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Learning to Grow Structured Visual Summaries for Document
Collections

Abstract

In this paper we propose a method of sum-
marizing collections of documents with con-
cise topic hierarchies, and show how it can be
applied to visualization and browsing of aca-
demic search results. The proposed method
consists of two steps: building the graph of
topics relevant to the collection, and select-
ing the optimal subgraph thereof. In the first
step, we map documents to a universal topic
hierarchy and extract a graph of relevant top-
ics. In the second step, we sequentially build
summaries of the extracted topic graph us-
ing a structured output prediction approach.
We describe how to build topic graphs based
on the network of articles and categories of
Wikipedia, and show how graph summariza-
tion can in our settings be cast into sequential
prediction problem using DAgger (Dataset
Aggregation) framework. The initial experi-
mental result suggest that our method is able
to learn how to grow good topic summaries
from a small number of examples.

1. Introduction

When searching or browsing a collection of documents,
we often want to perceive it as a whole, identify the
constituent topics, understand their span and interre-
lations. A familiar scenario is scanning through aca-
demic search results when exploring an new research
domain. Whether to better understand the domain,
focus on a relevant subset of the result, or refine our
search queries – we would like to grasp the topical
structure of the returned collection without having to
look through every item. In this paper we propose
summarizing academic search results (and document
collections in general) with topic maps – concise graphs
of topics connected by hierarchical relations. We pose
a problem of building a topic map of given size that

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

represents the collection in the most informative way.

The problem can be split into two subproblems: dis-
covering the set of interrelated topics in the doc-
uments, and finding the most informative subset
thereof. The first problem can be addressed by linking
the documents to a predefined hierarchy of topics. In
this work we rely on the article-category network of
Wikipedia, which has considerable coverage and level
of detail in a broad range of subjects. We map docu-
ments to Wikipedia topics (articles and categories) us-
ing Wikipedia Miner (Milne & Witten, 2013), building
the graph of topics linked with hierarchical relations.

Selecting the topic subgraph that provides the most
informative representation of the documents is a chal-
lenging problem, first, due to its combinatorial nature,
and second, due to the subjectivity and subtlety of the
notion of informativeness. We construct the summary
subgraphs sequentially, ‘growing’ them from smaller
subgraphs, which allows us to alleviate the complexity
of the problem, while maintaining the collective con-
tribution of topics into the quality of the summary. In
order to capture the properties of good (informative)
topic summaries, we learn how to grow such summaries
from given examples. We view this as a sequential pre-
diction problem, and apply DAgger meta-algorithm
(Ross et al., 2011) to ensure that the method behaves
well given its own-generated intermediate summaries.
We demonstrate that our method is able to learn from
a small number of examples, and produce informative
topic summaries for unseen document collections.

2. Related Work

There has been a vast amount of research dedicated
to finding topics in document collections and docu-
ment clustering. General-purpose clustering methods
(Weiss, 2006), concept lattices (Carpineto & Romano,
2004), and probabilistic topic models (Nguyen et al.,
2009) are among the methods that have been applied
to documents in general, as well as in the context of
Web search. The problem of choosing the meaningful
cluster labels has always remained challenging.

Large-scale manually-built knowledge sources, such as
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Wikipedia, has provided us with vast amount of infor-
mation that has been carefully produced, interlinked
and labeled. Gabrilovich and Markovitch (Gabrilovich
& Markovitch, 2007) proposed representing texts as
weighted combination of concepts based on Wikipedia
articles for the purpose of computing semantic relat-
edness between texts. Han and Zhao (Han & Zhao,
2010) proposed grouping the search results accord-
ing to topics defined as communities in the graph of
semantic relatedness between Wikipedia-derived con-
cepts. Similarly to our work, Scaiella et al. (Scaiella
et al., 2012) annotated the search result snippets with
links to Wikipedia articles. The grouping of the results
in their approach is performed based on the spectral
clustering of the graph of snippets and topics. The
main distinction of our work is that, starting from a
document-topic graph, we cast the further summariza-
tion problem into structured output prediction, which
allows us to learn a scoring function combining multi-
ple different features in a non-trivial way.

