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In the last decade the performances of 802.11 (Wi-Fi)

devices skyrocketed. Today it is possible to realize giga-

bit wireless links spanning across kilometers at a fraction

of the cost of the wired equivalent. In the same period,

mesh network evolved from being experimental tools con-

fined into university labs, to systems running in several

real world scenarios. Mesh networks can now provide

city-wide coverage and can compete on the market of In-

ternet access. Yet, being wireless distributed networks,

mesh networks are still hard to maintain and monitor.

This paper explains how today we can perform monitor-

ing, anomaly detection and root cause analysis in mesh

networks using Big Data techniques. It first describes the

architecture of a modern mesh network, it justifies the use

of Big Data techniques and provides a design for the stor-

age and analysis of Big Data produced by a large-scale

mesh network. While proposing a generic infrastructure,

we focus on its application in the security domain.

1 | INTRODUCTION

Wireless mesh networks have attracted a large attention from ICT researchers in the past decade, but today,

they are not on the edge of the research agenda. This is due to some disappointment after the high initial

expectations on this technology, but also to the simple fact that in some fields this technology is now mature

enough; it become a product. Two cases are generally mentioned as positive examples for the application of

mesh networks, bottom-up networks and industrial applications.

The first case deals with Community Networks (CNs), networks built with a bottom-up approach by
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communities of people that set-up their Internet infrastructure generally (but not only) to overcome digital

divide. As the 802.11 technology has achieved a quantum leap in the last decade (from 60 Mb/s to 1Gb/s

for roughly the same price, headed to 100Gb/s [1]) CNs today can give connectivity to thousands of people

with just one mesh network [2, 3]. Internet access with mesh networks is becoming economically viable also

in non-market failure areas. Small ISPs are starting to use this technology1 which seems to be a competitive

model even against other established options.

The second case is given by the industrial field, in which companies like Tropos Networks (now part of the

ABB service company) use mesh network to monitor industrial infrastructure in remote, mainly disconnected

areas2. In section 3 we describe a modern mesh node (a composition of high-speed wireless devices, as opposed

to the still common perception of the single broadcast radio that was introduced in the early 2000s) and explain

how a mesh network with recent technology (802.11ac, or even 802.11ad) can serve thousands of people.

What did not change in the last decade are some of the drawbacks of using a mesh network, mainly, the

complexity of its management and its vulnerability to external factors. A mesh network made of outdoor nodes

is susceptible to many sources of disruption, physical damage, power outages, physical obstruction, security

attacks due to the shared media etc. Moreover, every node not only produces and receives data, but also

routes data from other nodes, so that it is paramount to use proper security means to prevent tampering and

privacy intrusion. As a result, we have networks that can easily achieve an aggregated throughput in the order

of Gb/s, with a very dynamic and still challenging management model.

One of the most important network functions is monitoring, and specifically anomaly detection and root-

cause analysis [4]. In a hierarchical wired network under the control of a single manager, there are many

instruments that can be used for this purpose. In a wireless mesh network instead, this is still an open field.

This paper proposes the use of Big Data techniques to perform anomaly detection and root cause analysis

in wireless mesh networks. It elaborates on the possibility of performing data collection on mesh nodes, and

transporting data from nodes to one, or more, network monitors. These monitors will reconstruct the stream

of data and analyse it with current state-of-the-art Big Data techniques, in order to understand the cause of

a certain anomaly, which can be due to a large number of apparently uncorrelated events.

We explain how Big Data technology can be used to gather and process data, how data can be organized

to better represent the scenarios, and what are the best scientific knowledge we own in order to solve them,

primarily based on Machine Learning approaches. We describe how data from the network can be exported

to a remote cluster based on Apache Spark, which is one of the most popular open source Big Data platforms

available. We show how this technology fits the purpose of monitoring a high-performance mesh network. We

show also that coupling a remote cluster with a Big Data approach is necessary in order to achieve scalability

and performance, even in a distributed mesh network that generally does not fit with a centralized approach.

While we make examples of specific machine learning techniques that can be applied to this domain, it is

out of the scope of this paper to contribute with detailed proposals in this field. The goal of this paper is to

motivate the use of Big Data techniques for mesh networks monitoring, and to provide an architecture that

can be used to achieve this goal.

1See https://www.common.net/ in the USA or http://www.roonet.it/2017/07/17/common-net-internet-ultraveloce-a-kilometro-zero/ in
Italy, for instance

2See https://new.abb.com/network-management/communication-networks/wireless-networks
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2 | STATE OF THE ART

The relationship between Big Data and network performance is generally explored to understand what is the

best way to have networks that support Big Data applications [5, 6].

Few are the examples of works that investigate how Big Data techniques can be used to perform network

monitoring or root cause analysis, directly targeted to the improvement of the network infrastructure. Among

them Cui et al. and Trevisan et al. [7, 8] explore how Big Data can be used to perform traffic engineering

and classify specific kinds of traffic when using Software Defined Networking (SDN). SDN assume to have a

centralized controller that takes decision at the management plane, therefore, coupling SDN with Big Data

techniques to take automated decisions is a natural next step. Yet, SDN is used in data centers but in a mesh

context it is still not a practical approach, because there is no actual separation between the data and the

management plane. A mistake in the management plane can isolate a part of the network that is physically

separated from the rest, and require manual intervention from a human operator. Some mesh network results

exist but generally assume an always working and reachable network [9], which may not be the case in a

general purpose mesh network. Big Data techniques have been proposed to gather data from the access

network, especially mobile cellular networks [10, 11], but these techniques do not apply to the management of

the network itself.

Root Cause Analysis (RCA) is a well studied subject, in particular when coupled to network monitoring

and data logging. When a system is monitored there are several sources of information one can use for cause

analysis, spanning from network measures [12] down to daemon logs [13]. To perform such analysis there is

a need for a large amount of data which in the past was approached in several ways, for instance, with local

processing [14] or with distributed data collection [15]. Yet, cross-layer analysis is generally hard to carry-on

especially in multi-domain networks [16].

In the security domain Big Data already play an important role. Intrusion detection is one typical

application [17, 18] botnet detection is another [19] as well as DDoS mitigation [20]. None of the existing

approaches deal with network monitoring.

