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Improving Activity Recognition
by Segmental Pattern Mining

Umut Avci and Andrea Passerini

Abstract—Activity recognition is a key task for the development of advanced and effective ubiquitous applications in fields like ambient

assisted living. A major problem in designing effective recognition algorithms is the difficulty of incorporating long-range dependencies
between distant time instants without incurring substantial increase in computational complexity of inference. In this paper we present a

novel approach for introducing long-range interactions based on sequential pattern mining. The algorithm searches for patterns
characterizing time segments during which the same activity is performed. A probabilistic model is learned to represent the distribution

of pattern matches along sequences, trying to maximize the coverage of an activity segment by a pattern match. The model is
integrated in a segmental labeling algorithm and applied to novel sequences, tagged according to matches of the extracted patterns.

The rationale of the approach is that restricting dependencies to span the same activity segment (i.e., sharing the same label), allows
keeping inference tractable. An experimental evaluation shows that enriching sensor-based representations with the mined patterns

allows improving results over sequential and segmental labeling algorithms in most of the cases. An analysis of the discovered patterns
highlights non-trivial interactions spanning over a significant time horizon.

Index Terms—Activity recognition, pattern mining, segmental labeling

Ç
1 INTRODUCTION

THE automatic recognition of activities from sensor data
is crucial for developing advanced applications in areas

like ambient assisted living and assisted cognition. Services
like reminders and automatic reporting to clinicians and
medical staff can help in improving healthcare and elders’
independent living. From a machine learning viewpoint,
activity recognition can be formalized as a sequence label-
ing task: given a sequence of sensor readings covering a
timespan of interest (e.g., a day), predict the sequence of
activities being performed. The timespan is typically
divided into small time intervals, to be labeled with the
activity or the activities taking place. We will refer to these
time intervals as instants in this paper. A number of
machine learning algorithms have been applied to this task,
ranging from simple Naive Bayes [1] to sequential
approaches like hidden Markov models (HMM) [2], condi-
tional random fields [3] and their variants [4].

Local techniques like Naive Bayes or standard support
vector machines label each time instant independently,
possibly extending its input representation over neigh-
boring instants. On the other hand, sequential
approaches collectively assign labels to all instants within
the period of interest. This allows exploiting the relation-
ship between activities performed at different time and
usually results in performance improvements, other
things being equal [5]. In modeling temporal interactions,
however, these models are limited to rather small spans.
Sequential approaches rely on a Markovian assumption

to limit the number of parameters to be learned and keep
inference tractable.

There are a number of attempts in the literature in
order to account for longer-range dependencies. Hierar-
chical approaches aim at representing activity relations
in different levels of a hierarchy. Dependencies between
short-range activities in the lower level of the hierarchy
are fed into higher levels for creating longer-range ones
[7], [8], [9]. However, creating hierarchies requires deep
knowledge regarding the underlying structure of the
problem. Adding shortcut links between arbitrary time
instants along the sequence, e.g., in skip-chain CRF, is
another alternative [14] but the complexity of the model
and the cost of inference increase drastically depending
on the number of shortcuts introduced.

An activity usually spans a certain amount of time, its
average duration depending on the specific activity being
performed (e.g., taking a shower or watching TV). We
define an activity segment as a sequence of consecutive
time instants in which the same activity is performed. Seg-
mental labeling can be accomplished by semi-Markov mod-
els [15], which explicitly account for duration information.
However, incorporating long-range dependencies between
observations within each segment is again a bottleneck. In
this paper we address the problem of introducing longer-
range dependencies in sequential labeling algorithms rely-
ing on sequential pattern mining techniques [16], [17], [18],
[19]. We show how to integrate sequential pattern mining
into probabilistic segmental labeling algorithms, providing
improved capacity to model longer-term dependencies. Our
solution consists of mining segmental patterns, i.e., sequen-
tial patterns which cover segments corresponding to a cer-
tain activity. By allowing gaps between matches of
individual pattern elements, distant observations can be
related. We introduce a probabilistic duration model repre-
senting the distribution of pattern matches along sequences,
and integrate it into a hidden semi-Markov model (HSMM).
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A preliminary version of this work was presented in [6],
where pattern matches were simply modeled as additional
binary features for each time instant within the match.

We evaluate the proposed approach on two different
freely available real-world data sets. The experimental eval-
uation shows that the pattern-based HSMM allows improv-
ing labeling results in almost all scenarios. A detailed
analysis of mined patterns shows that non-trivial interac-
tions along non-close time instants are modeled, e.g., by dis-
covering trajectories or sequences of object interactions
characterizing specific activities.

The paper is organized as follows. In the next section,
related work is discussed. Section 3 introduces the data
representation format and the notion of activity segment.
Sequential and segmental activity recognition algorithms
are briefly revised in Section 4. Section 5 describes our
segmental pattern mining approach, while the pattern-
based HSMM algorithm is detailed in Section 6. Compu-
tational complexity analysis for the algorithm is dis-
cussed in Section 7. An extensive experimental
evaluation is reported in Section 8. Finally, conclusions
are drawn in Section 9.

2 RELATED WORK

The problem of dealing with long-range dependencies is
well-known in the machine learning community. A number
of attempts at addressing it rely on hierarchical models like
hierarchical HMMs [7] and their many recent variants [8],
[9]. These try to model higher level dependencies between
short-range activities which should account for the long-
term dependencies. Du et al. [10] assume that human activi-
ties can be decomposed into multiple interactive stochastic
processes to represent distinct characteristics of activities,
where each characteristic corresponds to a level in hierarchi-
cal DBNs. Activity modeling is then achieved by modeling
the interactive processes. However, hierarchical approaches
require a good amount of knowledge about the underlying
structure of the problem in building the hierarchies. The
SAMMPLE architecture [11] learns high-level activities as
combinations of low-level locomotive micro-activities (e.g.,
sitting). These latter are learned with appropriate classifiers
trained on supervised instances of micro-activities. Micro-
activities are also used in [12] as building blocks, combined
through topic models to predict daily routines like commut-
ing or office work. Depending on the granularity and dura-
tion of the activities to be predicted, it is not always easy to
develop effective hierarchical models. Indeed, preliminary
experiments showed that a two-level hierarchical HMM,
modeling activity segments at the lower lever and sequen-
ces of segments at the upper one, did not improve over
plain HMM in any of our experimental scenarios. Another
approach for modeling long-range dependencies consists of
explicitly adding links between distant time instants which
are deemed to be in direct relationship, like in skip-chain
CRF [13]. Hu and Yang [14] propose using this approach in
order to recognize concurrent and interleaved activities.
Interleaving goals are modeled by leveraging the skip
chains while concurrent are were identified by adjusting
inferred probabilities via correlation graphs. However, the
method requires a large amount of training data because of

the many possible ways in which an ongoing activity can be
interrupted and resumed. Furthermore, shortcut links con-
siderably increase the complexity of the inference task
and should thus be carefully selected. Skip-chain CRF have
been successfully applied to named-entity recognition,
where shortcut links are added between pairs of identical
capitalized words.

