenging videos by using the inter-doctor
agreement between the 5 independent video-level annotations.
In practice, we only keep in the test set the videos with
at least A doctors agreeing on the video-level annotations.
For completeness, we report under Setting 3 also the scores
obtained on the complete portion of the test set containing
video-level annotations (Video Ann.).

As shown in Table I, our proposed Reg-STN trained with
SORD beat the baseline models in most of the settings
and is the second best in the remaining. On average, Reg-
STN performs the best amongst all baselines. This proves
the effectiveness of our proposed method for doing frame-
based prediction for pathology detection in LUS images. Our
experiments were run on a RTX-2080 NVIDIA GPU. As
for computational complexity, it takes ∼11 hours to train a
CNN+Reg-STN+SORD model on this hardware.

B. Video-based score prediction
We evaluate video-based score prediction in terms of

weighted F1 score, Precision and Recall. These are obtained
by first computing the metric for each score (zero to three), and
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TABLE I: F1 scores (%) for the frame-based classification under different evaluation settings. Setting 1 represents evaluation on the full
test set, Setting 2 represents the analysis on the test set with dropped transition frames and Setting 3 represents the analysis accounting for
inter-doctor agreement. The baseline for this setting is provided by the evaluation on the set of test sequences with video-level annotations
(Video Ann.). Best and second best F1 scores (%) are in bold and underlines, respectively.

Model Setting 1
Regular Metric

Setting 2
Drop Transition Frames (K)

Setting 3
Inter-doctor Agreement (A) Avg

K=1 K=3 K=5 K=7 Video Ann. A=3 A=4

CNN+CE 61.6 63.1 64.9 66.3 67.6 74.8 78.0 77.0 69.2
CNN+SORD 63.2 64.8 66.3 67.8 68.9 73.0 76.8 75.8 69.6
Resnet-18+SORD 62.2 63.9 65.5 66.9 67.8 74.5 77.4 76.4 69.3
CNN+STN+SORD 61.0 62.6 63.8 64.8 65.6 78.4 82.2 81.4 70.0
CNN+Random Crop+SORD 61.8 63.0 64.2 65.1 65.9 71.9 74.6 73.5 67.5
CNN+Reg-STN+SORD (Ours) 65.1 66.7 68.3 69.5 70.3 75.4 78.4 77.5 71.4

TABLE II: Mean and standard deviation of weighted F1 score,
precision and recall computed over the five cross validation folds,
for the proposed video-based classification method and baselines.

Method F1 (%) Precision (%) Recall (%)
max argmax 46± 21 55± 27 49± 18
argmax mean 51± 12 56± 19 53± 09
uninorms 61± 12 70± 19 60± 07

TABLE III: Confusion matrices (%) for the proposed video-based
classification method and baselines.

max argmax argmax mean uninorms
0 1 2 3 0 1 2 3 0 1 2 3

0 7 9 7 3 16 10 0 0 10 16 0 0
1 0 3 12 5 3 9 9 0 2 17 2 0
2 0 0 17 9 0 3 21 2 0 5 16 5
3 0 0 5 22 0 2 17 9 0 5 5 17

then computing the weighted average over scores, where the
weight is the fraction of instances having that score. Note that
weighted recall corresponds to (multiscore) accuracy, i.e., the
fraction of correctly predicted scores over the total number of
predictions. Table II reports averages and standard deviations
of these metrics over the five folds of the cross validation
procedure. We compare our video-level predictor with two
standard aggregation methods, max argmax and argmax mean.
The former implements the hard rule described in Section IV-
B. It labels each frame with the most probable score according
to the frame-level predictor, and takes the maximal score along
the video. The latter averages frame-level predictions over
the video and returns the score with the maximal average.
The proposed method outperforms both baselines in terms
of F1-score, precision and recall. Table III shows confusion
matrices for the three methods, obtained by concatenating the
predictions for all folds. As expected, the max argmax hard
rule is strongly biased towards predicting the highest score,
resulting in bad performance on all other scores. On the other
hand, the argmax mean baseline has the best performance in
predicting score zero, but performs poorly on the other scores
(under-predicting scores one and three and over-predicting
score two). The uninorm-based aggregation is more balanced,
outperforming each of the baselines on three out of four scores.

C. Semantic Segmentation

Fig. 5 shows several illustrative examples of semantic
segmentation results of our ensemble network, along with their
ground-truth annotations. A quantitative assessment and com-
parison of segmentation performance for the U-Net, U-Net++,
Deeplabv3+, and ensemble models are provided in Table IV.

We observe that using on-line augmentation of images and
annotations in combination with model ensembling yields a
strong performance gain over a baseline U-Net, increasing the
Dice coefficient from 0.64 to 0.75 for the union of COVID-19
markers. The ensemble model yields a categorical Dice score
of 0.65 (mean across the segmentations for score 0, 2 and 3).
This metric was 0.47 for our baseline U-net.