Finally, architectures for Big Data collection and evaluation have been proposed in various areas, but are

specific to those areas [21, 22, 23].

3 | A MODERN WIRELESS MESH NETWORK ARCHITECTURE

In the scientific literature, mesh networks are typically imagined as a collection of nodes equipped with

omnidirectional antennas at a distance of a few hundred meters. Modern mesh networks are much more

complex than that, as they use specialized hardware and some configurations that make them much more

robust and performing. In this section we describe a mesh node for residential connections as used in many

community networks [2].

A mesh node is generally split in two parts, one outdoor, generally mounted on a roof or on a terrace

and another inside the house of the end-user. The outdoor part is made of a mount pole, where multiple

wireless devices are mounted. These devices are full-fledged wireless routers designed for the outdoor, they are

powered over Ethernet and equipped with wireless radios and antennas. When using the 802.11n/ac standard

they work on ISM frequencies, but other proprietary frequencies can be used. Recently, the first outdoor mm

wavelength devices working on the 60GHz band hit the market. Depending on the technology, and on the
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FIGURE 1 An example of a modern mesh node.

kind of antenna they use, these devices can support up to (nominally) Gbit/s traffic and their price is very

low: an 802.11ac device for multi-km links or a Gb/s device for links in the range of the hundreds of meters

can be bought for less than 70$.

As said, the devices are powered over Ethernet, and here there are two options. The first option is to have

power directly on the roof. This happens in many common situations, but when it is not possible, the power

needs to be carried from the user’s house. Bringing Ethernet cables from the indoor to the outdoor may be

tricky (conduits need to be present and free), so generally, one cable that encapsulates an Ethernet cable and

a standard power cable is used. This is the solution depicted in fig. 1, in which the power source is indoor

and only a single cable reaches the outdoor. This can be just one Ethernet cable with PoE, but the limited

maximum power restricts the amount of devices that can be installed, so a better solution is to use two different

cables entangled. In the outdoor the cables enter into a splitter, which can also be coupled with an UPS. Note

that this device is technically an outdoor gigabit switch (again, the market offers devices for less than 100$).

Once power is on the roof, the node can be integrated with other devices. For instance, a surveillance cam

can be used both for security reasons, but also to do remote monitoring. In fact, outdoor nodes are subject

to failures, wind can move the devices and something that impede the communication (i.e. another antenna)

can be placed nearby. Cams helps to monitor the state of the node remotely and troubleshoot such situation.

A weather station can also be placed, in order to monitor the surrounding conditions (wind, temperature,

humidity). Again, these parameters can be used to gather insights on the state of the node, especially when

working on mm wavelength that are influenced by weather conditions.
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The intelligence of the node generally resides in the home router, it’s the home router that runs a routing

algorithm, and routes packets from one device to another. For this reason it is paramount that the devices

support gigabit Ethernet, as the cable going to the roof needs to route messages and it would otherwise be a

bottleneck. The intelligence is placed in the home router because it is the device that is easier to intervene

on, with a simple reboot, a reset or a full re-flash if needed. The user can perform these actions by himself,

and does not need to go on the roof to do basic procedures.

4 | DATA COLLECTION

Given the description of a full-fledged wireless mesh network we made in section 3, in this section we provide

a rough estimation of the amount of monitoring traffic that this network may produce. For monitoring traffic

we intend the traffic that is needed to monitor the behaviour of the network. Following the typical layering of

networks, for each layer we describe the kind of data and the data rate we expect to have.

For this estimation we need to do some assumptions on the composition and the size of the network:

• The network is made of N nodes with N ∈ [100, 1000] and we assume that there is one gateway every 100

nodes. We have analysed networks of comparable size, so we think this is a realistic choice [2]

• Every node is made of d wireless devices used for the backbone links.

• Every node serves H hosts that access the Internet through that node. Every node concurrently forwards

C transport-layer connections (such as TCP connections) active at the same time, generated from these

hosts.

• Every node routes (i.e. it receives on one device and reforwards on another device) P packets per second

(which, at the optimistic size of 1500B per packet produces an average of B b/s).

As it is common in networking protocols, in order to quantify the bit-rate of the generated traffic we

assume 4 Bytes are used to transmit a float value [24]. The next sections use these parameters to introduce

formulas that we later on use to evaluate the overall data rate of the monitoring traffic, in order to assess if it

is actually reasonable to treat this problem with a Big Data approach. For each layer we introduce the base

parameters, and some optional parameters (marked with an asterisk) that could produce even higher data

rates. For each parameter we estimate its size and the sampling frequency necessary to use it effectively. We

also add some examples of how how the data from a each layer can be used to address a specific problem in

the network, with special attention to security issues.

4.0.1 | Physical Parameters

This section deals with the control traffic that is generated by the sensors that monitor the proper functioning

of the node. Among the components that need to be monitored we mention:

• Power management and power consumption with PoE. One sample per device with a frequency of 10Hz.

It is important to have frequent samples in order to correlate the consumption with the traffic rate, which

can be extremely volatile.

• Physical connections (Ethernet ports). One sample per device, once per second. Contains the negotiated
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Description Data Size (Bytes) Frequency (Hz)

PoE d× 4 10

Ports d× 1 1

UPS 6× 4 10

Direction d× 8 1

Meteo∗ 12 1/60

Camera∗ 500K 1

TABLE 1 The estimated control traffic generated by the physical monitoring system.

bit rate, which can change if the cable is damaged, or the ports have defects.

• UPS signals. UPS monitors the line tension and current both in input and output, the battery charge and

the line frequency. Again, this needs frequent logging to visualize spikes (10Hz).

• Physical orientation of the devices. Devices can have compasses that sample the orientation of a directional

antenna. This is key to understand if for some reason the antenna was moved from its original position

(due to physical damage or wind). We expect two samples per antenna, once per second

• Weather Station∗. Can be useful for reporting environmental parameters like outdoor temperature, hu-

midity, pressure, wind speed, in order to correlate eventual failures with these parameters. We expect one

sample per each parameter, once per minute.

• Security Cam∗. This is useful for two reasons, the first is the obvious perimeter protection, the second is

because when the operating frequency is in the mm wave length range, the weather conditions alter the

performance of the links.

