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Abstract—Activity recognition is a key task for the develop-
ment of advanced and effective ubiquitous applications in fields
like Ambient Assisted Living. Most automated approaches for
the task fail to incorporate dependencies between non-close
time instants. In this paper we present a simple approach
for introducing longer-range interactions based on sequential
pattern mining. The algorithm searches for patterns char-
acterizing time segments during which the same activity is
performed. Novel sequences are tagged according to matches of
the extracted patterns. An experimental evaluation shows that
enriching sensor-based representations with the mined patterns
allows improving results of sequential and segmental labeling
algorithms on most of the cases.

Keywords-Activity recognition; Pattern Mining; Segmental
Labeling.

I. INTRODUCTION

The automatic recognition of activities from sensor data
is crucial for developing advanced applications in areas like
Ambient Assisted Living and Assisted Cognition. Services
like reminders and automatic reporting to clinicians and
medical staff can help in improving healthcare and elders’
independent living. From a machine learning viewpoint,
activity recognition can be formalized as a sequence label-
ing task: given a sequence of sensor readings covering a
timespan of interest (e.g. a day), predict the sequence of
activities being performed. The timespan is typically divided
into small time intervals, to be labeled with the activity
or the activities taking place. We will refer to these time
intervals as instants in this paper. A number of machine
learning algorithms have been applied to this task, ranging
from simple Naive Bayes [1] to sequential approaches like
Hidden Markov Models [2], Conditional Random Fields [3]
and their variants [4].

Local techniques like Naive Bayes or standard Support
Vector Machines label each time instant independently,
possibly extending its input representation over neighboring
instants. On the other hand, sequential approaches collec-
tively assign labels to all instants within the period of
interest. This allows exploiting the relationship between
activities performed at different time and usually results in
performance improvements, other things being equal [5]. In
modeling temporal interactions, however, these models are
limited to rather small spans. Sequential approaches rely on
a Markovian assumption to limit the number of parameters

to be learned and keep inference tractable. In order to
account for longer-range dependencies, shortcut links should
be added between arbitrary time instants along the sequence,
drastically increasing the complexity of the model and the
cost of inference.

In this paper we address the problem of introducing
longer-range dependencies in sequential labeling algorithms
relying on sequential pattern mining techniques. An activity
usually spans a certain amount of time, its average duration
depending on the specific activity being performed (e.g.
taking a shower or watching TV). We define an activity
segment as a sequence of consecutive time instants in which
the same activity is performed. Segmental labeling can be
accomplished by semi-Markov models [6], which explicitly
account for duration information. However, incorporating
long-range dependencies between observations within each
segment is a non-trivial task. Our solution consists of min-
ing segmental patterns, i.e. sequential patterns which cover
segments corresponding to a certain activity. By allowing
gaps between matches of individual pattern elements, distant
observations can be related. The set of mined patterns is
employed to enrich the sensor-based representation of novel
sequences: all time instants falling within a certain pattern
are tagged with the pattern identifier. This enriched represen-
tation can be fed to any learning algorithm. Our experimental
evaluation shows that including patterns allows improving
results for sequential and segmental learning algorithms on
most of the scenarios.

II. DATA REPRESENTATION

An input example x = {x1, . . . ,xT } consists of a con-
secutive sequence of observations, each covering a certain
time instant t. An observation xt is represented by the set
of sensors which are active at that time instant (i.e. within
its time interval). Different choices can be made in deciding
when a sensor is considered active, as will be discussed
in the experimental section. When feeding input sequences
to labeling algorithms (see Section V), observations will
be represented as binary vectors rather than sets. Given N
sensors, an observation xt will thus be encoded as a binary
feature vector xt = (x1

t , . . . , x
N
t ), each feature being 1 if

the corresponding sensor is active and 0 otherwise. The
labeling task consists of predicting a sequence of activity



labels y = {y1, . . . , yT }, one for each time instant. Each
label yt ∈ [1, L] is one of L possible activities, with one
indicating no activity. We assume here that activities are
not simultaneous, i.e. a single (or no) activity is performed
at each time. The segmental pattern mining algorithm can
however be quite straightforwardly generalized to deal with
multiple simultaneous activities. We define an activity seg-
ment as a sequence of consecutive time instants labeled with
the same activity. A segment su = (bu, eu, yu) is represented
by its starting and ending time instants bu, eu ∈ [1, T ], with
eu ≥ bu, and the segment label yu. A label sequence y
can be split into a sequence s = {s1, . . . , sU} of activity
segments such that bu = eu−1 +1 and yu 6= yu−1 for all u.
We define as x(su) the segment of x ranging from bu to eu
included. D represents a dataset of input-output sequences,
S its segmented version. Sy is the set of segments for activity
y, and D(Sy) the corresponding set of input segments.