In Fig. 6 we provide a visualization of uncertainty in the
predicted segmentations for two example images by plotting
the pixel-wise standard deviation yielded by MC dropout
across 40 samples. Arrows in (A) indicate a region displaying
COVID-19 markers for which ambiguity in the exact shape
and extent are well reflected in the pixel-level uncertainty.
Arrows in (B) indicate a seemingly false-positive region which
was assessed as a high-grade COVID-19 marker by the deep
network, and not annotated as such. Interestingly, retrospec-
tively the network output was judged as a true positive by the
annotators, showing an area of hyperechogenic lung below the
pleural surface [12], which characterizes a high permeability
and advanced disease state.

VI. DISCUSSION AND CONCLUSIONS

A. Frame-based score prediction evaluation

In Table I we ablate the contribution of the building blocks
of our model for frame-based prediction. The replacement
of the traditional cross-entropy (CE) with the SORD loss
for ordinal regression clearly improves the performance. On
the other hand, we found that the addition of STN leads to
a drop in the F1-score because of the additional trainable
parameters (as many as the CNN) introduced by the STN and
the absence of a regularisation. However, STN comes with
two positive side effects: (i) it provides weakly supervised
localizations without using fine-grained supervision; and (ii)
enables the use of consistency-based regularization, which is
very beneficial in terms of performance. Our full model, which
embeds the STN module, the SORD loss and the proposed
consistency loss achieves an F1-score of 65.1, outperforming
all the baselines by a large margin. To further investigate if the
boost occurs because of the consistency term or the STN, we
conducted an experiment using two sufficiently overlapping
random crops and enforced consistency loss between the two.
Unsurprisingly, the F1-score for CNN+Random Crop+SORD
stays much below to our proposed method. We hypothesize
that the consistency loss is only useful when the crops cover
the area of the artefact.
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Fig. 5: Four examples of B-mode input image frames (first column), their annotations (second column) including COVID-19 biomarkers
(moderate / score 2: orange, severe / score 3: red), and signs of healthy lung (blue). The corresponding semantic segmentations and contours
of COVID-19 markers by deep learning are given in the third and fourth colomn, respectively.

In contrast to the previous work [18], we found that the use
of more complex architectures like ResNet18 does not bring
any positive improvement in performance. We reason that this
is due to the low intrinsic complexity of the task. Conversely,
we suggest that most of the confusion of the model is caused
by the noise in both frames and labels. In turn, we believe
that this noisiness is due to the subjectivity of the annotation
and the presence of ambiguous frames. In fact, frame labels
do not take into account that multiple artifacts can be present
at a time. This happens mostly when the sensor is moving,
causing a transitions from one score to another. In order to
highlight the concentration of the errors of our models around
transitions, we devise the experimental Setting 2, as shown in
Table I, in which we drop frames close to transition points. The
results in the Table I show that removing ambiguous frames
from the test set dramatically reduces the amount of errors of
the model, regardless of the architecture, empirically validating
our hypothesis about noisy labeling.

In Table I we also measured how the subjectivity of the an-
notated scores affects the performance of the model in Setting
3 and discovered that when there is a strong agreement among
doctors (more than 2 doctors agree on a score) our network
performs notably better, increasing the F1-score by almost 3
points. This suggests that some videos are intrinsically more
ambiguous than others. In addition, we found that, on this
matter, the network seems to be behave similarly to human
annotators, which is a desirable property. Moreover, although
it seems counter-intuitive, our experiments point out that the
performance of the model does not change much after a certain

degree of agreement between doctors (A = 3 vs. A = 4).
This is probably caused by the fact that imposing stronger
agreement makes the test set smaller, yielding less statistically
significant results.

Finally, we visualize the crops yielded by the STN and
illustrate them in Fig. 4. We considered two kind of affine
transformations modeled by the Reg-STN in our experiments:
i) learnable translation with fixed scaling; and ii) learnable
translation, scaling and rotation. We compute an F1-score of
65.9 when the STN models a learnable translation with fixed
scaling. In both the cases the STN produces highly localized
crops that mostly hinges around the area of pathological
artifact. Interestingly, for both convex and linear sensors acqui-
sitions, the Reg-STN learns to ignore the area above the pleura,
which is essentially irrelevant for the prediction of a frame.
This validates the usefulness of incorporating STN blocks
in our frame-based predictor. We also report the heatmaps
produced by GradCam [44] for the same images. Qualitatively,
GradCam does not always focus on the relevant areas of the
image. For example, for the linear probe image displayed in
the figure, attention is given to the intercostal tissue layers and
not to the areas of the image below the pleural-line, which are
the areas of interest for the analsysis of LUS data. Also, we
noticed that the quality of the heatmaps deteriorates when the
prediction of the network is incorrect. Moreover, we found it
hard to produce reasonable boxes from the heatmaps produced
by GradCam, since it requires thresholding. For these reasons,
we believe that STN produces superior localizations.
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Fig. 6: Two examples (A, B) of class uncertainty in the segmentations, showing B-mode input image frames (first column), annotations (second
column), including COVID-19 biomarkers (moderate / score 2: orange, severe / score 3: red), the corresponding semantic segmentations by
deep learning (third column), and pixel-level COVID-19 class uncertainty by MC-dropout (fourth column).