The idea of mining patterns from the sensor data has been
extensively studied in the activity recognition community.
Hasan et al. [20] apply frequent set mining to create a low-
dimensional feature representation from a large number of
binary sensors. T-patterns are used in [21], where the authors
propose two improvements over the base approach, namely
testing independence between two temporal points and
Gaussian mixture modeling of correlation times, to detect
temporal patterns at a low computational cost and to make
the model more robust to spurious patterns. Tao et al.
develop a technique based on Emerging patterns to recog-
nize sequential, interleaved and concurrent activities for sin-
gle [22] and multiple [23] users. Contrary to previous work,
Rashidi et al. [24] exploit patterns in order to discover activi-
ties in an unsupervised manner, using a modified edit dis-
tance to cluster together similar patterns. However, none of
these studies addresses the long-term dependency problem.

3 DATA REPRESENTATION

A data set D ¼ fðx;yÞð1Þ; . . . ; ðx;yÞðdÞg is a collection of
input-ouput sequences for a number of days d. An input
example x ¼ fx1; . . . ;xTg consists of a consecutive sequence
of observations, each covering a certain time instant t. An
observation xt is represented by the set of sensors which are
active at that time instant (i.e., within its time interval). Dif-
ferent choices can be made in deciding when a sensor is con-
sidered active, as will be discussed in the experimental
section. When feeding input sequences to labeling algo-
rithms (see Section 4), observations will be represented as
binary vectors rather than sets. Given N sensors, an obser-
vation xt will thus be encoded as a binary feature vector
xt ¼ ðx1

t ; . . . ; xNt Þ, each feature being 1 if the corresponding
sensor is active and 0 otherwise.

The labeling task consists of predicting a sequence of
activity labels y ¼ fy1; . . . ; yTg, one for each time instant.
Each label yt 2 ½1; L& is one of L possible activities, with one
indicating no activity. We assume here that activities are not
simultaneous, i.e., only a single activity is performed at each
time instant. The segmental pattern mining algorithm can
however be generalized to deal with multiple simultaneous
activities, as discussed in the conclusions of the paper. We
define an activity segment as a sequence of consecutive time
instants labeled with the same activity. A segment
su ¼ ðbu; eu; yuÞ is represented by its starting and ending
time instants bu; eu 2 ½1; T &, with eu ' bu, and the segment
label yu. A label sequence y can be split into a sequence
s ¼ fs1; . . . ; sUg of activity segments such that b1 ¼ 1,
eU ¼ T , bu ¼ eu(1 þ 1 and yu 6¼ yu(1 for all u. We define as
xbu:eu the segment of x ranging from bu to eu included. A col-
lection of s over all the days forms S ¼ fsð1Þ; . . . ; sðdÞg with d
being the number of days. We define Sy as the set of seg-
ments for a particular activity y, i.e., Sy * S : 8 su ¼
ðbu; eu; yuÞ 2 Sy; yu ¼ y. The corresponding set of input
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segments is DðSyÞ ¼ fxbu:eu : ðbu; eu; yuÞ 2 Syg. A summary
of notations is given in Table 1.

4 ACTIVITY RECOGNITION ALGORITHMS

An effective approach for performing activity recognition
on temporal data should be able to model the relationships
between time instants and between their respective labels.
Hidden Markov models [25] and hidden semi-Markov
models [15] are directed graphical models which have been
successfully used to perform sequential and segmental
labeling respectively. These algorithms have been recently
compared [4], [5] on a benchmark consisting of wireless sen-
sor network data. Both algorithms model the joint probabil-
ity distribution of input and output pðx;yÞ and return the
output maximizing this probability, y+ ¼ arg maxy pðx;yÞ.

A hidden Markov model is a sequential approach where:
1) the label at each time instant depends on the label at the
previous time instant only, 2) the observation at each time
instant depends on the label at that time instant only,
3) probabilities do not depend on the specific time instants
but only on the values of labels/observations at those
instants. The resulting joint probability is given by

pðx;yÞ ¼
YT

t¼1

pðxt j ytÞpðyt j yt(1Þ;

where pðy1 j y0Þ stands for the probability of having y1 as the
initial label. In modeling the conditional probability of obser-
vations given label, a common simple approach (also followed
in [4], [5]) consists of making a Naive assumption of indepen-
dence between observation features given the label. The result-
ing probability is

pðxt j ytÞ ¼
YN

i¼1

p
!
xit j yt

"
; (1)

where for the binary case, probabilities for features pðxitjytÞ are
represented as Bernoulli distributions.

HMMs imply an exponential distribution for state dura-
tions. The probability of seeing label l for d consecutive
instants is d times the probability of a self transition
pðyt ¼ l j yt(1 ¼ lÞ. This assumption is often not appropriate
when durations tend to have specific patterns, as happens

in activity recognition tasks. Explicit duration distributions
can be represented by hidden semi-Markov models, which
consider probability of segmental labeling ðx; sÞ. Recall that
s is a sequence of U consecutive segments su ¼ ðbu; eu; yuÞ.
The corresponding joint probability is represented as

pðx; sÞ ¼
YU

u¼1

pðyu j yu(1Þpðdu j yuÞpðxbu:eu j yuÞ;

where du ¼ eu ( bu þ 1 is the duration of segment su, whose
probability can be modeled by the desired distribution. Fol-
lowing [4], we employed a histogram distribution with five
bins. Concerning the probability of a certain observation seg-
ment given its label, it is commonly computed (again, see
e.g., [4]) as the product of the probabilities of its time instants

pðxbu:eu j yuÞ ¼
Yeu

t¼bu

pðxt j yuÞ (2)

where pðxt j yuÞ is further decomposed as in Eq. (1). How-
ever, additional knowledge on the dynamics of a certain
activity could help devising a more complex probabilistic
model for the sequence of observations measured while per-
forming it. We will use mined activity patterns in order to
enrich this representation with features capturing longer
range dependencies.

