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Kernel methods are a class of non-parametric learning techniques relying on kernels. A kernel generalizes
dot products to arbitrary domains and can thus be seen as a similarity measure between data points with
complex structures. The use of kernels allows to decouple the representation of the data from the specific
learning algorithm, provided it can be defined in terms of distance or similarity between instances. Under
this unifying formalism a wide range of methods have been developed, dealing with binary and multiclass
classification, regression, ranking, clustering and novelty detection to name a few. Recent developments
include statistical tests of dependency and alignments between related domains, such as documents written
in different languages. Key to the success of any kernel method is the definition of an appropriate kernel for
the data at hand. A well-designed kernel should capture the aspects characterizing similar instances while
being computationally efficient. Building on the seminal work by D. Haussler on convolution kernels, a
vast literature on kernels for structured data has arisen. Kernels have been designed for sequences, trees
and graphs, as well as arbitrary relational data represented in first or higher order logic. From the represen-
tational viewpoint, this allowed to address one of the main limitations of statistical learning approaches,
namely the difficulty to deal with complex domain knowledge. Interesting connections between the com-
plementary fields of statistical and symbolic learning have arisen as one of the consequences. Another
interesting connection made possible by kernels is between generative and discriminative learning. Here
data are represented with generative models and appropriate kernels are built on top of them to be used in
a discriminative setting.

In this chapter we revise the basic principles underlying kernel machines and describe some of the
most popular approaches which have been developed. We give an extensive treatment of the literature
on kernels for structured data and suggest some basic principles for developing novel ones. We finally
discuss kernel methods for predicting structures. These algorithms deal with structured-output prediction,
a learning setting in which the output is itself a structure which has to be predicted from the input one.

1 A Gentle Introduction to Kernel Methods

In the typical statistical learning framework a supervised learning algorithm is given a training set of input-
output pairs D = {(x1,y1), . . . ,(xm,ym)}, with xi ∈X and yi ∈ Y , sampled identically and independently
from a fixed but unknown probability distribution ρ . The set X is called the input (or instance) space
and can be any set. The set Y is called the output (or target) space. For instance, in the case of binary
classification Y = {−1,1}while the case of regression Y is the set of real numbers. The learning algorithm
outputs a function f : X 7→ Y that approximates the probabilistic relation ρ between inputs and outputs.
The class of functions that is searched is called the hypothesis space.
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Intuitively, f should assign to a novel input x the same (or a similar) y of similar inputs already observed
in the training set. A kernel is a function : X ×X 7→ IR measuring the similarity between pairs of inputs.
For example, the similarity between a pair of sequences could be the number of common subsequences of
length up to a certain m. The kernel should satisfy the following equation:

k(x,x′) = 〈Φ(x),Φ(x′)〉.

It thus corresponds to mapping examples to a (typically high dimensional) feature space H and com-
puting the dot product in that space. In the sequence example, H is made of vectors of booleans, with an
entry for each possible sequence of length up to m given the alphabet. Φ(x) maps x to a vector with one for
entries occurring in x and zero otherwise. However, the kernel function does not need to explicitly do the
mapping (which can be even infinite dimensional) in computing the similarity.

Fig. 1 A simple binary clas-
sifier in feature space: µ+ and
µ− are the mean vectors of
positive (circles) and negative
(squares) examples respec-
tively. The algorithm assigns
a novel example to the class
with the nearer mean. The
decision boundary is a hy-
perplane (solid line) half-way
down between the line linking
the means (the dotted line).

Kernels allow to construct algorithms in dot product spaces and apply them to data with arbitrarily
complex structures. Consider a binary classification task (Y = {−1,1}). A simple similarity-based classi-
fication function [68] could assign to x the y of the examples which on average are more similar to it (see
Figure 1). The algorithm starts by computing the means of the training examples for the two classes in
feature space:

µ+ =
1

n+
∑

i:yi=+1
Φ(xi) µ− =

1
n−

∑
i:yi=−1

Φ(xi)

where n+ and n− are the number of positive and negative examples respectively. It then assigns a novel
example to the class of the closer mean:

f (x) = sgn(〈µ+,Φ(x)〉−〈µ−,Φ(x))

where sgn(z) returns the sign of the argument and we assumed for simplicity that the two means have
the same distance from the origin (otherwise a bias term should be included). The decision boundary is
represented by a hyperplane which is half way down on the line linking the means and orthogonal to it. By
replacing the formulas for the means, we obtain:

f (x) = sgn

(
1

n+
∑

i:yi=+1
〈Φ(xi),Φ(x)〉− 1

n−
∑

i:yi=−1
〈Φ(xi),Φ(x)〉

)
.