3. Building the Topic Graph

As an input to our method we assume to have a collec-
tion of documents D = {d1, d2, ..., dN}. In the scenario
of academic search, the documents may be publication
abstracts retrieved by an academic search engine for
some query. The result of this step is a topic graph
G(V,E), in which links (v, v′) ∈ E represent hierar-
chical parent-child relations between the topics, and a
relation R ⊆ V × D, which defines which documents
are relevant to which topics. In order to present a valid
hierarchy, the topic graph G must be acyclic.

The way we build a topic graph is by mapping doc-
uments to the nodes of an existing topic hierar-
chy. In this work we derive the topic hierarchy from
Wikipedia, although we suggest that other sources,
such as domain-specific categorization schemes, could
be used as well. The important advantages of
Wikipedia are its broad topic coverage and that it is
being constantly updated. We will now describe the
steps required to extract useful and valid topic graphs
from Wikipedia.

3.1. Deriving the Topic Graph from Wikipedia

We treat both articles and categories of Wikipedia as
topics, with topic v1 being the parent of v2 whenever
v1 is listed among the categories of v2. The whole
procedure of building the topics graph consists of the
following steps: a) mapping documents to Wikipedia
articles, b) retrieving the parent categories, c) merging
duplicate topics, d) breaking the cycles in the topic
graph and e) extending the main topic.

Mapping the documents to Wikipedia is per-
formed using wikification procedure. In essence, wik-
ification is augmenting arbitrary texts with links to
Wikipedia articles, in much the same way as Wikipedia
articles are linked to each other. Among the vari-
ous approaches to wikification we chose one described
in (Milne & Witten, 2013) as it is implemented in
an open source tool Wikipedia Miner. Using ma-
chine learning and statistics derived from Wikipedia
pages, Wikipedia Miner decides which phrases in the
text should be linked to Wikipedia, and which arti-
cles they should be linked to. We concatenate the
texts of the documents into a single string and submit
it to Wikipedia Miner for wikification. The returned
string augmented with links to Wikipedia articles is
then split back into documents, and each document is
associated with the set of topics corresponding to the
articles to which its text has been linked:

R := {(v, d)| the wikified text of d contains a link to v},

V := {v| ∃d, (v, d) ∈ R}.

Retrieving the parent categories os a step that al-
lows us to establish relations between the topics, which
in turn provides the main tool for generalization and
summarization. For every article v obtained at the
previous step, we augment the discovered set of topics
V with all its parent categories:

V := V ∪ parent categories(v),

E := E ∪ {(c, v)|c ∈ parent categories(v)}.

As we want to avoid topics that are too general or to
abstract, we perform the above step only once, that is
we do not explicitly retrieve further ancestors of the
parent categories. However, the following step typi-
cally introduces more distant hierarchical relations in
our topic graph.

Merging duplicate topics. Some of the topics have
both an associated article and a category in Wikipedia.
In order for our topic graph to contain no redundant
nodes, we merge such duplicate topics into one. In
addition, we merge near-duplicate topic whose titles
coincide up to lemmatization, such as, for instance,
the article on Decision tree and the category Decision
trees. As from the pair of topics being merged one
topic is typically an article, and another is a category,
the resulting topic will have both parent and child rela-
tions. As a result, during this step the formerly bipar-
tite graph G transforms into a general directed graph
containing paths of various lengths. After this step we
erase the distinction between articles and categories
and from now on treat them uniformly as topics.
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Breaking the cycles. The category graph of
Wikipedia contains occasional cycles1, and does not
thus form a perfect hierarchy. For the purpose of
our method we detect and break the cycles in the
topic graph using a depth-first search starting from
the ‘root’ topics (those containing no parent topics).

Extending the main topic. Having experimented
with academic search results for various queries, we
noticed that main topic of the query often has no chil-
dren in the topic graph. The reason for that is that the
queries we are interested in are usually quite specific:
for instance, we will more likely query for statistical re-
lational learning than for machine leaning. Wikipedia
is often sufficiently fine-grained to contain articles on
such specific topics, but not entire categories. This re-
sults is these topics being present but not detailed in
our topic graph. The processing we perform at this
step allows us to amend this situation to some extent.