Note that the approach that we introduce for directed
graphical models can be straightforwardly applied to their
undirected counterparts, conditional random fields [13]
with their semi-Markov extension [26]. We did not include
them in our comparison, as they require much longer train-
ing time and were shown to provide comparable and often
worse results with respect to their directed counterparts
(HMM and HSMM) on this benchmark [4].

5 SEGMENTAL PATTERN MINING

Our aim is mining patterns characterizing timespans during
which a certain activity is performed. Algorithm 1 shows
the pseudocode of our segmental pattern miner. Training
sequences are first split into activity segments, each labeled
with the corresponding activity. These segments are fed to a

TABLE 1
Notation Summary

PASSERINI: IMPROVING ACTIVITY RECOGNITION BY SEGMENTAL PATTERN MINING 3
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sequential pattern miner (procedure SEQUENTIALMINER). We
employed PBOOST [27] which supports discriminative min-
ing, i.e., mining of patterns distinguishing sequences of a
certain class from the others. In the following we provide a
brief description of the algorithm. Further details can be
found in the original paper [27]. The algorithm takes as
input sets of positive and negative examples, each example
being a sequence of sets of integers (the sensor identifiers in
our case). A pattern is itself a sequence of sets of integers.
The algorithm mines for patterns matching positive and not
negative examples. Let p ¼ ðp1;p2; . . . ;pmÞ be a pattern of
length m. Let pi be a pattern element, corresponding to a
non-empty set of active sensors. The pattern p matches
sequence x if there is a match ðt1; t2; . . . ; tmÞ such that: for
all i > j, ti > tj; for all i, xti contains active sensors pi, i.e.,
8pki 2 pi, x

pki
ti ¼ 1, where x

pki
ti is the value of sensor pki in the

observation vector for time instant ti. A gap is defined as a
sequence of time instants separating two consecutive pat-
tern element matches from each other. We define gap length
g as the overall sum of time instants occurring between con-
secutive pairs of element matches along the pattern. More
formally, pattern p ¼ ðp1;p2; . . . ;pmÞ matches a sequence
x ¼ ðx1;x2; . . . ;xnÞ with gap length g if there exist
time instants 1 , t1 , t2 , - - - , tm , n such that p1;p2; . . . ;
pm are respectively contained in xt1 ;xt2 ; . . . ;xtm and tm(
t1 þ 1(m ¼ g. By defining a canonical ordering for sequen-
ces, the pattern space is searched in a tree-based fashion
starting from the empty pattern [16]. Pruning of the search
space is conducted combining the standard notion of sup-
port (i.e., number of matching sequences) with that of gain:
PBOOST considers each pattern as a feature and learns a linear
classifier (LPBoost [28]) on top of them, discriminating
between positive and negative examples. The gain provided
by a feature can be compared with an upper bound on the
maximal gain achievable by further extending
the corresponding pattern. If the current gain exceeds or
equals the upper bound there is no need to proceed in this
search direction.

For each of the possible activities, PBOOST is run providing
segments of the target activity as positive examples and all
other segments as negative ones. Each of the returned pat-
terns p is evaluated according to its discriminative power,
computed as its F1 score on the training segments

(procedure SCORE). The F1 measure (see experiments)
tradesoff precision, i.e., the fraction of segments covered by
the pattern which do belong to the target activity, and recall,
i.e., the fraction of segments of the target activity covered by
the pattern. All patterns with a score lower than a certain
threshold f are discarded.

Sequential patterns extracted by PBOOST allow for arbi-
trary gaps between the pattern elements. Our aim is that
these patterns cover the largest possible portion of an activ-
ity segment. However, in the test phase when used to label
a novel time sequence, the activity segmentation will be
unknown and the patterns will be applied to the whole
sequence (i.e., a day). We thus need to estimate the expected
number of gaps in pattern matches for activity segments.
This is crucial for a correct use of patterns: during test,
allowing for arbitrary gaps within a pattern could produce
matches involving very distant time instants (e.g., in the
morning and afternoon), which likely belong to different
activity segments. The procedure MEDIANGAP described in
Algorithm 2 estimates how many gaps should be expected
on average for a match covering the largest possible portion
of an activity segment. Given a pattern characterizing a cer-
tain activity, and a set of training segments for that activity,
the procedure finds the longest possible match of the pat-
tern on each segment and computes the corresponding gap
length. Let ðp; gÞ be a pattern p ¼ ðp1; . . . ;pmÞ of length m
with gap length g. A g-gap-bounded match ðt1; . . . ; tmÞ for
the pattern is a sequence of time instants such that: for all
i > j, ti > tj; for all i, pi is contained in active sensors of xti ;
the sequence has at most g gaps, i.e., tm ( t1 þ 1 , mþ g.
The procedure LONGESTMATCH(x,t1,p,g) finds the longest g-
gap-bounded match of pattern p in sequence x starting at
instant t1. The procedure is used here for g ¼ T (m, i.e.,
asking to cover the largest possible portion of the entire
input sequence. As will be seen in the next section, the same
sub-routine is also employed during inference to return the
largest possible pattern match within the estimated gap
length. The procedure is detailed in Algorithm 3. The func-
tion MATCH(xc,pu) checks whether a single position matches
with a pattern element, i.e., xc contains active sensors pu.
The procedure verifies that the first u 2 ½1;m( 1& patterns
are matched within their allowed lengths uþ g, with the
first pattern matching position t1. Then it searches for the
longest possible match by matching the last pattern pm to a
position as close as possible to the overall maximal allowed
length mþ g. The initial (M1) and the final (M2) positions of
the match are returned as the border points. If the pattern
does not match with the sequence, border points are
assigned to ð0;(1Þ. The median of the gap length computed
over all activity segments is returned by the MEDIANGAP pro-
cedure as an estimate of the gap length which should be
expected for a pattern match covering the longest possible
portion of an activity segment. The final outcome of the seg-
mental pattern mining algorithm is a set of patterns charac-
terizing all activities, together with their estimated gap
lengths. Fig. 1a and b illustrate the pattern mining process
and the usage of gaps during pattern match respectively.
Three input sequences, corresponding for instance to three
days, are split into segments for activities a1; a2 and a3. A
time instant is either made up of sensor identifiers of inter-
acted objects or empty in the absence of sensor interactions.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXX 2014
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Having provided the segments of activity a1 as positive
examples and the others as negative examples, the algo-
rithm finds discriminative patterns (represented by solid
and dashed squares) in the form of object interactions for
a1. Let us assume that MEDIANGAP procedure returns three
as the gap length of the pattern ðcd; bc; frÞ. 3-gap-bounded
matches are searched over novel segments. The pattern
ðcd; bc; frÞ matches the three segments with gap lengths 3, 5
and 2 respectively. Only segments one and three are thus 3-
gap-bounded matches for the pattern (boldface) while
match for segment two exceeds the limits.