Feature space mappings Φ(·) only appear in dot products and can thus be replaced by kernel functions.
This is commonly known as the kernel trick. The resulting f can be compactly written as:
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f (x) = sgn

(
∑

i
cik(xi,x)

)
,

where ci = yi/nyi . The unthresholded version of f (i.e. before applying sgn) is a linear combination of
kernel functions “centered” on training examples xi. This is a common aspect characterizing (with minor
variations) kernel machines, as we will see in the rest of the chapter.

2 Mathematical Foundations

The kernel trick allows to implicitly compute a dot product between instances in a possibly infinite feature
space. In this section we will treat in more detail the theory underlying kernel functions, showing how
to verify if a given function is actually a valid kernel, and given a valid kernel how to generate a feature
space such that the kernel computes a dot product in that space. We will then highlight the connections
between kernel machines and regularization theory, showing how most supervised kernel machines can be
seen as instances of regularized empirical risk minimization. We will focus on real valued functions but
results can be extended to complex ones as well. Details and proofs of the reported results can be found
in [4, 6, 64, 68].

2.1 Kernels

Let’s start by providing some geometric structure to our feature spaces.

Definition 1 (Inner Product).
Given a vector space X , an inner product is a map 〈·, ·〉 : X ×X → IR such that for every x,x′,x′′ ∈

X ,α ∈ IR:

1. 〈x,x′〉= 〈x′,x〉 (symmetry)

2. 〈x+ x′′,x′〉= 〈x,x′〉+ 〈x′′,x′〉, 〈αx,x′〉= α〈x,x′〉
〈x,x′+ x′′〉= 〈x,x′〉+ 〈x,x′′〉, 〈x,αx′〉= α〈x,x′〉 (bilinearity)

3. 〈x,x〉 ≥ 0 (positive de f initeness)

If in condition 3. equality only holds for x = 0X the inner product is strict.

Inner products are also known as dot or scalar products. A vector space endowed with an inner product is
called an inner product space. As a simple example, the standard dot product in the space of n-dimensional
real vectors IRn is

〈x,x′〉=
n

∑
i=1

xix′i.

A norm can be defined as ||x||2 =
√
〈x,x〉 and a distance as d(x,x′)= ||x−x′||2 =

√
〈x,x〉−2〈x,x′〉+ 〈x′,x′〉.

A Hilbert space is an inner product space with two additional properties (completeness and separability)
guaranteeing that it is isomorphic to some standard spaces (IRn or its infinite dimensional analogue L2, the
set of square convergent real sequences). Hilbert spaces are often infinite dimensional.

Feature maps Φ : X →H map instances into a Hilbert space. In the following we will provide condi-
tions guaranteeing that a kernel function k acts as a dot product in the Hilbert space of a certain map.

Definition 2 (Gram Matrix). Given a function k : X ×X → IR and patterns x1, . . . ,xm, the m×m matrix
K such that
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Ki j = k(xi,x j)

is called the Gram matrix of k with respect to x1, . . . ,xm.

Definition 3 (Positive Definite Matrix). A symmetric m×m matrix K is positive definite if

m

∑
i, j=1

cic jKi j ≥ 0, ∀c ∈ IRm.

If equality only holds for c = 0, the matrix is strictly positive definite.

Alternative conditions for positive definiteness are that all its eigenvalues are non-negative, or that there
exists a matrix B such that K = BT B.

Definition 4 (Positive Definite Kernel). A function k : X ×X → IR such that ∀m ∈ IN and ∀x1, . . . ,xm ∈
X it gives rise to a positive definite Gram matrix is called a positive definite kernel.1

Theorem 1 (Valid Kernels).
A kernel function k : X ×X → IR corresponds to a dot product in a Hilbert space H obtained by a

feature map Φ:

k(x,x′) = 〈Φ(x),Φ(x′)〉 (1)

if and only if it is positive definite.