B. Video-based score prediction evaluation

When trained on the annotations by the most expert clini-
cian, video-based classification achieves an F1-score of 61%,
a precision of 70% and a recall of 60%. It is noticeable
that these values are in line with the low inter-annotator
agreement reported in Section III, which together to the small
number of samples with video-level annotations can explain
the high variance of the scores across folds. We expect that
extending our relatively small set of video-level annotations
will help counteracting the labeling noise, increase the model
performance and reduce its variance.

C. Segmentation evaluation

Our segmentation model is able to segment and discriminate
between areas in B-mode LUS images that contain back-
ground, healthy markers and (different stages of) COVID-19
biomarkers at a pixel-level, reaching a pixel-wise accuracy
of 96% and a binary Dice score of 0.75. Alongside these
segmentations, we provide spatial uncertainty estimates that
may be used to interpret model predictions.

Interestingly, and importantly, none of the highest (and
most severe) score index annotations in the test set were
missed by our model, judged by visual assessment of the
resulting segmentations, and by analysing the relative image-
level intersections among the corresponding predicted and
annotated regions. Moreover, we observed model predictions
of COVID-19-positive regions, that had however not been
annotated as such. Fig. 6B shows a representative example
of such a case. After re-evaluating some of such examples
from the test set, together with the annotators, we learned that
the annotators were sometimes unsure whether to annotate a
region as e.g. score 2 or 3, and therefore decided that the
marker was not clear enough to annotate the region at all,
leading to the aforementioned discrepancy.

Segmentation performance and extraction of semantics
could be further boosted by leveraging temporal structure
among frames in a sequential model. Such models could
learn from annotations across full videos, or through partial
annotations and weak supervision. We leave these extensions
of the present method to future work.

TABLE IV: Segmentation performance in terms of the mean categor-
ical accuracy across all pixels and scores (Acc.), the Dice coefficient
for the union of COVID-19-related scores (Dice), and the mean Dice
across scores 0, 2, and 3 (Cat. Dice). Score 1 was excluded due to
the low number of annotations.

Network and training strategy Acc. Dice Cat. Dice
(1) U-Net 0.94 0.64 0.47
(2) U-Net with on-line augmentation 0.95 0.69 0.55
(3) U-Net++ with on-line augmentation 0.97 0.72 0.64
(4) Deeplab v3+ with on-line augmentation 0.95 0.71 0.62
Ensemble of (2,3,4) 0.96 0.75 0.65

D. Limitations of the dataset
In order to unravel the specific characteristics of this disease,

researchers needed to gather as much data from patients as
possible. However, due to the enormous impact and rapid
spread of infected patients, data gathering in an organized
manner proved a challenge. As a result, the precise demo-
graphics of the patient group in our database remain unknown.

Ideally, the dataset should be larger, more heterogeneous,
and more balanced in term of scores in order to be used for
learning accurate deep models. In our case, the data has been
collected in a limited set of hospitals, all of them located
in Italy. Furthermore, the way data was collected is prone
to certain bias, e.g. due to a high patient inflow, the most
severe patients were prioritized and assessed, and ultrasound
diagnosis was performed on patients with a high clinical
suspicion. No subsequent testing was done, resulting in the
possible inclusion of false positive cases.

Labels in the ICLUS-DB turned out to be noisy. Further-
more, for frame-based classification and segmentation tasks
the inter-operator agreement was not available. The noise
can be indirectly observed in Table I, where using only
a selection of training samples, performance improves by
almost 5%. Extending the database to obtain frame-level labels
from multiple annotators would surely lead to more robust
models. Finally, the included LUS videos with score 0 are
all of healthy patients, and therefore by no means we claim
to distinguish between COVID-19 patients and those with
different pathologies.

E. Possible applications
A benefit of using ultrasound is the low risk of cross-

infection when using a plastic disposable cover and indi-
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vidually packaged ultrasound gel on a portable handheld
machine [45]. This is in contrast with use of CT, for which
rooms and systems need to be rigorously cleaned to prevent
contamination (and preferably reserved for patients with a
high COVID-19 suspicion). LUS can be performed inside the
patient’s room without need of transportation, making it a
superior method for point-of-care assessment of patients.

Moreover, ultrasound renders real-time images and, com-
bined with our DL methods, provides results instantly. It may
also directly assist in triage of patients; first-look estimation
of the disease’s severity and the urgency at which a patient
needs to be addressed. In addition, low and middle-income
countries, where diagnosis through RT-PCR or CT may not
always be available, can particularly benefit from low-cost
ultrasound imaging as well [46]. However lack of training on
the interpretation of these LUS images [47] could still limit
its use in practice. Our proposed DL method may therefore
facilitate ultrasound imaging in these countries.
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