Note that our algorithm is not bound to the specific min-
ing technique, and can be fed with patterns obtained by any
sequential pattern mining approach (see e.g., [17], [18], [19]).

6 PATTERN-BASED HSMM

Patterns extracted during the mining phase are used to
enrich the observation models for segments, in order to pro-
vide additional and more expressive evidence for the occur-
rence of a certain activity.

We begin by showing how to identify pattern matches
within a sequence (Algorithm 4). The algorithm takes as
inputs a pattern with its estimated gap length and the
sequence to be scanned for matches, e.g., a full day, and out-
puts a list of segments representing pattern matches. For all
possible starting instants t1, it uses the LONGESTMATCH

(x; t1;p; g) procedure to compute the longest possible match

with at most g gaps. The rationale is that the pattern match
should try to cover the longest possible time span, within
the estimated limits characterizing the cover of an activity
segment by that pattern. The lower and upper borders of
this match are added to the list of matching segments,
unless the segment overlaps with the previously inserted
one (recovered by TOP), in which case the two are merged
into a single match spanning both segments.

Fig. 1. Example of discriminative pattern mining output (top): the miner finds two sequential patterns discriminating segments for activity a1 from seg-
ments for other activities. 3-gap-bounded match (bottom): segments one and three match pattern (cd,bc,fr) with three and two gaps respectively,
while match for segment two contains five gaps and is thus not a 3-gap-bounded match.

PASSERINI: IMPROVING ACTIVITY RECOGNITION BY SEGMENTAL PATTERN MINING 5
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Pattern matches are used to compute the probability that
a certain pattern covers a sequence segment given the seg-
ment label. Let Cðp;gÞxbu :eu

be a boolean random variable model-
ing approximate coverage of pattern ðp; gÞ over segment
xbu:eu , i.e.,

Cðp;gÞxbu :eu
¼ 1; if COVERðxbu:eu ;p; g; tÞ;

0; otherwise.

#

Here COVERðxbu:eu ;p; g; tÞ is true if segment xbu:eu is
approximately covered by pattern p. This happens if there is
a g-gap-bounded match of the pattern spanning almost all
the segment (with a threshold t defining the desired

approximation). Largest coverage of activity segments was
indeed the driving principle when mining patterns on
known activity segments. The (approximate) coverage is
formally defined as

COVERðxbu:eu ;p; g; tÞ,
dI
du
' t;

where

dI ¼
X

ðbv;evÞ2Mðp;gÞ

jðbv; evÞ \ ðbu; euÞj

is the fraction of segment ðbu; euÞ covered by any match of
pattern p and t is the desired coverage approximation,
which was set to 0.9 in our experiments (similar values gen-
erated similar results, while choosing substantially lower
coverages produced performance worsening, see the discus-
sion above). Note that the summation runs over disjoint
matches as overlapping ones have already been merged by
the PATTERNMATCHES procedure. The COVERðxbu:eu ;p; g; tÞ
procedure returns true also if segment xbu:eu is contained in
a g-gap-bounded match as a proper subsequence, i.e., the
match exceeds the borders of the segment. This is consistent
with the fact that pattern matches are maximal within the g-
gap-length limit. A probabilistic model of match duration,
combined with the standard segment duration probability
of HSMM, contributes to determine during inference the
optimal segmentation according to the learned probabilities,
as will be discussed in the following.

The pattern-based HSMM model is obtained modifying
the conditional probability of seeing an observation seg-
ment given a segment label (Eq. 2) in order to include evi-
dence concerning patterns

pðxbu:eu j yuÞ ¼
Yeu

t¼bu

pðxt j yuÞp
$
Cðp;gÞ

ð1Þ

xbu :eu
; . . . ; Cðp;gÞ

ðmÞ

xbu :eu
jyu
%
; (3)

where m ¼ jPj is the number of patterns and the joint prob-
ability ranges over all patterns ðp; gÞðiÞ 2 P. As for the term
modeling sensor activations only, we make a Naive Bayes
assumption of independency between patterns given the
segment label. This substantially simplifies the probabilistic
model, allowing for efficient inference as shown in Section 7.
Note however that this assumption can be easily violated
when e.g., patterns share common elements. We decided to
tradeoff expressivity for tractability, but a more complex
probabilistic model could be conceived. The simplified
probability becomes

pðxbu:eu j yuÞ ¼
Yeu

t¼bu

pðxt j yuÞ
Y

ðp;gÞ2P
p
$
Cðp;gÞxbu :eu

j yu
%
: (4)

The conditional probability of observing a pattern cover-

age is computed as the product of the probability of a match

given the activity yu under consideration, times the proba-

bility that the (approximately) covered segment has a cer-

tain duration du. Given a boolean random variable Mðp;gÞ
xbu :eu

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. X, XXXXX 2014
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indicating a pattern match and a random variable Dðp;gÞxbu :eu

modeling the duration of the covered segment, the probabil-

ity can be written as

p
!
Cðp;gÞxbu :eu

¼ 1 j yu
"
¼ P

!
Mðp;gÞ

xbu :eu
¼ 1; Dðp;gÞxbu :eu

¼ du j yu
"

¼ P
!
Mðp;gÞ

xbu :eu
¼ 1 j yu

"

P
!
Dðp;gÞxbu :eu

¼ du jMðp;gÞ
xbu :eu

¼ 1; yu
"
:

(5)

The former term is estimated during training as the frac-
tion of yu activity segments matching the pattern. The latter
can be modeled with any appropriate duration distribu-
tion. For consistency in our experiments we choose the
same distribution used for modeling segment duration,
i.e., a multinomial distribution over nb duration bins. Given
the longest match duration dmax found in the training set, a
uniform bin width bw is computed as

bw ¼ max 1;
dmax
nb

& '
:

Probabilities for each bin are then computed as normal-
ized counts of the training activity segments whose dura-
tion fall into the bin. The duration probability for a novel
segment then corresponds to the probability of the bin that
du falls into. We run experiments for varying number of
bins (from 3 to 15), achieving similar performance and con-
sistent comparative behavior. All reported results are for
nb ¼ 5 (which was the value used in [5]).