The idea is quite simple: we can detect the main topic
of our document collection and link it to candidate
child topics. For example, when querying for statistical
relational learning, we would like to see Markov logic
networks as a child of the corresponding main topic.
For the purpose of detecting the main topic, selecting
the topic that has the most associated documents has
proven a good heuristic. When extending the main
topic vmain with a child topic v we require the follow-
ing properties to hold: a) v should be already present
in the topic graph (v ∈ V ), b) Wikipedia article about
vmain should contain a link to the article about v, c) v
should not be an ancestor of vmain in the topic graph.
Interestingly, the child nodes v introduced in this way
are often not the proper subtopics of vmain, but can
be viewed as such in the context of the query (think,
for instance of Regularized trees, Stepwise regression
and LASSO in the context of Feature selection). The
described heuristic procedure thus usually transforms
the topic graph in a useful way, providing the main
topic with an informative sub-structure.

4. Summarizing the Graph

The topic graph G and topic-document relation R
built at the previous step contain useful information
about the distribution of topics in our document col-
lection D. However, at this point the graph is too large
to be an informative visual representation of the doc-
uments: for a hundred of publication abstracts, the
typical number of topics in G exceeds two hundred.
At this step we select a subgraph of G to be used as

1According to Wikipedia, Artificial intelligence is both
a parent and a subcategory of Cognitive science

a visual summary of the document collection. Given a
limit T on the number of topics in the summary, our
goal is to select the subgraph GT that represents the
collection of documents in the most informative way.

We do not intend to grasp the exact notion of ‘infor-
mativeness’, which may not be objectively definable.
Instead we define properties that are favourable for
good topic summaries and learn their correct propor-
tions from examples. We elaborate on the properties in
Section 4.3, while in the following section we describe
problem of learning and predicting the summaries.

4.1. The Learning Problem

Viewed as a standard structured prediction problem,
our goal is to learn a scoring function

Fw(G,R,GT ) = 〈w,Ψ(G,R,GT )〉 (1)

that is maximized by good topic summaries, and then
construct summaries for new graphs G by maximizing
this function over the set of all possible subgraphs:

ĜT = argmax
|GT |=T

Fw(G,R,GT ). (2)

Computing the argmax is generally prohibitively ex-
pensive, as it requires evaluating the scoring function
over

(|V |
T

)
subgraphs. We alleviate this problem by im-

posing an additional constraint that is natural for our
settings. Specifically, we require that for a given input
graph G the optimal topic summaries of different sizes
should be nested:

Ĝ1 ⊂ Ĝ2 ⊂ ... ⊂ ĜT .

In other words, bigger summaries can be obtained from
smaller ones by only adding new topics:

Ĝt(V̂t, Êt), Ĝt+1(V̂t+1, Êt+1)⇒ V̂t+1 = V̂t ∪ {vt+1}.

This requirement is justified by the principle of least
surprise: when moving from less to more detailed sum-
maries, the user will likely not expect the topics to
disappear. Considering this requirement, the prob-
lem can be reformulated as predicting the sequence
of topics v̂1, v̂2, ..., v̂T whose prefixes constitute the
nodes of intermediate summary graphs. Assuming
that we have ‘ground truth’ examples of the form
((G,R), (v1, ..., vT )), we can view this as an imitation
learning problem, in which we want to copy the ex-
pert’s behaviour in selecting the topics (v1, ..., vT ).

DAgger (Dataset Aggregation) framework (Ross
et al., 2011) allows us to cast this problem into the
problem of training a local policy that predicts the
best next action (topic vt+1) given the current state
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(initial input (G,R) plus the current summary Ĝt). In
essence, DAgger ensures that such a policy behaves
well when applied to its own-generated, rather then op-
timal, states. The way this is accomplished is by iter-
atively retraining the policy on a updated training set.
At each iteration the training set is augmented with
examples ((G,R, Ĝt), v

opt
t+1), in which inputs (G,R, Ĝt)

are produced by the current policy, and outputs voptt+1

are optimal actions provided by the expert.

Applying DAgger requires two ingredients:

1. a policy π : (G,R, Ĝt) 7→ v̂t+1 that can be trained
on examples ((G,R, Ĝt), vt+1), and

2. an ‘expert’ π∗ : (G,R, v1, v2, ..., vT , Ĝt) 7→ voptt+1

that can produce optimal actions voptt+1 given the
true optimal sequence v1, v2, ..., vT and a current
(non-optimal) state (G,R, Ĝt).