III. SEGMENTAL PATTERN MINING

Our aim is mining patterns characterizing timespans dur-
ing which a certain activity is performed. Algorithm 1 shows
the pseudocode of our segmental pattern miner. Training
sequences are first split into activity segments, each labeled
with the corresponding activity. These segments are fed to a
sequential pattern miner (procedure SEQUENTIALMINER).
We employed pboost [7] which supports discriminative
mining, i.e. mining of patterns distinguishing sequences of
a certain class from the others. In the following we provide
a brief description of the algorithm. Further details can be
found in the original paper [7]. The algorithm takes as input
sets of positive and negative examples, each example being
a sequence of sets of integers (the sensor identifiers in our
case). It returns patterns as subsequences matching positive
and not negative examples. Let p = (p1,p2, . . . ,pm) be
a pattern of length m. Let pi be a pattern element, corre-
sponding to a non-empty set of active sensors. The pattern
p matches sequence x if there is a match (t1, t2, . . . , tm)
such that: for all i > j, ti > tj ; for all i, xti contains active
sensors pi (i.e. pi ⊆ xti ). By defining a canonical ordering
for sequences, the pattern space is searched in a tree-based
fashion starting from the empty pattern [8]. Pruning of the
search space is conducted combining the standard notion
of support (i.e. number of matching sequences) with that
of gain: pboost considers each pattern as a feature and
learns a linear classifier (LPBoost [9]) on top of them,
discriminating between positive and negative examples. The
gain provided by a feature can be compared with an upper
bound on the maximal gain achievable by further extending
the corresponding pattern. If the gain exceeds the upper
bound there is no need to proceed in this search direction.

For each of the possible activities, pboost is run pro-
viding segments of the target activity as positive examples
and all other segments as negative ones. Each of the returned
patterns p is evaluated according to its discriminative power,

Algorithm 1 Procedure for segmental pattern mining

1: procedure SEGMENTALMINER(D, φ)
2: Initialize P to the empty set
3: Split training sequences into activity segments S
4: for all activities y do
5: Sy = segments for y
6: Sȳ = segments for y′ 6= y
7: Py = SEQUENTIALMINER(D(Sy),D(Sȳ))
8: for all p ∈ Py do
9: if SCORE(p,D(Sy),D(Sȳ)) ≥ φ then

10: g = MEDIANGAP(p,D(Sy))
11: P = P ∪ {(p, g)}
12: end if
13: end for
14: end for
15: return P
16: end procedure

computed as its F1 score on the training segments (pro-
cedure SCORE). The F1 measure (see experiments) trades
off precision, i.e. the fraction of segments covered by the
pattern which do belong to the target activity, and recall,
i.e. the fraction of segments of the target activity covered
by the pattern. All patterns with a score lower than a certain
threshold φ are discarded. The threshold φ is a parameter
of the algorithm, which was optimized by a preliminary
cross validation procedure as described in the experimental
section.

Sequential patterns extracted by pboost allow for ar-
bitrary gaps between the pattern elements. Our aim is that
these patterns cover the largest possible portion of an activity
segment. However, in the test phase when used to label
a novel time sequence, the activity segmentation will be
unknown and the patterns will be applied to the whole
sequence (i.e. a day). We thus need to estimate the expected
number of gaps in pattern matches for activity segments.
This is crucial for a correct use of patterns: during test,
allowing for arbitrary gaps within a pattern could produce
matches involving very distant time instants (e.g. in the
morning and afternoon), which likely belong to different
activity segments. In order to provide an estimate of the
correct number of gaps, the algorithm computes the median
gap length of each pattern on the positive segments (proce-
dure MEDIANGAP). The final outcome is a set of patterns
characterizing all activities, together to their estimated gap
lengths.