Proof. The ’if’ implication can be proved by building a map from X into a space where k acts as a dot
product. We will actually build a map into a feature space of functions:

Φ : X → IRX |Φ(x) = k( · ,x).

Φ maps an instance into a kernel function “centered” on the instance itself. In order to turn this space of
functions into a Hilbert space, we need to make it a vector space and provide a dot product. A vector space
is obtained taking the span of kernel k, that is all functions

f (·) =
m

∑
i=1

αik( · ,xi)

for all m ∈ IN, αi ∈ IR, xi ∈X . A dot product in such space between f and another function

g(·) =
m′

∑
j=1

β jk( · ,x′j)

can be defined as

〈 f ,g〉 =
m

∑
i=1

m′

∑
j=1

αiβ jk(xi,x′j). (2)

Note that in order for eq. (2) to satisfy the positive definiteness property of an inner product (see Defini-
tion 1) the kernel k(x,x′) needs to be positive definite. For each given function f , it holds that

〈k( · ,x), f (·)〉 = f (x). (3)

In particular, for f = k( · ,x′) we have:

〈k( · ,x),k( · ,x′)〉 = k(x,x′).

1 Note that part of the literature calls such kernels and matrices positive semi-definite, indicating with positive definite the
strictly positive definite case.



Kernel Methods for Structured Data 5

By satisfying equation (1) we showed that each positive definite kernel can be seen as a dot product in
another space. In order to show that the converse is also true, it suffices to prove that given a map Φ from
X to a product space, the corresponding function k(x,x′) = 〈Φ(x),Φ(x′)〉 is a positive definite kernel.
This can be proved by noting that for all m ∈ IN, c ∈ IRm and x1, . . . ,xm ∈X we have

m

∑
i, j=1

cic jk(xi,x j) =

〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)

〉
=

∣∣∣∣∣
∣∣∣∣∣ m

∑
i=1

ciΦ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0.

The existence of a map to a dot product space satisfying (1) is therefore an alternative definition for a
positive definite kernel. ut

A kernel satisfying equation (3) is said to have the reproducing property. The resulting space is named
Reproducing Kernel Hilbert Space (RKHS). This is the hypothesis space we will deal with when develop-
ing supervised learning algorithms based on kernels. Note that while for a positive definite kernel k there is
always a corresponding feature space of functions constructed as described in the proof2 (and vice versa),
there can be other (possibly finite dimensional) spaces working as well. A constructive example was pre-
sented in Section 1 for the common subsequence kernel. Other examples will be shown when describing
kernels on structured data (Section 4).

2.2 Supervised Learning with Kernels

A key problem in supervised learning is defining an appropriate measure for the quality of the predic-
tions. This is achieved by a loss function V : Y ×Y → [0,∞), a non-negative function measuring the
error between the actual and predicted output for a certain input V ( f (x),y). A simple example is the mis-
classification loss, which outputs one for an incorrect classification and zero otherwise. Learning aims at
producing a function with the smallest possible expected risk, i.e. the probability of committing an error
according to the data distribution ρ . Unfortunately, this distribution is usually unknown and one has to
resort to the empirical risk, i.e. the average error on the training set Dm:

Remp[ f ] =
1
m

m

∑
i=1

V ( f (xi),yi).

In order to prevent overfitting of training data, one has to impose some constraints on the possible
hypotheses. The typical solution in machine learning is that of tending to prefer simpler hypotheses, by
restricting the hypothesis space, biasing the learning algorithm for favouring them, or both. Most kernel
machines rely on Tikhonov regularization [76], in which a regularization term Ω [ f ] is added to the empir-
ical risk in order to bias learning towards more stable solutions:

Rreg[ f ] = Remp[ f ]+λΩ [ f ].

The regularization parameter λ > 0 trades the effect of training errors with the complexity of the func-
tion. By choosing Ω to be convex, and provided Remp[ f ] is also convex, the problem has a unique global
minimum. A common regularizer is the squared norm of the function, i.e. Ω [ f ] = || f ||2.

When the hypothesis space is a reproducing kernel Hilbert space H associated to a kernel k, the repre-
senter theorem [41] gives an explicit form of the minimizers of Rreg[ f ].