An example application of these parameters is the following. There are conditions in which a wrong

configuration of the power source may cause devices to periodically reboot. For instance, if the power supply

is not correctly dimensioned, the devices may reboot when there is a traffic peak that raises the power

consumption beyond the available power. Professional devices may reboot in a few seconds, and the routing

tables may be repaired quickly when the device boots again. This would produce a loss of packets for some

seconds that would kill the performance of the link and possibly introduce route flapping (the phenomena

in which the routing layer “flaps” the next hop from one node to another for a set of destinations), for no

evident reason. Monitoring power consumption and traffic may help to correlate the two events (traffic peak

and power outage) to detect this problem.

Looking at table 1 we can estimate the traffic data rate (in Bytes per second, excluding optional entries)

as in eq. (1):

Dphy = 10× (d× 4) + d+ (6× 4)× 10 + d× 8 (1)

4.0.2 | Communication Physical Layer

The communication physical layer of modern wireless protocols is extremely complex. If we want to shrink it

to the minimum (excluding details on MIMO and beamforming) for every forwarded packet, a received and a



7

Description Data Size (Bytes) Frequency (Hz)

Tx/Rx Pow. and MCS 4× 2 + 2 2× P

TABLE 2 The estimated control traffic generated by the communication physical communication
physical layer.

Description Data Size (Bytes) Frequency (Hz)

802.11e queues 7× 4 10

Clients & SA H × 128 1/10

ARP Tables d+H × 10 1

MAC Packets∗ 6× 2 1/P

TABLE 3 The estimated control traffic generated by the MAC layer.

transmitted power value is generated, plus the negotiated bit-rate (MCS).

An example application of these parameters is when the link suddenly degrades because of a new source

of interference in the same frequency, which is hard to track if not generated by the same communication

protocol. We can estimate the traffic using the data in table 2 and eq. (2):

Dcomm_phy = (4× 2 + 2)× P (2)

4.0.3 | Media Access Control Layer

The MAC layer of the wireless protocol takes care of access to the wireless media and again, MAC layers of

real devices are getting more and more complex. Moreover, MAC layer performs many more tasks than packet

scheduling, for instance, it is responsible of client authentication.

For the sake of simplicity we consider only standard features of 802.11, and among the many data sources

we consider two of them: i) the fill level of queues in the MAC layer (7 queues according to IEEE 802.11e,

sampled at 10Hz) ii) the number and kind of clients that have an active security association (128B at 0.1Hz).

Additionally, we consider also ARP tables, which bridge the MAC and IP layer and are very important to

detect ARP spoofing attacks (10B per entry, at least d + H entries, at 1Hz).

An example application of these parameters is the case in which two different applications have a very

different performance on the same path, probably due to some misconfiguration in the priority queues. This

may require balancing the QoS parameters on the link. Also, a security warning may be raised when a node

has too many connected hosts or some hosts are connected to multiple nodes.

Looking at table 3 we can estimate the traffic data rate as in eq. (3):

DMAC = 7× 4× 10 +H × 128× 0.1 + (d+H)× 10 (3)

To have an even finer logging, each received packet can be logged together with its source MAC address
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Description Data Size (Bytes) Frequency (Hz)

Routing Table N × (8 + 32 + 4) 2

TABLE 4 The estimated traffic generated by the routing layer.

Description Data Size (Bytes) Frequency (Hz)

Connections C × 50× (4× 2 + 2) 1

TABLE 5 The estimated control traffic generated by the transport layer.

and destination MAC address, which is considered in table 3 as an optional source of control traffic.

4.0.4 | IP Layer

Monitoring the routing layer is a very difficult activity. Historically, debugging the routing protocol has been

done using applications like ping and traceroute, but this does not help to debug past conditions. One

approach that can be used to detect (temporary) loops or route flapping is to dump the routing table of every

node very frequently, and to collect the dumped routing tables, in order to be able to reconstruct the network

situation at some moment in the past, and emulate the path that a packet would have traversed at any point

in time. For this to happen we need to dump the routing tables of a node (every entry made of one destination

IP, one next hop IP both for IPv4 and IPv6, plus some link quality metric value). Sampling the routing table

every half a second is the minimum sufficient to spot temporary loops. Since every node should have a routing

table entry for every network attached to every other node, we have table 4 and eq. (4):

Drouting = N × (8 + 32 + 4)× 2 (4)

4.0.5 | Transport Layer

The router activities related to the transport layer are Network Address Translation (NAT) and firewalling for

all the connections generated and destined to the hosts of the node. It is impossible to give an average number

of running connections per host, as the usage of wireless networks is extremely variegate [25]. We know that

several operating systems and appliances (such as MS Windows and Office) open several connections towards

their servers, and keep them up for all the up-time of the user session. Moreover, each browser tab (or phone

apps) keeps at least 2/3 connections alive, and other Internet-based applications are running in the background

(antivirus, mail agent etc). As a rule of thumb we consider every user to generate about 50 active connections.

For each connection two IP addresses, two TCP ports and some state information must be kept (not only

TCP state, but also bit-rate generated, match on some filtering rules etc). We consider one sample per second

sufficient.

An example application of these parameters is the detection of Denial of Service attacks, in which a client

starts generating a large number of connections towards a specific victim. Note that this in a wireless mesh
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network can quickly escalate to saturating one link, or one path to a gateway. In this case the routing protocol

will make its decision, and, detecting that one gateway is having bad performance, it may switch to another

gateway. As soon as this happens the available bandwidth in the new gateway will drop, while the old one

will improve, which may introduce route flapping. In general, “flashcrowd” situations are hard to manage and

in a mesh network they can introduce network-wide instability.

Looking at table 5 we can estimate the following traffic as in eq. (5):

Dtra = C × 50× (4× 2 + 2) (5)

4.0.6 | Security Alerts

In the security domain there are plenty of applications that perform monitoring of networks and application.

Among the most classical (and least invasive ones) are traffic sniffers that try to detect misbehaviour at various

levels, for instance:

• The wireless intrusion detection/prevention systems generally listen for suspicious activities, for instance,

new APs that use the same name of the current one, storms of packets of some kind, or brute force

attempts on authentication protocols. At the same time they can signal the presence in the user network

of devices configured with insecure parameters.