IV. PATTERN-BASED SEQUENCE REPRESENTATION

During test, activity segments cannot be used as labeling
information is not available and full sequences (e.g. a day)
have to be considered. However, the fact that a pattern spans
a certain subsequence is an indication that the corresponding
activity could be performed during that period of time. We



Algorithm 2 Procedure for tagging sequence with pattern
matches

1: procedure TAGSEQUENCE(P , x)
2: Let x̂ be a sequence of |x| binary vectors of size
|P|

3: Initialize all vectors in x̂ to zero
4: for all (p, g) ∈ P do
5: for all t1 ∈ [1, |x|] do
6: if HASMATCH(x,t1,p,g) then
7: (t1, . . . , tm) = BESTMATCH(x,t1 ,p,g)
8: for all t ∈ [t1, tm] do
9: x̂pt = 1

10: end for
11: end if
12: end for
13: end for
14: return x̂
15: end procedure

thus tag each element of the subsequence with the pattern
identifier.

The sequence tagging algorithm is sketched in Algo-
rithm 2. It takes as inputs a set of patterns with their gap
lengths and the sequence to tag, and outputs a pattern-based
representation of the sequence. Each time instant in the
output sequence x̂ is represented as a binary vector with
a length equal to the number of patterns. Each element x̂pt
will be set to one if time instant t is contained in a match
of pattern p, and zero otherwise.

For each pattern, the algorithm scans the sequence looking
for matches. Let p = (p1,p2, . . . ,pm) be a pattern of
length m and let g be its gap length. A gapped match
(t1, t2, . . . , tm) for the pattern is a sequence of instants such
that: for all i > j, ti > tj ; for all i, pi ⊆ xti ; the sequence
has at most g gaps, i.e. tm− t1 +1 ≤ m+g. The procedure
BESTMATCH(x,t1 ,p,g) finds the longest gapped match of
pattern p in sequence x starting at instant t1. All instants
from t1 to tm are then tagged with the identifier of pattern
p. The search is repeated for all possible starting instants
t1, from one to the end of the sequence.

The algorithm outputs a pattern-based representation of
the sequence, where each instant is tagged with the set of
patterns with matches containing it. This type of representa-
tion can complement sensor-based ones by adding informa-
tion concerning long-range interactions, which would likely
be lost otherwise.

V. ACTIVITY RECOGNITION ALGORITHMS

The pattern-enriched representation of sequences can be
fed to any learning algorithm performing sequence label-
ing. Our aim is evaluating the impact of this enriched
representation on learning algorithms with respect to the
assumptions they make on the relationship between time

instants. We thus focused on Hidden Markov Models and
Hidden Semi-Markov Models, which perform sequential and
segmental labeling respectively. These algorithms have been
recently compared [4], [5] on a benchmark consisting of
wireless sensor network data. Both algorithms model the
joint probability distribution of input and output p(x,y)
and return the output maximizing this probability, i.e. y∗ =
argmaxyp(x,y).

A Hidden Markov Model (HMM) is a sequential approach
where: 1) the label at each time instant depends on the label
at the previous time instant only; 2) the observation at each
time instant depends on the label at that time instant only; 3)
probabilities do not depend on the specific time instants but
only on the values of labels/observations at those instants.
The resulting joint probability is given by:

p(x,y) =

T∏
t=1

p(xt|yt)p(yt|yt−1)

where p(y1|y0) stands for the probability of having y1 as
the initial label. In modeling the conditional probability of
observations given label, a common simple approach (also
followed in [4], [5]) consists of making a Naive assumption
of independence between observation features given the
label. The resulting probability is:

p(xt|yt) =
N∏
i=1

p(xit|yt)

where for the binary case, probabilities for features p(xit|yt)
are represented as Bernoulli distributions.