Given a test sequence, decoding consists of finding the
most probable sequence of activity segments, i.e.,

s+ ¼ arg max
s

pðx; sÞ;

which boils down to identify sequences of activity labels
and segment durations. The problem can be addressed by
the well-known Viterbi algorithm [15] appropriately modi-
fied to account for the novel pattern-based model.

A recursive procedure computes for each time instant
t a value dtðyj; dÞ, representing the probability that activ-
ity yj is performed in the time segment ðt( dþ 1; tÞ,
given the most probable segmentation and activity
assignment for all past time instants. This is obtained by
recursively maximizing over duration d0 and activity
label yi of the previous segment

dtðyj; dÞ ¼ max
1,yi,L

max
1,d0,D

dt(dðyi; d0ð ÞÞpðyj j yiÞ
& '

. pðd j yjÞpðxt(dþ1:t j yjÞ;

where segment observation probabilities pðxt(dþ1:t j yjÞ are
computed according to Equation (4). The maximum possible
duration D is estimated as the maximum duration of all activ-
ity segments in the training set. The base step of the recursion
is computed for segments starting at the beginning of the
sequence (i.e., t0 , d) as

dt0ðyj; dÞ ¼ pðd j yjÞpðxt0(dþ1:t0 j yjÞp0ðjÞ;

where p0ðjÞ is the initial probability for activity yj, com-
puted as the fraction of training days starting with
that activity. At the end of the recursion, the probability
of the best activity assignment for the whole sequence is
computed as

p+ ¼ max
1,yj,L

max
1,d,D

dT ðyj; dÞ
& '

:

In order to recover the activity assignment corresponding
to p+, an auxiliary variable ctðyj; dÞ is used to keep informa-
tion on the configuration originating dtðyj; dÞ, i.e., the most
probable previous activity label and segment duration
ðy+i ; d0+Þ in case time segment ðt( dþ 1; tÞ is labeled with
activity yj

ctðyj; dÞ ¼ ðy+i ; d
0+Þ

¼ arg max
1,yi,L

&
arg max

1,d0,D
ðdt(dðyi; d0ÞÞpðyj j yiÞ

'
:

Note that terms outside the maximization were dis-
carded here as they are irrelevant for deciding what the
maximal configuration is. The best sequence of activity
segments is recovered backtracking through these varia-
bles, i.e.,

!
y+T ; d

+
T

"
¼ arg max

1,yT,L

&
arg max
1,dT,D

dT ðyT ; dT Þ
'
;

!
y+T(d; d

+
T(d
"
¼ ct(d

!
y+T ; d

+
T

"
;

For a detailed description of inference for plain HSMM
models, see [15]. Our version differs in the probability of
observing a certain segment given its predicted label, i.e.,
Eq. (4). We can efficiently compute this probability by
keeping for each pattern p some auxiliary structures
throughout the inference process, for t ranging from 1 to
T : M is the list of matches for pattern p (we dropped the
superscript to avoid clumsy notation), pre-computed using
the PATTERNMATCHES procedure; seg is the index of the cur-
rently active segment, initialized at the first segment (or at
zero if there are no matches for pattern p); match is a flag
indicating whether the current time instant t is after
the beginning of the active segment seg (i.e., M1

seg < t
,M2

seg), or not (i.e., t ,M1
seg); cov is a zero-initialized

vector of length D which is kept updated so that at time
instant t, covd contains the coverage of the segment ½t( d; t&
by pattern matches (for d ¼ ½0; D( 1&). The procedure COV-

ERAGE(M; cov; seg;match; t) updates these structures at
each time instant t of the inference process. Algorithm 5
describes the update. First, the cov vector is shift of one
position to the right, filling the first position with a zero, in
order to account for the increased time instant. If the cur-
rent segment is not matched, the algorithm checks whether
t corresponds to its first position (M1

seg), otherwise it
checks whether the current match is lost (i.e.,M2

seg < t). In
this latter case, it searches for the next active segment,
updating match in case t corresponds to its starting
position. Finally, if match is true (i.e., t is in a pattern seg-
ment match), the cov vector is updated by one. Note that

PASSERINI: IMPROVING ACTIVITY RECOGNITION BY SEGMENTAL PATTERN MINING 7
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COVER (xt(d:t;p; g; t) can be easily computed as ðcovd=dÞ ' t
for all d in ½0; D( 1&.

7 COMPUTATIONAL COMPLEXITY

Complexity of the LONGESTMATCH is Oð‘mNÞ, where m is the
pattern length, ‘ ¼ mþ g is the overall maximal length of a
possible match and N is the number of sensors. We assume
here that the matching procedure MATCH is linear in the
number of sensors for a pattern element, as sensor activa-
tions are stored in lookup tables thanks to the limited size of
N . Complexity of PATTERNMATCHES is thus OðT‘mNÞ, and
recovering all maximal matches for all patterns costs
OðPT‘mNÞwith P the total number of mined patterns. This
is a loose upper bound on the actual complexity, as for
instance the number of pattern match evaluations is typi-
cally much smaller than ‘. We experimentally verified that
the cost of this procedure is negligible with respect to the
overall cost of inference. Complexity of MEDIANGAP is
OðjSjT 2mNÞ where jSj is the number of activity segments,
and the overall complexity of median gap computation for
all patterns is OðP jSjT 2mNÞ. The procedure actually runs
in time comparable to the PATTERNMATCHES one, given the
average length difference between activity segments used
in the former and full days used in the latter (difference
ignored in the asymptotic analysis).