• At MAC layer suspicious activities can be flagged as ARP spoofing attacks, that are still feasible today.

• At network and transport layer we still have SYN floods, reset attacks, DNS spoofing, and attacks to the

routing protocols that can be detected using monitors.

• Finally, at the application layer there are today very sophisticated appliances to monitor entire systems.

An host IDS monitors in real time the behaviour of an user, and raises flags if the user is trying to install

packages that are known to be malicious, or if it is attacked by worms and viruses. These appliances are

generally targeted for real time monitoring in corporate networks.

Many of these systems exist, for instance Palo Alto Magnifier analyses traffic and, after a period of

training is able to raise alerts on suspicious activities [26]. Of course these appliances collect all the traffic

from the gateway and analyse it, but are only partially useful to understand where inside a mesh network some

suspicious activity started. Other host-level systems collect logs from any host and apply Big Data techniques

on top of them, for instance, the ELK stack (that stands for Elasticsearch, Logstash and Kibana) is frequently

used by security firms.

The data rate for this kind of data is impossible to predict, as every vendor is different from another and

it is impossible to guess how much traffic they can generate. For this reason, we don’t focus on this layer and

just consider the traffic described in previous sections. Indeed, the architecture we propose will use also the

data coming from these security monitors.
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4.1 | Data-set Size

If we look at the data described so far, we can estimate the bit-rate for control data generated by one node as

the sum:

D = Dphy +Dcomm_phy +DMAC +Drouting +Dtra (6)

To plot this equation we need to add some further consideration in order to have some realistic values for

P . First of all we recall that we expect to have N ∈ [100, 1000], and every node to have in average 3 devices.

In the case these devices can sustain a nominal 1Gb/s throughput, we consider a realistic medium efficiency of

60% and a maximum occupation of each link of 80%. This yields roughly 500Mb/s per link. If every gateway

has 3 devices, then one gateway can realistically sustain 1.5Gb/s. We assumed one gateway per 100 nodes,

which yields a maximum of 15Mb/s per node. This is the minimum guaranteed bandwidth per node, and as

such, it is orders of magnitude higher than what a typical ADSL provides. Commercial ISPs tend to oversell

their capacity with a contention ratio that can reach even 50 times the minimum bandwidth, so we consider

our scenario more than credible.

Note that if N = 1000 and we have one gateway per 100 nodes, the network is still one large network, with

the advantage of offering many gateways per node, and thus an increased resilience. Yet, to reach a gateway

the traffic from node ni will have to go through a network of roughly 100 nodes, and not through a network

of 1000 nodes. How many hops are necessary to reach a gateway in average? We imposed that every node has

in average d radios, and practical considerations limit the maximum number of devices to a number close to

d. Thus, we expect the network to behave similarly to a random Erdos graph [27], and not as a long-tailed

graph in which some nodes have a degree orders of magnitude higher than others. A well known result for

Erdos graphs tell that the average distance between two nodes is given by dlogd(N)e = dlogd(100)e = 5. If

every node produces at most 15Mb/s this traffic must be delivered on a 5-hop path, that sums up to 75Mb/s

of traffic generated on the network by each node. In the fortunate case in which all packets are 1500B long,

this yields P ' 7000. We have now all the parameters to plot eq. (6) as shown in fig. 2.

Figure 2 shows that the largest part of the control traffic is generated by the communication phy. layer

and the routing layer, with the first one depending only on P and the second one growing with the number

of hosts. The total data rate ranges between 1.3 and 1.94 Mb/s. Figure 3 reports the total control data

rate per second generated by all the nodes in the network, which eventually scales more than linearly with

the network size. This result shows that even with a relatively small network of 100 nodes, we can generate

roughly 7.8Gb per minute, and 468Gb per hour. These values skyrocket to 116Gb per minute and 6.9Tb per

hour in a network with 1000 nodes. In practice, the only way to treat such a large data-set is with the use of

Big Data techniques. Consider that in this estimation we excluded some factors that could severely increase

the data rate:

• We did not consider the video of surveillance cams, which can generate at at least 0.5Mb/s each (depending

on the desired quality).

• We did not include any security appliance.

• We could have included a more detailed logging at many layers. For instance we could include per-packet

logging, both at the MAC layer (including the last line of table 3) but even at the IP layer.
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The fact that Figure 3 is more than linear introduces another issue that we need to take into account,

that is, the horizontal scalability of the computing resources we need for the monitoring system. A mesh

network grows in a loosely planned way and has acceptable performance as long as the ratio of nodes per

gateway is upper bounded. If a new end-user joins the network, the topology changes, and that new node can

become the gateway to reach a set of new nodes. Networks can also merge or split, based on the addition or

removal of nodes. These dynamics are generally slow and it is the task of the network manager to maintain

a certain level of graph connectivity in order for the graph to be k-connected (with k being a design choice),

but indeed, under controlled circumstances the topology can change abruptly. For instance at some point, the

administrator can turn on a few nodes merging two separate meshes in only one network. When this happens,

the dimension of the data set grows more than linearly, and thus, the sum of the resources used to monitor

the two initial networks are not sufficient anymore. Apache Spark, coupled with Apache Hadoop is able to

offer the necessary horizontal scalability in order to follow evolution of the network topology. Note that Spark

can be coupled with several other Big Data platforms, Hadoop, Mesos Kubernetes, to name a few. Along the

paper we refer to Hadoop but the same considerations are valid for an other choice.

Finally, it is fundamental to observe the difference between the size of the data-set and the amount of

control data transmitted over the network, which is much lower. First of all, in the rest of the paper we describe

two approaches, one that collects data with a very high granularity and can create large data sets, another

one in which data are averaged on time windows. This second method can be used to perform high-level

analysis if the capacity of the links does not make it possible to adopt the first method. Second, whatever the

collection method used, the majority of the data that we described so far are slowly changing: for instance,

routing tables are going to change relatively slowly during normal operations. This means that data can be

cached and compressed and the amount of data that is effectively transmitted on the network from one node

to the Big Data cluster is way smaller that what shown in fig. 3. Note also that this approach naturally

adapts to network conditions, if the routing tables do not change (so no anomaly can be recognized at the

routing layer) data can be strongly compressed. When the routing tables vary with high frequency instead,

that is the probably the case in which an anomaly could happen, and the bit-rate of the control traffic will

increase. Nevertheless, when reconstructed, the data-set will inflate to the size we estimated and still needs

to be treated with Big Data techniques.