HMMs imply an exponential distribution for state du-
rations. The probability of seeing label l for d consecu-
tive instants is d times the probability of a self transition
p(yt = l|yt−1 = l). This assumption is often not appropriate
when durations tend to have specific patterns, as happens in
activity recognition tasks. Explicit duration distributions can
be represented by Hidden Semi-Markov Models (HSMM),
which consider probability of segmental labeling (x, s).
Recall that s is a sequence of U consecutive segments
su = (bu, eu, yu). The corresponding joint probability is
represented as:

p(x, s) =

U∏
u=1

p(yu|yu−1)p(du|yu)
eu∏

t=bu

p(xt|yu)

where du = eu − bu + 1 is the duration of segment su,
whose probability can be modeled by the desired distribu-
tion. For details on HSMM see [6]. Following [4], we em-
ployed a Gaussian distribution for label duration in HSMM
and independent Bernoulli distributions for observation fea-
tures (as HMM). We did not include Conditional Random
Fields and their Semi-Markov extension in our comparison,
as they require much longer training time and were shown
to provide comparable and often worse results with respect



to their directed counterparts (HMM and HSMM) on this
benchmark [4].

VI. EXPERIMENTS

In this section we first present the experimental setup
used for evaluating the proposed approach and then provide
results of the experiments.

A. Setting

We performed our experiments on the freely available1

benchmark described in [4], [5]. The datasets include infor-
mation regarding three different houses comprising several
wireless sensor networks. Each node of the network is
attached to the ad hoc sensors, e.g., reed switches, passive
infrared. Annotation of the activities was achieved by record-
ing the start and end time of the corresponding activity either
via handwritten diary or bluetooth headset. Table I presents
a summary of the characteristics of the datasets.

Table I: Details of the datasets

House A House B House C
Duration 25 days 14 days 19 days
Sensors 14 23 21

Activities 10 13 16
Annotation Bluetooth Diary Bluetooth

Activities to be recognized were derived from the Katz
ADL index which is a measure qualifying the ability of
individuals to sustain their lives independently. Tables III
and IV indicate those used in our experiments for House
A and House C respectively. House B differs from House
A by introducing new activities ’Getting dressed’, ’Prepar-
ing brunch’, ’Washing dishes’, ’Eating dinner’, and ’Eat-
ing Brunch’ excluding ’Preparing breakfast’ and ’Getting
Snack’. ’Idle’ represents the time spans at which either none
of the annotated activities or no activity is observed.

Data acquired from the sensors were processed in differ-
ent ways to create feature representations. We focused on
the Changepoint (C) and the Last-fired (L) representations
which were by far the most effective ones [5]. The former
considers a sensor active (value 1) only in the time instants
in which it alters its state. The latter keeps considering the
last sensor which changed state active until another sensor
changes its state. Figure 1 depicts the working mechanism
of these representations as compared to the original raw one,
where a sensor is active in all time instants in which it fires.

(a) Original (b) Changepoint (c) Last-fired

Figure 1: Feature representations

1https://sites.google.com/site/tim0306/codeFramework.zip

A ‘Leave-one-day-out‘ (LOO) approach was used to
split the datasets into training and test sets. Each
day was in turn considered as a test set, while
all other days made up the training set. Perfor-
mance measures include precision (Pr=TP/(TP+FP)), recall
(Re=TP/(TP+FN)), F1 (F1=(2 · Pr · Re)/(Pr+Re)) and accu-
racy (Acc=(TP+TN)/(TP+FP+TN+FN)) for each class. Here
TP and FP are the fraction of true and false positives
respectively, while TN and FN are the fraction of true and
false negatives respectively. F1 is the harmonic average of
precision and recall trading off the two.

We compared HMM and HSMM with and without
pattern-mined features, the latter corresponding to the ex-
perimental setting reported in [5]. Patterns were mined on
the L sensor representation, as it provides a much larger
fraction of time instants having active sensors. The C
representation is extremely sparse preventing the mining of
patterns complex enough to cover significant fractions of the
activity segments. We employed a threshold φ on patterns
F1 score in order to select the most discriminant patterns
(see Section III). Determination of the threshold value was
automated by performing internal cross validation within the
training folds of the LOO approach. The training set of each
fold was again split into training and testing sets by applying
the same LOO approach. For each internal validation step,
a range of possible threshold values was evaluated and
the one maximizing the sequential learner F1 measure was
recorded as a candidate φ. The final φ was chosen as the
most frequently recorded one across the different internal
cross validations. This was then employed in the outer
cross validation procedure whose results are reported in
the following section. Note that the same thresholds were
obtained by this procedure for HMM and HSMM learners,
i.e. φ = 0.95 for House A and House B and φ = 0.6 for
House C.