Theorem 2 (Representer Theorem). Let Dm = {(xi,yi) ∈X × IR}m
i=1 be a training set, V a convex loss

function, H a RKHS with norm || · ||H . Then the general form of the solution of the regularized risk

1
m

m

∑
i=1

V ( f (xi),yi)+λ || f ||2H

2 An alternative way of constructing a feature space corresponding to a positive definite kernel is provided by Mercer’s
Theorem [53].
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is

f (x) =
m

∑
i=1

cik(xi,x). (4)

The proof is omitted for brevity and can be found in [41]. The theorem states that regardless of the
dimension of the RKHS H , the solution lies on the span of the m kernels centered on the training points.
Generalization of the representer theorem have been proved [68] for arbitrary cumulative loss functions
V ((x1,y1, f (x1)), . . . ,(xm,ym, f (xm))) and strictly monotonic regularization functionals. A semi-parametric
version of the theorem accounts for slightly more general solutions, including for instance a constant bias
term.

3 Kernel Machines for Structured Input

Most supervised kernel machines can be seen as instantiations of the Tikhonov regularization framework
for a particular choice of the loss function V . Kernel ridge regression [65, 59] employs the quadratic loss
V ( f (x),y) = ( f (x)− y)2 and is used for both regression and classification tasks. Kernel logistic regres-
sion [39] uses the negative log-likelihood of the probabilistic model, i.e. log(1+ exp(−y f (x))) for binary
classification. Support Vector Machines [13] (SVM) are the most popular class of kernel methods. Initially
introduced for binary classification [9], they have been extended to deal with different tasks such as regres-
sion and multiclass classification. The common rationale of SVM algorithms is the use of a loss function
forcing sparsity in the solution. That is, only a small subset of the ci coefficients in eq. (4) will be non-
zero. The corresponding training examples are termed Support Vectors (SV). In the following we detail
SVM for binary classification and regression. SVM for multiclass classification will arise as a special case
of structured-output prediction (see Section 6). We will then discuss a SV approach for novelty detection
based on the estimation of the smallest enclosing hypersphere. Finally we will introduce kernel Principal
Component Analysis [67] for non-linear dimensionality reduction. Additional algorithms can be found e.g.
in [71].

3.1 SVM for Binary Classification

SVM for binary classification employ the so-called hinge loss:

V ( f (x),y) = |1− y f (x)|+ =

{
0 if y f (x)≥ 1
1− y f (x) otherwise

As shown in Fig.2(a), a linear cost is paid in case the confidence in the correct class is below a certain
threshold. By plugging the hinge loss in the Tikhonov regularization functional we obtain the optimization
problem addressed by SVM:

min
f∈H

1
m

m

∑
i=1
|1− yi f (xi)|++λ || f ||2H .

Slack variables ξi = |1− yi f (xi)|+ can be used to represent the cost paid for each example, giving the
following quadratic optimization problem:

min
f∈H ,ξ∈IRm

1
m

m

∑
i=1

ξi +λ || f ||2H

subject to: yi f (xi)≥ 1−ξi i = 1, . . . ,m
ξi ≥ 0 i = 1, . . . ,m.
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(a) (b)

Fig. 2 SVM for binary classification: (a) Hinge loss. (b) Classification function. The solid line represents the separating
hyperplane, while dotted lines are hyperplanes with confidence margin equal to one. Black points are unbound SVs, grey
points are bound SVs and extra borders indicate bound SVs which are also training errors. All other points do not contribute
to the function to be minimized. Dotted lines indicate the margin error ξi for bound SVs.

To see that this corresponds to the hinge loss, note that as we minimize over slack variables ξ, ξi will be
zero (it must be non-negative) if yi f (xi) ≥ 1 (hard constraint satisfied) and 1− yi f (xi) otherwise. By the
representer Theorem we know that the solution of the above problem is given by eq. (4). As for the simple
classification algorithm seen in Section 1, the decision function takes the sign of f to predict labels and the
decision boundary is a separating hyperplane in the feature space. To see this, let Φ(·) be a feature mapping
associated with kernel k. Function f can be rewritten as:

f (x) =
m

∑
i=1

ci〈Φ(xi),Φ(x)〉= 〈
m

∑
i=1

ciΦ(xi),Φ(x)〉= 〈w,Φ(x)〉.