5 | DATA FORMAT

We envision that every layer in each node will produce a single unstructured data stream, which will then be

collected and analysed together by the Spark cluster. The cluster will be responsible for organizing data in

a way that makes analysis feasible, both in real time and off-line. The natural representation of a network

data-set is a graph-based one, which we imagine to be possible at two levels: in an aggregated form, better

suited for fast in-line analysis and anomaly detection, and with the full data-set, imagined for post-processing.

Figure 4 presents a possible way of organising the data-set. On the left there is the physical network,

with each node generating a set of data streams, one for each parameter we identified. Once the streams are

transmitted to the cluster we consider two ways in which the cluster can organize them.

In one case, the streams are divided in chunks, each chunk corresponding to a time-window. Each chunk is

averaged and timestamped and contributes to create a data-graph, each data layer corresponds to a separate

graph with different characteristics. For instance, the physical monitoring data is generally confined to the
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internal representation of a node, and has no notion of edges between nodes3. In the picture we represented it

as a layer, but it could actually be embedded as attributes for the nodes in the other layers. At the physical

layer instead, each node in the graph is a radio, that is connected with a directed edge with other radios

from which it receives packets. At the MAC layer, each node is a MAC address, and each edge represents a

relationship at the MAC layer (like AP/client, ad-hoc link, or any other kind of link that 802.11 can provide).

At the IP layer each node is an IP and an edge is present between two IPs if one has received traffic from

the other and they are at one hop distance. A graph can also be defined at the transport layer, using hosts

as nodes and adding edges if there is an ongoing traffic flow between them. Note that while the nodes of the

graph at a certain level correspond to a group of nodes at the lower level (a network host is made of several IPs,

to which correspond MAC addresses, to which correspond radios. . . ) there is not a hierarchical relationship

between the edges at various levels. A radio in a node may receive packets from neighbors for which there is

no link at the MAC layer. Similarly, the presence of a possible link at the MAC layer does not necessarily

imply a possible “link” at the routing layer. Finally, the fact that there is a link at the routing layer does not

necessarily mean that at the transport layer there is an ongoing communication between two nodes. The data

graphs are then different, even if they have similarities.

In this kind of representation, a large part of the information is lost, because each node in each layer

includes only some aggregate value derived from the original ones. Yet this representation can be used for

anomaly detection at a coarse level. A more fine-grained way of inspecting the data is to use the raw data and

correlate the events. An example is to track all the data related to a specific packet going from its source to

its destination. The packet is identified by addresses at every layer so at every hop it is possible to correlate

data from one layer to another, and the links used on its path in the network can be annotated by all the

relevant metrics. This kind of analysis, aggregated by flows or by source-destination couples can be used to

debug local anomalies that are impossible to detect using aggregate averages.

5.1 | Usage Examples

We give two examples of potential use of the data-sets described in the previous section, in order to highlight

their difference. Consider the case in which a source of interference is activated close to a node. This will

decrease the signal-to-noise ratio measured on some link l, which will produce an anomaly in the communication

physical layer. This information will take some time to be transported at the MAC layer, as the MAC layer

will detect loss of packets, and will gradually decrease the bit-rate for packets sent on the link in order to

use a more robust encoding that can stand the new (lower) SNR. This may take hundreds of milliseconds,

depending on how many packets are sent on l. The routing layer will instead take seconds (possibly tens of

seconds, depending on its configuration) to change the value of the routing metric for l. At some point, the

routing layer may reconfigure the routing tables in order to route around l and use an alternative path for the

existing connections. This may saturate some other link and impact the traffic of an user that experiences

a poor service. The important thing to note is that l and the node used by the user that experiences the

malfunction could be in two distant locations, so that inferring a causal relationship between the two events

could be all but easy for a human operator. Since this is a key element to understand the complexity of the

management of a mesh network, in section 6 we use real data from an existing network to describe how complex

such task can be. This chain of events can be detected in real-time and countermeasures can be taken before

3Note that we use the term edge when we refer to an edge in graph used in the data-set, and we use the term link when we
refer to some kind of connection in the real network, at any layer.
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FIGURE 4 An example for the data format. From left to right: physical network, buffers of data to be
used in two ways: aggregated graphs based on average values (top) and exact graphs representing all the
traffic exchange between nodes (bottom).

the user experience is impacted. For instance, the interfered node could decide to jump to another frequency

that is less crowded than the current one. For this to happen we need anomaly detection algorithms, that not

only detect a problem (a link is saturated) but, given a sufficiently large time window, are able to perform

root cause analysis in order to tell what is the first anomaly that initiated the chain of events.

A second example is a security-related one. Imagine that a user was able to gain administrator privileges

on the node that connects him to the network. This of course should not be possible, the user should be

somehow in control of his home router, but not to the level of interfering with other people’s traffic. In this

case, he exploited a zero-day attack to the router software and he is now able to perform a man-in-the-middle

attack, deflecting some traffic to his PC and then injecting the traffic in the network again. The user is not

interested in all the traffic, but will actually try to intercept only traffic that contains sensitive information.

A typical example is that the attacker is performing man-in-the-middle attacks only on websites that have

a badly configured certificate (unfortunately there are still many of them). Users already receive a warning

when they connect to the website and they still use it. The attacker can exploit this bug setting-up a proxy

that intercepts the HTTPS connection, gives a fake certificate, and steals the user credentials. The result

of this is that for only some connections, for no apparent reason the performance will drop, as the traffic is

diverted, passed to the attacker, analysed and injected back in the network. This may take tens/hundreds of

milliseconds, which is not enough for the users to note. Even the first approach we described, with aggregated

data will not detect this event. If instead the traffic flow can be fully reconstructed, this event can be detected.