Providing the policy. In order to build the policy π,
we need a classifier that can learn how to map an inter-
mediate topic graph (G,R, Ĝt) to the best next topic
v̂t+1. We view this as structured prediction problem
similar to the formulations (1, 2). Specifically, during
training we would like to learn a linear function

Fw(G,R, Ĝt, vt+1) = 〈w,Ψ(G,R, Ĝt, vt+1)〉 (3)

that is maximized by optimal decisions vt+1. The pre-
diction is then performed by maximizing the learned
function for a given input (G,R, Ĝt) over the possible
set of topics:

v̂t+1 = argmax
vt+1 /∈Ĝt

Fw(G,R, Ĝt, vt+1). (4)

The important distinction from the formulations (1,
2) is that argmax is computed over the set of topics
(rather then subgraphs), which is feasible. We solve
this prediction problem by using SVMrank instantia-
tion of the SVMstruct software (Joachims, 2006). In
order to compute the partial ranking rG,R,Ĝt

of dif-

ferent solutions v̂t+1 for a given input (G,R, Ĝt) we
define a loss function between the sequences

`G,R((v1, v2, ..., vt+1), (v′1, v
′
2, ..., v

′
t+1)), (5)

and compute it with respect to the optimal decision:

rG,R,Ĝt
(v̂t+1) = −`G,R((v̂1, v̂2, ..., v̂t+1), (v̂1, v̂2, ..., vt+1)).

In our experiments we defined `G,R to be a 0/1 loss,
which corresponds to specifying no preferences be-
tween non-optimal decisions, which in turn results in
fewer constraints and an easier problem for SVMrank.

Providing the expert actions. At each iteration
of DAgger we need to compute the optimal actions
voptt+1 for all states (G,R, Ĝt) generated by our current
policy. This is accomplished by minimizing the loss
with respect to the true optimal sequence:

voptt+1 = argmin
v̂t+1

`′G,R((v̂1, v̂2, ..., v̂t+1), (v1, v2, ..., vt+1)).

In these settings 0/1 loss is inappropriate, as it gives
equal score to all non-optimal sequences, rendering the
minimization problem meaningless in most cases. An
obvious candidate for `′G,R is Jaccard distance func-
tion. However, it turns out that Jaccard distance does
not take into account the similarity between the top-
ics: it tends to add topics from the optimal sequence,
even when the non-optimal partial sequence already
contains similar topics. In other words, it encourages
redundancy in the built topic summaries.

We designed a matching-based loss function `′G,R that
does not suffer from this problem:

`′G,R(..., ...) = 1−match(..., ...) (6)

The matching score greedily assigns best-scoring can-
didate topics to the topics from the optimal sequence,
starting from the first optimal topic v1. The score of
the assignment (v, v′) is computed as the Jaccard dis-
tance between the sets of documents transitively asso-
ciated with the topics v and v′, plus a constant α if
the topics are the same. The final matching score is
the average of the assignment scores divided by 1 +α.

4.2. Connecting topics and documents

The learning procedure described above allows us to
sequentially select the topics v1, v2, ..., vT to be in-
cluded into the topic summary GT . In order to com-
pletely define the summary graph, we need to decide
how to connect the topics with links. On one hand, we
want to maintain the hierarchical relations between the
topics in the graph, but on the other hand we do not
want to clutter the topic summary with unnecessary
links. The way we solve this problem is by introduc-
ing the minimum possible number of links that still
maintain the hierarchical structure of the original topic
graph: for every vi, vj ∈ VT such that vi is an ancestor
of vj in the original graph G, vi must be the ancestor of
vj in the topic summary GT . Technically this amounts
to computing the transitive closure G+(V,E+) of the
original graph, selecting the subgraph of G+ contain-
ing the nodes v1, v2, ..., vT and computing the transi-
tive reduction of the result.

It is important to mention how documents are assigned
to the nodes of the summary graph. After the sum-
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mary graph is built, we compute a new transitive topic-
document relation R+

T . A document d is assigned to
the topic v whenever it was assigned to any of the
descendant topics of v in the original graph:

R+
T = {(v, d)|v ∈ VT ,∃v′ ∈ V, (v, v′) ∈ E+, (v′, d) ∈ R}.

4.3. Features

An important step of the algorithm is computing
the joint feature representation Ψ(G,R, Ĝt, vt+1) for
the problem (3, 4). Based on the features, the pol-
icy π should be able to learn how to add topics
vt+1 to intermediate summary graphs Ĝt. The fea-
tures we use measure various properties of the graph
Ĝt+1(V̂t+1, Êt+1) that results from adding the topic
vt+1 to the summary Ĝt+1.