The inference step of plain HSMM has complexity
OðTL2DÞ where L is the number of activities (states) and D
their maximal duration. The COVERAGE procedure has com-
plexity OðDÞ. The pattern-related portion thus contributes
with OðTPDÞ to the overall inference complexity, which
becomes OðT ðL2 þ P ÞDÞ. Given that the number of patterns
P is usually smaller the squared number of states, the com-
plexity of inference is basically unaffected.

The computational bottleneck of the overall approach is
the pattern mining step, i.e., the SEQUENTIALMINER procedure.

Discriminative pattern mining is especially expensive as the
anti-monotonic property typically used in standard mining
does not hold. The PBOOST algorithm, for instance, needs to
train a linear classifier in order to compute the discriminant
power of the patterns during the mining procedure. The
cost of the mining procedure widely varies on the different
scenarios, strongly depending on the degree of sparsity of
the sensor activations, but can be one or two orders of mag-
nitude slower than the inference process in the worst cases.
Sequential pattern mining is a popular research area, and a
number of alternative approaches have been suggested in
the literature (see [29] for a recent review). We did not
investigate the performance of the different algorithms in
our activity recognition scenario, e.g., discriminative versus
non-discriminative approaches, as our contribution is
focused on proposing a probabilistically sound framework
to incorporate them. Further research on these efficiency
issues is anyhow necessary in order to allow segmental pat-
tern mining over large-scale data sets.

8 EXPERIMENTS

In this section we first present the experimental setup used
for evaluating the proposed approach and then provide
results of the experiments.

8.1 Setting
We performed our experiments on a collection of freely
available1,2 benchmark data sets. Van Kasteren’s data set
include information regarding three different houses com-
prising several wireless sensor networks [4], [5]. Each node
of the network is attached to ad-hoc sensors, e.g., reed
switches, passive infrared. Annotation of the activities was
achieved by recording the start and end time of the corre-
sponding activity either via handwritten diary or bluetooth
headset. CASAS data set differs from the previous one as
two residents are simultaneously monitored in the apart-
ment, with a sensor network mainly composed of motion
and utility usage sensors [30]. Annotators labeled the data
using a 3D visualization tool and residents’ diaries.

Table 2 presents a summary of the characteristics of the
data sets. Note that in CASAS data set there are distinct
activities and sensors for the two residents.

Activities to be recognized were derived from the Katz
ADL index which is a measure qualifying the ability of indi-
viduals to sustain their lives independently [31] for the first
data set, and from the clinical questionnaires [32] for the
second data set. The activities considered in these data sets

1. https://sites.google.com/site/tim0306/codeFramework.zip.
2. http://ailab.wsu.edu/casas/datasets/twor.2009.zip.

TABLE 2
Details of the Data Sets
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are listed in tables from 5 to 9 which report the breakdown
of results by single activity. ‘idle’ indicates that none of the
annotated activities is being performed. Some of the activi-
ties, namely ‘going to bed’/‘sleeping’, ‘leaving house’/
‘going out to work’ and ‘idle’ itself, take significantly more
time than the others on average. We will refer to these as
long-lasting activities as opposed to short-lived ones.

Data acquired from the sensors were processed in differ-
ent ways to create feature representations (see Table 3 for a
summary of notations). The Raw representation is the
unprocessed one, where a sensor is active in all time
instants in which it fires. The Changepoint (C) one considers
a sensor active (value 1) only in the time instants in which it
alters its state. The last-fired (L) representation keeps consid-
ering the last sensor which changed state active in all fol-
lowing time instants, until another sensor changes its state.
Note that in case multiple sensors change their state in the
same time instant, all of them are considered active for that
time instant. The last one that changed its state is carried
over to the following time instants. Fig. 2 depicts the work-
ing mechanism of these representations as compared to the
original raw one. We also considered a dual changepoint
(DC) representation, distinguishing between activation and
de-activation events. While C and DC representations pro-
vide reasonable information for all types of sensors, L one is
meaningful for object interaction sensors (e.g., toilet light
switch activation remaining active indicates a ‘using toilet’
activity), mostly found in Van Kasteren data set, but is mis-
leading for the motion sensors characterizing CASAS data
set (within the one minute timeframe characterizing a time
instant, only the last position would be recorded, losing the
trajectory information). Indeed L representation is always
harmful in CASAS data set, as will be seen in the experi-
mental results.

A ‘leave-one-day-out’ (LOO) approach was used to split
the data sets into training and test sets. Each day was in
turn considered as a test set, while all other days made up
the training set. Performance measures include precision
(Pr ¼ TP=ðTPþ FPÞ), recall (Re ¼ TP=ðTPþ FNÞ), and

F1 (F1 ¼ ð2 - Pr - ReÞ=ðPrþ ReÞ) for each class. Here TP and
FP are the fraction of true and false positives respectively,
while TN and FN are the fraction of true and false negatives
respectively. F1 is the harmonic average of precision and
recall trading off the two.

8.2 Results
Classification performances of predictive models differ
greatly for varying feature representations. Fig. 3 reports F1
measures for a plain HSMM using different feature repre-
sentations for all experimental data sets. Results with plain
HMM have the same behavior, while being one or two
points of F1 measure worse.

The Raw representation (R) is substantially worse than
all others. In the Van Kasteren data set for instance, a sensor
attached on a door that is left open after completion of an
activity keeps firing continuously while other activities are
being performed. In such situations, the R representation is
incapable of capturing ongoing activities as it tends to have
traces of already completed ones. Similarly, in the CASAS
data set, motion sensors tend to keep firing for a long time
after the position was left, possibly due to problems in the
sensor measurements. This leads to multiple overlapping
sensor activations, eventually deteriorating trajectory infor-
mation. These results are consistent with those observed in
[5]. We thus did not consider this representation in the rest
of the experimental evaluation.

The L representation prevents these degenerate behav-
iors by focusing on the last sensor changing its state, for-
getting about the state of previously recorded sensors. On
the other hand, this can propagate a sensor activation too
long if no other sensor is observed. This problem is espe-
cially relevant when an activity is followed by “idle”, where
no sensor fires. This is especially relevant in the CASAS
data set, where a number of activities (e.g., sleeping, watch-
ing TV) do not produce movement sensor firings. The C
representation tends to provide the best results on average,
again consistent with results in [5]. The DC representation
has very similar results to the C one while being slightly
more computationally expensive. We thus used the C repre-
sentation as a baseline in all following experiments.