In fact, following the sequence of packets in the network and inspecting the data produced by all the layers, it

would be clear that even if at all layers the quality of the links as reported by the graph edges is high (routing

quality, MAC bit rate, queues occupation etc.), one specific forwarding node introduces an unexpected latency
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for some kind of connections. This would raise a warning, which could be confirmed by analysing the physical

parameters, which will tell that everything is OK (i.e. no broken Ethernet ports or cables), and finally raise

an alarm. Of course to perform this kind of check, we need to be able to trace packets going through the

network at every hop and correlate packets at all layers.

6 | DATA-BASED MESH MONITORING: TESTS AND LIMITATIONS

In this section we describe an initial experience in using available data from existing networks, together with

graph-based analysis to perform anomaly detection. Our goal is to outline that monitoring and performing

RCA on mesh networks with existent technology is a challenging task even when the sources of data are just

a small subset of the ones described so far. Two problems clearly arise: the computational power needed to

extract meaningful data and the need of human intervention to extract some useful information from available

data. Based on these premises, section 7 presents some Machine Learning research directions to tackle the

second problem, and section 8 introduces a big-data architecture to scale up to the necessary computational

power.

In 2014 we monitored the behaviour of 3 large-scale mesh networks made of hundreds of nodes [2]. Among

the data we extracted there is a sequence of network graphs that we obtained from the routing protocol. The

three networks we monitored all use the well known OLSR (Optimized Link State Routing) protocol, which,

being a link-state protocol, generates enough information for each node to reconstruct the whole network

topology. OLSR annotates each link with the ETX metric, that expresses the average number of transmission

attempts for each successfully delivered packet [28]. An ETX value of 1 means that the link always delivers

all the packets, an ETX value of 2 means that the link drops half of the packets. Note that ETX does not

take into account the re-transmission mechanism of 802.11, so it greatly overestimate loss, neither it takes into

consideration the available bit-rate. Still it is a very easy to implement, and thus widely used metric. For one

week, every 5 minutes we dumped the network topology annotated with the ETX value per link. The whole

data-set has been used for several publications [29, 30] and is available online4. For this paper we use only

one network, the “ninux” network of Rome, made of about 130 nodes.

One way to assess the conditions of the network is to consider the cost of every path going from every

possible source node ni to every destination node nj . ETX is an additive metric, so that the cost of a path is

the sum of the costs on the edges that compose it, the higher the cost, the worse is the path. The minimum

value of ETX is 1, so that for every hop, at least an unitary cost is added. If a path length is made of x hops,

the minimum ETX cost is x.

Figure 5a shows the average path length and path cost for every network sample. The purple dots (the

average path cost) have a clearly defined circadian trend, due to the fact that when the network activity is

high the links become more congested and their ETX increases. This is confirmed by fig. 5b that shows the

average value of ETX per edge per graph, which stays between 1.15 and 1.5 showing that the network performs

in average pretty well. The path length shows a similar circadian trend but with a smaller variation, which

is, again, expected. In fact, every time the ETX of a link increases the protocol may, or may not, abandon a

certain path in favour of another one. The average path length increases only if the new path is longer than

the old one.

We marked four specific time-windows labeled A,B,C and D in fig. 5a that help us explain an anomalous

4See https://zenodo.org/record/1218746
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FIGURE 7 The On/Off state of nodes 7267 and 7387.

behaviour. In A and B there are some outliers in the ETX graph (fig. 5b), which produce outliers in the

average path cost. One may easily conclude that in a moment in which some links were highly congested the

average path cost was significantly impacted. Actually, the two situations are not the same; at time A the

average path length has some outliers too, while at time B it doesn’t and it is interesting to understand why.

Figure 6 shows the number of nodes in the network, which oscillates around the value of 132 during the

whole week. Consider that ninux is a network created with a bottom-up approach from a group of volunteers,

so that it is expected that some nodes could be unreliable. This happens normally at the fringes of the network,

for some leaf nodes that ‘come and go’, since they are connected with unstable links. Having 4-5 nodes that

appear and disappear in a network made of more than 130 nodes is acceptable for the community. At time

A, the number of nodes drops to its minimum of the whole week, which does not happen at time B, so the

number of nodes may be related to the outlier in path length. Yet if we look at time C, the number of nodes

drops down again, but the path length and cost does not raise significantly.

In order to add another ingredient to the analysis, we compute the betweenness centrality of all the nodes

in the network. Betweenness is a graph metric that represents a score of importance for every node in the

graph: the betweenness of ni represents the fraction of shortest paths between any couple of nodes in the

network that pass through ni [31].5 Among the nodes that disappear at time A we identify two nodes (with

identifiers 7276 and 7387) whose betweenness is 0.15 and 0.10. Not only they are not leaf nodes (whose

betweenness is 0), but they are “in between” a large number of couples of nodes. Their breakage forces the

protocol to choose alternative paths that make the average path length tangibly higher.

Figure 7 reports the state of the two nodes for the whole week and shows that for the large majority of

time the nodes are On. At time A both nodes are Off, and it is the only moment in the week when this

situation occurs. At time D node 7276 is Off and node 7387 is On, and in fact, we can see in fig. 5a that

again there is an increase in the average path. There is a third point in which node 7276 is off but due to the

density of points in fig. 5a the impact on the average path length is not noticeable.

Summing up, we can conclude that the anomaly we encountered was most probably due to the contem-

porary failure of two nodes with high centrality. We note that the failure of 7276 happens in two moments of

peak of traffic in the network (two moments in which the circadian pattern is close to the maximum). Failure

could be related to a power outage that happens when the node is under stress and its CPU routes thousands

of packets per second, but this is just a wild speculation. In practice our analysis stops here since we have no

5This definition is valid in graphs in which there is only one shortest path between two nodes.
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data to try to asses the root cause of this anomaly.

Three factors emerge clearly from this analysis. The first is that even with a limited amount of data

extracted from the routing daemon we can already derive many interesting insights on the network behavior.

The second is that in order to interpret the data we have to apply several layers of computation. For instance,

betweenness calculation with the fastest algorithm available has a complexity of O(nm+n2 logn) in a network

with n nodes andm weighted edges [31]. On a modern CPU it took about 20 minutes to do all the computations

needed to plot the graphs we have shown so far. Indeed, if this must be done in real time in a network with

thousands of nodes for tens of graphs per second, we need to use Big Data solutions. The third factor is that

finding the RCA of the anomaly was a process that required human intervention, and an interesting question

is if this kind of activity could be replaced using a Machine Learning approach.