The first set of features is related to frequency and
diversity of the topics v̂i ∈ V̂t+1 in the summary:

1. document coverage:∣∣∣{d ∈ D| ∃v ∈ V̂t+1, (v, d) ∈ R}
∣∣∣

2. transitive document coverage:∣∣∣{d ∈ D| ∃v ∈ V̂t+1, (v, d) ∈ R+}
∣∣∣

3. average and minimum topic frequency, where:
topic freq(v) = |{d ∈ D| (v, d) ∈ R}|

4. average and minimum transitive frequency, where:
trans topic freq(v) = |{d ∈ D| (v, d) ∈ R+}|

5. average and maximum topic overlap, where:

overlap(vi, vj) =
|{d∈D| (vi,d)∈R+∧(vj ,d)∈R+}|
|{d∈D| (vi,d)∈R+∨(vj ,d)∈R+}|

6. average and maximum parent-child overlap, with
overlap defined above

7. average pairwise distance between the topics,
where distance is the length of the shortest path
through a common ancestor in the original graph

8. partition coefficient (measures how crisp are the
topics viewed as fuzzy clusters of documents)
1
N

∑N
i=1

1

|{v∈V̂t+1| (v,di)∈R+}|

Another set of features describes the properties of the
topic summary as a graph. These features include
a) the number of connected components, b) the num-
ber of links, c) the height of the graph, d) the average
number of children (for topics having children), and
e) the average and the maximum number of parents
(for topics having parents).

Some features communicate some specific properties
that do not fall into the described categories. Thus,
we have a feature that measures the unevenness of
the sizes (transitive frequencies) of sibling topics in
the summary. Another feature is used to measure the
‘subtopic coverage’, that is the average ratio between
the number of subtopics in the original graph and the
number of subtopics in the summary (for topics that
have subtopics in the summary graph). Finally, one
feature is dedicated to measuring the percent of topics
in the summary graph that are subtopics of the main
topic (see “Extending the main topic”, Section 3).

5. Initial Evaluation

We carried out the initial evaluation of the proposed
method on the search results obtained from Microsoft
Academic Search (MAS)2 for 10 distinct queries. For
each query we collected one hundred top results from
MAS, discovered the topics in their titles and ab-
stracts, and built the topic graph as described in Sec-
tion 3. The topic graphs were then annotated with
‘ground truth’ topic sequences of length 8, correspond-
ing to nested summaries of the topic graphs. The sum-
maries were selected so as to represent the search re-
sults and the discovered topics in the most informative
way according to our judgement.

The method was evaluated on the task of predict-
ing the topic sequences using leave-one-out cross-
validation on the described dataset. Two differ-
ent performance metrics were used: precision@n and
match@n. Precision@n measures the percent of cor-
rectly predicted topics in the subsequence of length n,
taking into account only exact matches. The second
metric, match@n allows for partial matches between
similar topics by measuring the match score (6) be-
tween the subsequences of length n.

As a baseline we implemented an algorithm that se-
lects topics by greedily optimizing the document cov-
erage. We should note that this is a reasonable base-
line: it optimizes both the frequency and the diversity
of the selected topics, both properties being impor-
tant for a good summary. Accordingly, the feature
responsible for document coverage received one of the
largest weights in our learning algorithm. Moreover,
the first topic selected by this greedy baseline coincides
with the ‘main topic’ in the collection, as it is approx-
imated in our approach (as described in “Extending
the main topic”, Section 3). As during the labeling we
always selected the true main topic first, the baseline
approach selected the first topic correctly, whenever

2http://academic.research.microsoft.com/
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our approximation was correct. Our method can also
be seen as greedily optimizing the linear combination
of features, the main difference being that the feature
weights are learned from the training data.

Figures 1 and 2 show the performance of our method
at different iterations. We can see that few iterations
already give improvement over the baseline. This sug-
gests that the method is able to capture some gen-
eral properties that are important for good topic sum-
maries. The first iteration is equivalent to not using
DAgger, which corresponds to training only on the
states encountered in the ground truth labeling. Im-
provement after the first iteration justifies the proce-
dures of dataset aggregation.
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Figure 1. Precision@n of predicted topics. Solid black line
corresponds to the baseline “greedy coverage” method, oth-
ers – to our method at various iterations of DAgger. Thick
grey dash-dotted line and thick solid orange line correspond
to the first and the last, tenth, iterations respectively.
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