B. Results

Results of the experiments are shown in the Table II for
House A, House B, and House C respectively, averaged
over days and activities. The C representation is usually
superior to the L one, as previously observed [5]. Simply
combining the two representations (rows C+L) does not
allow improving over the best of the two. On the other
hand, including the pattern-based features (C+LP) succeeds
in improving results in four out of six cases. The two cases
where patterns are not helpful are those for House B. By
comparing results for C and L representations, it is apparent
that the L one is much worse in this setting. Hence, patterns
extracted from it inherit the same deficiency, which prevents
the C+LP combination from boosting the results.

Table III and Table IV show the breakdown of the results
by activity for the HSMM case, which performed better
through all experiments, for the two houses where patterns
provide improvements. Results indicate that the contribution



Table II: Results of the experiments averaged across activities

House A House B House C
Model Feature Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

HMM

C 70±16 74±13 72±14 48±17 63±14 54±17 41±9 50±11 45±9
L 55±17 70±13 61±15 39±16 47±20 42±17 41±10 54±16 46±11

C+L 67±18 79±12 72±15 37±16 48±20 42±17 40±10 56±16 46±10
C+LP 78±13 81±11 79±12 46±15 62±14 52±14 49±16 56±14 52±15

HSMM

C 71±16 75±12 72±14 50±16 65±13 56±15 44±10 52±13 47±11
L 60±15 74±13 66±14 41±12 53±11 46±11 43±11 56±15 48±11

C+L 67±17 80±13 73±15 42±13 59±10 49±11 41±10 57±16 47±11
C+LP 77±13 82±11 79±12 47±15 66±13 54±13 50±16 58±14 53±15

Table III: Breakdown of the results by activity for House A

C C+L C+LP
Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

Idle 0.890 0.508 0.646 0.963 0.634 0.764 0.942 0.744 0.831
Leaving house 0.944 0.997 0.970 0.984 0.997 0.991 0.977 0.999 0.988

Using toilet 0.739 0.822 0.778 0.744 0.795 0.768 0.767 0.795 0.781
Taking shower 0.948 0.649 0.771 0.375 0.904 0.530 0.960 0.849 0.901
Brushing teeth 0.172 0.344 0.229 0.132 0.375 0.195 0.222 0.438 0.295
Going to bed 0.901 0.965 0.932 0.981 0.995 0.988 0.954 0.994 0.974

Preparing breakfast 0.566 0.690 0.622 0.550 0.575 0.562 0.591 0.747 0.660
Preparing dinner 0.670 0.516 0.583 0.291 0.770 0.423 0.710 0.596 0.648

Getting snack 0.426 0.548 0.479 0.162 0.548 0.250 0.512 0.524 0.518
Getting drink 0.674 0.674 0.674 0.593 0.653 0.621 0.674 0.592 0.630

of the L representation is rather unstable across activities,
preventing an overall improvement for the combined C+L
representation. Conversely, the C+LP representation is much
more robust, managing to combine the advantages of the
two representations. Consider, for instance, the activities
’Taking shower’, ’Idle’ and ’Leaving house’. These are
closely related as they are typically performed in a row by
the resident. A simple but commonly found pattern consists
of a long repetition of the ’front door’ sensor. This clearly
indicates a ’Leaving house’ activity is taking place. It also
helps in disambiguating temporally close activities like the
just mentioned ’Idle’ and ’Taking shower’ ones. Conversely,
including L representation also introduces noisy features: a
sensor activated while taking shower will continue to be
considered active when the resident is actually idle, leaving
to a drop in precision for the ’Taking shower’ prediction.
Concerning House C, a commonly found pattern consists
of a sequence of sensor activations for the fridge, the herbs
cupboard and the fridge again, characterizing the ’Preparing
dinner’ activity. Let us consider a possible scenario for this
situation. A resident starts cooking his dinner by taking
ingredients from the fridge. After a while, flavoring herbs
and spices taken from the herbs cupboard are added into
the blend. As soon as the meal is ready, the resident puts
the remaining ingredients back to the fridge. Introducing
such patterns allows relating observations which are not
sufficient to discriminate among similar activities if taken
alone. For instance, a similar scenario involving usage of
fridge and other kitchen appliances can be observed for
preparing breakfast. The patterns found for this last activity
include activations for the cutlery drawer, the bowl cupboard,

and the fridge. Both activities are actually better recognized
using the C+LP representation.