7 | MACHINE LEARNING FOR ANOMALY DETECTION AND RCA

The two themes that we focus on are anomaly detection and RCA, and each one deserves to be analysed

separately in the next two sections.

7.1 | Anomaly Detection

Anomaly detection is the key technique to raise alarms when a system is misbehaving, and warnings when the

problem still did not materialize but is giving the first signs of its presence. Anomaly detection for security

applications is a well known research topic, with many connections to Machine Learning [32].

A first issue to approach is the problem of the classification of an anomaly, which in the case of an ISP

can be actually done using user’s feedback. When the network is not working properly, users will try to

contact the operator and raise warnings. When this happens, a first-level customer support opens a ticket,

based on the description of the problem given by the user. As the home router today is generally installed

by the operator, and not owned by the client, the operator can even automatically perform remote operations

on the router in order to acquire more data (assuming the router is reachable). In some sense, this relaxes

the problem of classification because the typical sequence of tiers in the technical support (generally split

in three levels of intervention) already produces enough information to identify network issues. Given this

background of labeled information, supervised Machine Learning techniques can be used. In case there is a

lack of examples to train the system, we can imagine two complementary directions to address this problem.

On the one hand, the set of examples containing identified anomalies can be augmented with simulated runs,

where one can observe the effect of arbitrary changes in the network topology over the network performance.

On the other hand one can train a system to predict measures, like the shortest path length between pairs of

nodes, which act as proxies of potential problems but are expensive to compute at run-time. In this case the

anomaly detection works on data of a coarser grain, and thus requires less precision, but does not itself flags

anomalies, it just triggers the use of other techniques that perform a finer-grained analysis, which could be

based on statistical analysis or predetermined rules.

Once the corpus of examples is given, in our specific case we have to narrow the set of available learning

techniques to the ones that can be applied to a time-varying sequence of (multidimensional) graphs.

Anomaly detection on time varying graphs is a studied subject [33] with several possible approaches.

Among the relevant techniques we mention Feature-based events that try to identify the situations in which
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FIGURE 8 An example communication network (left) with a possible configuration for a Bayesian
network used for RCA (right).

some of the key feature of the graph changed [34]. One typical approach is to use some distance between

graphs (like Error Correcting Graph Matching, or Hamming distance for the adjacency matrix) and flag an

anomaly when some threshold is reached. This approach can start in a localized manner (i.e. identifying small

continuous regions of the graph that behave abnormally [35]), and then proceed by observing how the anomaly

expands and creates temporary (vanishing) correlations with other detected anomalies [36]. Machine Learning

plays a key role in speeding up this process since some of the available tools (like Recurrent Neural Networks or

Dynamic Bayesian Networks) are well suited to model time sequences of graphs [37]. Graph kernels [38, 39, 40]

and graph neural networks [41, 42] are natural candidates for their ability to extract relevant features from

networked data. These techniques can be complemented with graph mining approaches [43, 44], in order to

identify patterns.

Note also that the set of defined anomalies is not static, it changes and evolves with time, so the anomaly

detection engine needs to follow this evolution. In this sense, techniques like Association Rule Mining have

been successfully applied to anomaly detection [45].

7.2 | Root Cause Analysis

The next step, after identifying an anomaly is finding the root cause that generated it. Again, Machine

Learning is extremely useful in this situation, as in essence, RCA is basically a specific case of inference, in

which a sequence of causality relationships must be identified. Bayesian Networks are a natural candidate

to perform inference, and Case-Based Reasoning is another valuable technique that helps to exploit previous

expert knowledge on the domain. Both techniques have been proposed for RCA [4, 46].
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Figure 8 represents a possible structure for a Bayesian network representing a toy communication network

(we limit the analysis to the Phy, MAC and IP layer for clarity). In the figure we show how in each node

the physical layer influences the MAC, which in turn influences the IP. This is an accurate description, as

the link quality determines which neighbors are admitted at MAC layer, which in turn influences the routing

tables at the IP layer. IP layers influence each other on different nodes, as the routing protocols exchange

packets to create the routing tables. In our approach, the influence of the IP layer of node A towards the IP

layer of node B follows the shortest path from B to A and thus, the Bayesian network is a tree (or a DAG in

case of multipath). The random variable associated to each node of the Bayesian network represents a metric

computed on the node in the graph of the corresponding layer. For instance, let us call GPhy [i] the Com. Phy

graph represented in the upper part of fig. 4, sampled at time ti. Let the random variable APhy associated to

the Phy layer of host A in the Bayesian network be an estimation of the sum of the link quality between A

and its neighbors in GPhy at time ti (the weighted degree of node A in GPhy [i]). If we consider a time window

w then the distribution of APhy is a time-varying continue function derived from all the snapshots of GPhy [i]

with t − w < ti ≤ t. With a similar process we can define the variables for the other layers of node A in the

Bayesian network (AMAC and AIP ) and for all other nodes. It is clear that the neighborhood at a certain layer

in the network stack is influenced by the neighborhood at the lower layer, but this influence is probabilistic, as

we can not deterministically predict how one layer influences the other. The Bayesian network can be trained

during normal operation of the network deriving the right configuration for the edge weights.

Consider the following application example: link D-C has a very low quality, so its cost is very high and

thus node D never uses C to reach A. The quality of link B-A is higher than D-C, meaning that its average cost

is strongly lower, but, it is a bit shaky, meaning that its variance is high. In normal conditions the Bayesian

network in fig. 8 will show that DIP is influenced by a chain of factors, including APhy , which frequently

changes and produces changes on the path to C. At time tf link B-A fails, and D is forced to use the shortest

path D-C-A. This impacts the average path cost (as discussed in section 6) and raises an alarm. Without

our architecture the network manager can not understand the cause of the alarm, and will focus on the path

D-C-A. With our architecture he can query the Bayesian networks for t < tf , and understand that the anomaly

was caused by the failure of the link B-A, as in the past APhy was a regular cause of influence on DIP . Of

course, the conclusion seems straightforward in this toy example, but in a large network our architecture can

detect the root cause of an anomaly which would be impossible to detect by manual inspection. Note that

using such an approach we can capture only the effects happening on the shortest path tree rooted in node A.