Figs. 4 and 5 report results of pattern-based HSMM for
increasing values of the threshold over pattern discrimina-
tive power, as compared to a set of baseline alternatives.
Note that results for the alternative methods are slightly dif-
ferent from the ones reported in [5] and [6], as we learned

TABLE 3
Notations for Feature Representations

Fig. 2. Feature representations (taken from [5]).

Fig. 3. Comparison of feature representations.

PASSERINI: IMPROVING ACTIVITY RECOGNITION BY SEGMENTAL PATTERN MINING 9
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duration models for all activities, while previous settings
limited this to short-lived ones. Results show that simply
combining the two representations (rows CþL) without
using patterns does not allow improving over the best of
the two in general. Results obtained by including pattern-
based features differ depending on informativeness of the
representation on which patterns are mined. As explained
when introducing sensor encodings, the L representation is
informative when applied to object interaction sensors.
Indeed CþLP models, combining C representation with pat-
terns mined on the L one (LP), are usually better than any
model lacking patterns, i.e., C, L or CþL, and are almost
always better than CþCP models, combining C representa-
tion with patterns mined on the C one (CP). The improve-
ment is more evident when the L representation is clearly
informative and complementary to the C one (e.g., Van
Kasteren, House A), and fades away when it tends to be
harmful, as in Van Kasteren, House B. When dealing with
motion sensors, i.e., the CASAS data set, the L representa-
tion is always misleading, as previously explained. Hence,
CþLP models mostly fail to provide improvement over
baseline models. However, patterns mined on the C repre-
sentation (CP) succeed in improving performance when
combined to plain C features, as shown in Fig. 5.

We also evaluated the relevance of the segmental
probabilistic model in exploiting the discriminative
power of patterns. To this aim we labeled each time

instant within a pattern match with the activity repre-
sented by the pattern (allowing for multiple labels for
the same instant). The performance in this case is worse
than that of all other methods for all values of the pat-
tern selection threshold f (results not shown).

Concerning the number of patterns to be used, there is
a tradeoff between having enough patterns to model all
activities, and focusing on the most discriminative ones.
While improvements (apart from the single case in which
patterns are useless, i.e., Van Kasteren, House B) over all
alternative representations are observed for most values
of the threshold on average, the best tradeoff differs in
the different scenarios. In Van Kasteren House A, for
instance, the best results are obtained when only the most
discriminative patterns are used. Less discriminative ones
suffer from the tendency of the L representation to extend
the signal of an activity to the following “idle” period, as
previously discussed. On the other hand, in Van Kaste-
ren, House C (see Fig. 4c) a too high threshold leads to a
decrease in performance. This is due to a lack of patterns
discriminating similar activities. ‘brushing teeth’,
‘shaving’, and ‘taking medication’ are held in front of the
faucet by interacting with very similar objects. Applying
a high threshold yields patterns only for the ‘shaving’
among the three and leads to confusion in the prediction.
The problem of wrongly missing “idle” periods for lower
thresholds is less severe here, as in this case there are

Fig. 4. Experimental results for van Kasteren data set.

Fig. 5. Experimental results for CASAS data set.
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patterns specifically characterizing the “idle” period (usu-
ally repetitions of the couch pressure sensor). A similar
behavior can be observed in CASAS, Resident 2 (see
Fig. 5b), where focusing on a small set of patterns dis-
cards these “idle” characterizing patterns. The large drop
in performance observed for thresholds larger than 0.85 is
mostly due to an overprediction of the ‘sleeping’ activity.
This is characterized by patterns with no pattern activa-
tions at the borders, movement related sensors in between
and quite large gaps. While these patterns correctly dis-
criminate ‘sleeping’ activity segments from the others
during training, when applied to full days they tend to
span time periods consisting of pairs of “Idle” segments
with some other motion-related activity in between. The
presence of patterns for “idle” as well as other activities
helps to disambiguate these cases for lower pattern selec-
tion thresholds.

In order to select a single threshold for a more detailed
experimental evaluation, we run an internal cross validation
procedure within each training fold of the outer LOO. The
final f was chosen as the best performing when averaging

across internal cross validations, and kept fixed for the outer
cross validation procedure. Thresholds for the different data
sets are shown in Table 4.

Tables 5, 6 and 7 show the breakdown of the results by
activity for the Van Kasteren data sets at the thresholds
determined by the inner cross validation. Results indicate
that the contribution of the L representation is rather
unstable across activities, preventing an overall improve-
ment for the combined CþL representation. Conversely,
the CþLP representation is much more robust, managing
to combine the advantages of the two representations.
Consider, for instance, the activities ‘taking shower’, ‘idle’
and ‘leaving house’. These are closely related as they are
typically performed in a row by the resident. A simple
pattern commonly found in House A consists of a long
repetition of the ‘front door’ sensor. This clearly indicates
a ‘leaving house’ activity is taking place. It also helps in
disambiguating temporally close activities like the just
mentioned ‘idle’ and ‘taking shower’ ones. Conversely,
including L representation also introduces noisy features:
a sensor activated while taking shower will continue to
be considered active when the resident is actually idle,
leading to a drop in precision for the ‘taking shower’ pre-
diction. Concerning House B, overall improvements are
limited as patterns fail to improve recognition of the ‘idle’
“activity”, which is by far the most common one. The
main improvement is observed for the ‘going to bed’
(aka ‘sleeping’) activity. This is due to a common
pattern made of a sequence of bed pressure mat sensor

TABLE 4
Thresholds Obtained from Internal CV Procedure

TABLE 6
Breakdown of the Results by Activity for Van Kasteren House B

TABLE 5
Breakdown of the Results by Activity for Van Kasteren House A

PASSERINI: IMPROVING ACTIVITY RECOGNITION BY SEGMENTAL PATTERN MINING 11
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activations, which mainly disambiguates it with respect to
leaving house’. Note that simple CþL representation
(without patterns) leads to substantial performance
worsening with respect to C representation alone in this
setting. Spurious activations of kitchen sensors are
wrongly taken as indication of kitchen activities when the
resident is actually outside, while the pattern-based
representation is robust to these noisy observations. Con-
cerning House C, a commonly found pattern consists of a
sequence of sensor activations for the fridge, the herbs
cupboard and the fridge again, characterizing the
‘preparing dinner’ activity. Let us consider a possible sce-
nario for this situation. A resident starts cooking his din-
ner by taking ingredients from the fridge. After a while,
flavoring herbs and spices taken from the herbs cupboard
are added into the blend. As soon as the meal is ready,

the resident puts the remaining ingredients back to the
fridge. Introducing such patterns allows relating observa-
tions which are not sufficient to discriminate among simi-
lar activities if taken alone. For instance, a similar
scenario involving usage of fridge and other kitchen
appliances can be observed for preparing breakfast. The
patterns found for this last activity include activations for
the cutlery drawer, the bowl cupboard, and the fridge.
Both activities are actually better recognized using the
C+LP representation.