The decision boundary 〈w,Φ(x)〉 = 0 is a hyperplane of points orthogonal to w. Note that w can be
explicitly computed only if the feature mapping Φ(·) is finite-dimensional. From the definition of the dot
product in the RKHS H (see eq. (2)) we can compute the (squared) norm of f :

|| f ||2H = 〈 f , f 〉=
m

∑
i=1

m

∑
j=1

cic jk(xi,x j) =
m

∑
i=1

m

∑
j=1

cic j〈Φ(xi),Φ(x j)〉

= 〈
m

∑
i=1

ciΦ(xi),
m

∑
j=1

c jΦ(x j)〉= 〈w,w〉= ||w||2.

The minimization problem can be rewritten as:

min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: yi〈w,Φ(xi)〉 ≥ 1−ξi i = 1, . . . ,m
ξi ≥ 0 i = 1, . . . ,m,

where we replaced C = 2/λm for consistency with most literature on SVM. Hyperplanes 〈w,Φ(x)〉−1= 0
and 〈w,Φ(x)〉+ 1 = 0 are “confidence” boundaries for not paying a cost in predicting class +1 and −1
respectively. The distance between them 2/||w|| is called geometric margin. By minimizing ||w||2, this
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margin is maximized, while slack variables ξi account for margin errors. The minimizer thus trades off
margin maximization and fitting of training data. Constraints in the optimization problem can be included
in the minimization functional using Lagrange multipliers:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

αi(yi〈w,Φ(xi)〉−1+ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i. The Wolfe dual formulation for the Lagrangian amounts at maximizing it over
αi,βi subject to the vanishing of the gradient of w and ξ, i.e.:

∂L
∂w

= w−
m

∑
i=1

αiyiΦ(xi) = 0→w =
m

∑
i=1

αiyiΦ(xi) (5)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C]. (6)

The second implication comes from the non-negativity of both αi and βi. Substituting into the Lagrangian
we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j〈Φ(xi),Φ(x j)〉+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m.

The problem can be solved using off-the-shelf quadratic programming tools. However, a number of ad-hoc
algorithms have been proposed which exploit the specific characteristics of this problem to achieve substan-
tial efficiency improvements [37, 58]. Note that replacing〈Φ(xi),Φ(x j)〉= k(xi,x j) we recover the kernel-
based formulation where the feature mapping is only implicitly done. The general form for f (eq. (4)) can
be recovered setting ci = αiyi (see eq. (5)).

The Karush−Kuhn−Tucker (KKT) complementary conditions require that the optimal solution satis-
fies:

αi(yi〈w,Φ(xi)〉−1+ξi) = 0 (7)
βiξi = 0 (8)

for all i. Eq. (7) implies that αi > 0 only for examples where yi〈w,Φ(xi)〉 ≤ 1. These are the support
vectors, all other examples do not contribute to the decision function f . If αi < C, equations (8) and (6)
imply that ξi = 0. These are called unbound support vectors and lay on the confidence one hyperplanes.
Bound support vectors (αi = C) are margin errors (ξi > 0). Figure 2(b) shows an example highlighting
hyperplanes and support vectors.

Variants of SVM for binary classification have been developed in the literature. Most approaches include
a bias term b to the classification function f . This can be obtained simply setting k′(x,x′) = k(x,x′)+ 1.
Linear penalties can be replaced with quadratic ones (ξ 2

i ) in the minimization functional. The ν-SVM [70]
allows to explicitly upper bound the number of margin errors. Further details can be found in several
textbooks (see e.g. [13]).

3.2 SVM for Regression

SVM for regression enforce sparsity in the solution by tolerating small deviations from the desired target.
This is achieved by the ε− insensitive loss (see fig.3(a)):
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V ( f (x),y) = |y− f (x)|ε =
{

0 if |y− f (x)| ≤ ε

|y− f (x)|− ε otherwise

which doesn’t penalize deviations up to ε from the target value (the so-called ε-tube), and gives a linear
penalty to further deviations. By introducing slack variables for penalties, we obtain the following mini-
mization problem:

min
f∈H ,ξ,ξ∗∈IRm

1
m

m

∑
i=1

(ξi +ξ
∗
i )+λ || f ||2H

subject to: f (xi)− yi ≤ ε +ξi i = 1, . . . ,m
yi− f (xi)≤ ε +ξ

∗
i i = 1, . . . ,m

ξi,ξ
∗
i ≥ 0 i = 1, . . . ,m.