The method is applicable for scenarios rich in features
enabling distinctive activity patterns to be discovered. In
the case of very sparse feature representations, matching
patterns with wide range of possible gap lengths might
be expensive. Cautious consideration could be required to
constrain the set of valid patterns. As far as the system
architecture is concerned, environmental sensors working in
synergy with each other provide more complete information
regarding activities by eliminating individual deficiencies.
For instance, dependence mostly on motion detectors leads
to produce similar patterns which is not enough to infer
activities with high accuracy and sometimes incapable of
capturing specific activities.

VII. RELATED WORK

The problem of dealing with long-range dependencies is
well-known in the machine learning community. A number
of attempts at addressing it rely on hierarchical models like
hierarchical HMMs [10] and their many recent variants [11],
[12]. These try to model higher level dependencies between
non-atomic activities which should account for the long-
term dependencies. However, these models require a good
amount of knowledge about the underlying structure of the
problem in building the hierarchies. Indeed, a two-level
hierarchical HMM, modeling activity segments at the lower
lever and sequences of segments at the upper one, did not
improve over plain HMM in our preliminary experiments.
Another approach consists of explicitly adding links between
distant time instants which are deemed to be in direct



Table IV: Breakdown of the results by activity for House C

C C+L C+LP
Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

Idle 0.588 0.390 0.469 0.655 0.702 0.678 0.697 0.870 0.774
Leaving house 0.765 0.951 0.848 0.982 0.860 0.917 0.979 0.863 0.917

Eating 0.375 0.372 0.373 0.423 0.344 0.380 0.452 0.479 0.465
Using toilet 1 0.380 0.582 0.460 0.290 0.684 0.408 0.497 0.532 0.514
Taking shower 0.644 0.390 0.485 0.365 0.584 0.449 0.529 0.574 0.551
Brushing teeth 0.306 0.406 0.349 0.273 0.267 0.270 0.242 0.228 0.235
Using toilet 2 0.259 0.475 0.335 0.198 0.488 0.282 0.278 0.438 0.340

Shaving 0.402 0.536 0.460 0.337 0.507 0.405 0.284 0.391 0.329
Going to bed 0.997 0.822 0.901 0.997 0.981 0.989 0.997 0.983 0.990

Getting dressed 0.581 0.670 0.622 0.602 0.688 0.642 0.658 0.688 0.673
Medication 0.308 0.267 0.286 0.129 0.267 0.174 0.150 0.200 0.171

Preparing breakfast 0.033 0.028 0.030 0.038 0.070 0.049 0.152 0.296 0.201
Preparing lunch 0.142 0.250 0.181 0.075 0.167 0.103 0.117 0.117 0.117
Preparing dinner 0.672 0.417 0.515 0.234 0.772 0.359 0.531 0.617 0.571

Getting snack 0.136 0.375 0.200 0.088 0.208 0.124 0.171 0.292 0.215

relationship, like in Skip-chain CRF [13]. Shortcut links
considerably increase the complexity of the inference task
and should thus be carefully selected. Skip-chain CRF [13]
have been successfully applied to named-entity recognition,
where shortcut links were added between pairs of identical
capitalized words. Our segmental pattern miner extracts
patterns which should approximately span activity segments.
Their matches are thus natural candidates to add shortcuts,
possibly connecting distant segments representing the same
or closely related activities. We are pursuing this direction
in our ongoing research.

VIII. CONCLUSIONS

We presented a segmental pattern mining approach for
enriching sequential representations with patterns charac-
terizing interactions within activity segments. Experimental
results show the usefulness of the mined patterns in improv-
ing predictive power of learning algorithms. Our approach
is not limited to activity recognition tasks and is readily
applicable to sequential labeling problems characterized by
segments of consecutive positions sharing the same label
(e.g. intron-exon identification in DNA sequences). The
segmental mining strategy can also be used for suggesting
promising topologies for graphical models trying to directly
incorporate long-range dependencies.
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