Activity by activity analysis on the CASAS data set
using the cross validated thresholds is presented in
Tables 8 and 9. CP patterns manage to provide improve-
ments over almost all activities. Relatively lower cross-
validated thresholds with respect to Van Kasteren data
set enable more patterns to be retained. All activities

TABLE 7
Breakdown of the Results by Activity for Van Kasteren House C

TABLE 8
Breakdown of the Results by Activity for CASAS Resident 1

TABLE 9
Breakdown of the Results by Activity for CASAS Resident 2
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(but ‘bed to toilet’ for Resident 1) possess corresponding
patterns for both residents. Found patterns mostly char-
acterize activities in terms of trajectories, sometimes
combined with the object usage like burner or faucet.
Taking the first resident into consideration (see Table 8),
one can anticipate that each activity is performed in a
specific location, e.g., ‘grooming’ in the bathroom,
‘sleeping’ in one corner of the bedroom, ‘working at
computer’ in another corner of the bedroom, yielding
distinct patterns. ‘Grooming’ patterns, for instance, show
a trajectory going from the bedroom to the faucet (and
possibly the mirror) in the bathroom, where some time
is spent (indicated by multiple activations of the motion
sensor facing the faucet). The pattern for ‘sleeping’
includes activations of two adjacent motion sensors (rep-
resenting the locations on the bed) combined with the
‘no sensor activation’ in one corner of the bedroom.
‘Working at computer’ contains repetitive activations of
a single motion sensor (representing the location of the
computer) in another corner.

Given the sparsity of C representation (with respect to the
L one), patterns sometimes contain ‘no sensor activation’,
especially towards the end of the activity, which can occa-
sionally lead to confusion with the ‘idle’ activity. This
explains the few observed performance drops, occurring for
‘working at computer’ and ‘working at dining room’. On the
other hand, a long sequence of ‘no sensor activation’ charac-
terizes the ‘idle’ activity and helps disambiguating it
from the ‘bed to toilet’ one, characterized by a much shorted
duration, which is in turn better predicted without having
patterns in itself. The second resident highlights how pat-
terns help disambiguating among similar activities, like the
ones performed in the kitchen: ‘preparing breakfast’,
‘preparing dinner’, and ‘preparing lunch’. ‘Preparing break-
fast’ can be easily distinguished from others thanks to its rich
unique patterns modeling trajectories, e.g., from the kitchen
towards the upper floor to the room of the resident or from
the kitchen to the cellar to the upper floor. It is obvious from
the patterns that the resident prefers having his breakfast in
his room, which is a distinct property.

9 CONCLUSIONS

We presented a segmental pattern mining approach for
enriching sequential representations with patterns charac-
terizing interactions within activity segments. Experimen-
tal results show the usefulness of the mined patterns in
improving predictive power of learning algorithms. How-
ever, the amount of improvement varies greatly from one
feature representation to another. The choice of the appro-
priate representation can be made according to its robust-
ness in correlating sensor activation patterns and activities
being performed. Sensors signalling object interactions,
like in van Kasteren data set, are suitable to the L repre-
sentation, since the latest sensor activation tends to indi-
cate the activity that is to be performed, e.g., bedroom
door for sleeping, front door for leaving. The C represen-
tation, on the other hand, is useful in identifying activities
represented by trajectories, like in CASAS data set, where
each motion sensor activation constitutes a part of a trajec-
tory. We indeed achieved the best performance using

CþLP and CþCP for the houses with contact switch sen-
sors and with motion sensors respectively.

In our experiments, we observed that no single pattern
selection threshold provided the best performance in all sce-
narios. A common problem causing a drop in performance
for certain threshold choices stems from mishandling of idle
class, e.g., lack of idle patterns for higher thresholds (resi-
dent 2, CASAS) and co-occurrence of distinct activity pat-
terns suppressing the effect of those representing the idle
one (house A, van Kasteren). A possible solution consists of
treating the idle class as a separate case, for which e.g., pat-
terns with a lower threshold could be retained.

Our approach is currently limited to non-concurrent
activities. However, many real world scenarios involve
overlapping and concurrent activities, especially when
modeling multiple interacting agents. The underlying idea
can be generalized to such scenarios by combining mined
patterns with more expressive sequential models like facto-
rial HSMMs. The case of multiple agents is especially chal-
lenging as it requires to disambiguate those sensors which
do not provide information on the agent involved (e.g.,
infrared sensors). Finally, our approach assumes a batch set-
ting, in which a whole (temporal) sequence has to be jointly
labeled after being fully observed. Online activity recogni-
tion, where the aim is predicting the currently performed
activity, requires to adapt the segmental pattern mining
algorithm to search for incremental patterns modeling
increasingly long portions of an activity segment and deal
with the increased complexity of the mining, matching,
modelling and inference steps.

Our approach is not limited to activity recognition tasks
and is readily applicable to sequential labeling problems
characterized by segments of consecutive positions sharing
the same label (e.g., intron-exon identification in DNA
sequences). The segmental mining strategy can also be used
for suggesting promising topologies for graphical models
trying to directly incorporate long-range dependencies. Our
segmental pattern miner extracts patterns which should
approximately span activity segments. Their matches are
thus natural candidates to add shortcuts as in skip-chain
CRF, possibly connecting distant segments representing the
same or closely related activities. We are pursuing this
direction in our ongoing research.
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