A different tree rooted in each of the nodes should be constructed, and the joint effects of all these trees could

be studied to analyze the whole network.

Of course this model introduces some simplifications, the most evident one being that in real networks

there are influence loops; for instance, Phy and MAC layers of different nodes influence each other. Treating

influence in a network with loops can not be done with a Bayesian network, and we leave to future works

the study of a more general approach. Furthermore, in order to explicitly bias our analysis towards causal

relationships, we will investigate the recent literature on causal models, causal inference and counterfactual

reasoning [47].
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FIGURE 9 The overall architecture.

8 | SYSTEM ARCHITECTURE

The architecture we propose is based on cutting-edge research, and state of the art technology for Big Data

analysis. Figure 9 depicts the components we envision and how they interact. The figure represents an example

network, split in areas, in each area reside the nodes that use the same gateway to reach the Internet. At the

core of the architecture there is Apache Spark. Spark is an open source Big Data tool that includes many

of the functions that we need, specifically, the collection of streams of data and their analysis using Machine

Learning techniques.

At the core of Spark there is a programming abstraction known as Resilient Distributed Datasets (RDDs)

that make it possible to analyse data as they arrive from the stream, as well as to analyze batches of past

data. RDDs support in-memory data storage in a distributed cluster in a fault-tolerant way, parallelised on a

number of nodes in the cluster. RDDs support Transformation (creating new RDDs processing existing ones)

and Actions, that do not modify the stream. In our architecture every kind of data is a separate stream. To

generate streams from raw data there are multiple options, one widely used open source option is Kafka. Kafka

is a distributed system made of “producers”, “brokers” and “consumers”. Producers generate the data streams,

which are basically a sequence of values with an associated time. Kafka allows to produce streams divided

in “topics”, each topic can be split in “partitions”. In our design we imagine that each node will produce a

topic, tagged with a unique identifier of the node, and each topic will be split in one partition per kind of

data (one for each line in the tables defined in section 4). Each partition is sent to one broker, brokers are in

charge of storing the data and delivering it to the consumers. Brokers can maintain the stream of data for a

configurable period (a “retention” period). This period can be set to any time window, and Kafka is designed

to be fault tolerant, every broker can replicate the partitions it receives to a number of slaves so that in case

of failure of a broker a slave becomes master and the system keeps working. The time needed for serving the

data to consumers is not affected by the retention period (and thus, by the size of the stored data).
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FIGURE 10 An example toolchain for data processing.

In our design we imagine to have one broker per gateway. Every node in the network is a producer of

data and sends data to the corresponding broker, whose identifier is derived in some way from the gateway

the node is currently using. If for some reason the node changes its default gateway, it will also change the

corresponding broker. This way, we naturally implement a load balancing strategy based on the network

organization at the routing layer. Brokers reside in the data center, and guarantee the necessary redundancy,

which is transparent to producers and consumers. Spark will play the role of a Kafka consumer, and pull

messages from brokers. We can imagine multiple consumers processing the streams in different, concurring

ways. Multiple consumers will, for instance, process all the topics, and realize the graph representations that

we explained in section 5, with one consumer per layer (in the case of aggregated graphs) or one consumer

per function (in the case of graphs with detailed information). In the first case, as an example, this requires

to receive the data in real time, average the series with some moving average function, and parse each layer

of information in order to reconstruct the corresponding network graph.

Spark supports graph data-format using the GraphX library, each graph can be annotated with the relevant

data in order to be analysed with Machine Learning algorithms. Operators and functions on graphs are allowed

in GraphX, so that known metrics (e.g. PageRank) can be extracted from each graph. The algorithms can be

run in parallel and relevant features extracted can be saved in a RDD, to be fed to machine learning algorithms

in order to perform anomaly detection as explained in section 7. Spark currently does not natively support

saving complex graphX structures, but in our case the dimension of the annotated graph is not as huge as in

other Spark applications, we can keep in the system memory thousands of annotated graphs made of hundreds

of nodes each. Graphs can be dumped in a text representation and reloaded in the future if needed. It is

fundamental to guarantee horizontal scalability, and Spark can be used in a Hadoop cluster architecture, so

that it can exploit the features of Hadoop without replicating them, especially the distributed filesystem and

the resource manager that schedules tasks across nodes in the cluster. Resources can dynamically be added to

the Hadoop cluster at any time, hence scaling the resources of the Monitor System dynamically. This is a key

feature we need in our scenario since, as we explained in section 4 the size of the data-set and the complexity

of the elaboration can change abruptly.

Finally, Spark comes with the very powerful MLlib, a library that provides state of the art algorithms for

machine learning techniques. Among them, Spark integrates some of the algorithms we mentioned in section 7,

such as Bayesian networks and decision trees.

Figure 10 reports an example tool chain for the data analysis. As described so far, the Kafka Broker

contains the topics divided in partitions, each topic corresponds to a node. In this case we take the MAC layer

reporting all the packets received by a node, with the corresponding source MAC address. Spark collects the

stream from all the nodes, and elaborates each stream producing a network graph that interconnects all nodes
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(each node representing a MAC address) with nodes from which it received packets. Each graph is created

from packets sent in a short time-window (e.g. 1s). Graphs are elaborated with GraphX, which exploits Spark

to perform parallel computation of graph features (or node features). Each feature is saved in a RDD which

contains its time-evolution. Such RDD is then passed to MLlib that uses some classification strategy to define

outliers (in the figure we mention Support Vector Machine, which is supported by MLlib, but it could be any

other machine learning primitive).

9 | CONCLUSIONS

Mesh networks are a mature technology which today offers new challenges, not much in the physical and MAC

layer as it was studied in the past decade, but in the upper layers and in the management strategy. Large net-

works made of hundreds of even thousands of nodes can be set-up and their monitoring, especially for security

reasons, is a daunting task. In this paper we explained why, and how Big Data tools and Machine Learning

can be used to monitor, perform anomaly detection, and also RCA on large-scale wireless mesh networks. We

proposed an architecture using state-of-the-art technology which can help solving critical situations, some of

which we exemplified. We consider this architecture practically viable, and we plan to start its evaluation as

a next step of this research.
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