As for the binary classification case, we can rewrite the problem in terms of weight vector and feature
mapping. The Lagrangian is obtained as (C = 2/λm):

L(w,ξ,ξ∗,α,α∗,β,β∗) =
1
2
||w||2 +C

m

∑
i=1

(ξi +ξ
∗
i )−

m

∑
i=1

(βiξi +β
∗
i ξ
∗
i )−

m

∑
i=1

αi(ε +ξi + yi−〈w,Φ(xi)〉)

−
m

∑
i=1

α
∗
i (ε +ξ

∗
i − yi + 〈w,Φ(xi)〉) (9)

with αi,αi∗,βi,β
∗
i ≥ 0, ∀i ∈ [1,m]. By vanishing the derivatives of L with respect to the primal variables

we obtain:

∂L
∂w

= w−
m

∑
i=1

(α∗i −αi)Φ(xi) = 0→ w =
m

∑
i=1

(α∗i −αi)Φ(xi) (10)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C] (11)

∂L
∂ξ ∗i

= C−α
∗
i −β

∗
i = 0→ α

∗
i ∈ [0,C].

Finally, substituting into the Lagrangian we derive the dual problem:

max
α∈IRm

−1
2

m

∑
i, j=1

(α∗i −αi)(α
∗
j −α j)〈Φ(xi),Φ(x j)〉− ε

m

∑
i=1

(α∗i +αi)+
m

∑
i=1

yi(α
∗
i −αi),

subject to: αi,α
∗
i ∈ [0,C], ∀i ∈ [1,m].

The kernel-based formulation is again recovered setting 〈Φ(xi),Φ(x j)〉= k(xi,x j), while the general form
for f (eq. (4)) is obtained for ci = αi−α∗i . (see eq. (10)). The KKT complementary conditions require that
the optimal solution satisfies:

αi(ε +ξi + yi−〈w,Φ(xi)〉) = 0
α
∗
i (ε +ξ

∗
i − yi + 〈w,Φ(xi)〉) = 0

(C−αi)ξi = 0
(C−α

∗
i )ξ

∗
i = 0

These conditions enlighten some interesting analogies to the classification case:
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• All patterns within the ε-tube, for which | f (xi)− yi| < ε , have αi,α
∗
i = 0 and thus don’t contribute to

the estimated function f .
• Patterns for which either 0<αi <C or 0<α∗i <C are on the border of the ε-tube, that is | f (xi)−yi|= ε .

They are the unbound support vectors.
• The remaining training patterns are margin errors (either ξi > 0 or ξ ∗i > 0), and reside out of the ε-

insensitive region. They are bound support vectors, with corresponding αi =C or α∗i =C.

Figures 3(b),3(c),3(d) show examples of SVM regression for decreasing values of ε . In order to highlight
the effect of the parameter on the approximation function, we focus on 1D regression and report the form
of the function in the input (rather than feature) space. Note the increase in the number of support vectors
when requiring tighter approximations. A Gaussian kernel (see Section 4.1) was employed in all cases.

(a) (b)

(c) (d)

Fig. 3 SVM for regression: (a) Epsilon insensitive loss. (b)(c)(d) Regression functions for decreasing values of ε . Solid
lines represent the regression function, dotted lines represent the ε-insensitive tube around the regression function. All points
within this tube are considered correctly approximated. Black points are unbound SVs laying on the borders of the tube, gray
points are bound SVs laying outside of it. All other points do not contribute to the regression function. Note the increase in
the complexity of the function and the number of support vectors for decreasing values of ε .
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3.3 Smallest Enclosing Hypersphere

A support vector algorithm has been proposed in [75, 66] in order to characterize a set of data in terms
of support vectors, thus allowing to compute a set of contours which enclose the data points. The idea is
finding the smallest hypersphere which encloses the points in the feature space. Outliers can be dealt with
by relaxing the enclosing constraint and allowing some points to stay out of the sphere in feature space.
The algorithm can be readily employed for novelty detection, by predicting whether a test instance lays
outside of the enclosing hypersphere.

Given a set of m examples xi ∈X , i = 1, . . . ,m and a feature mapping Φ , we can define the problem of
finding the smallest enclosing sphere of radius R in the feature space as follows:

min
R∈IR,o∈H ,ξ∈IRm

R2 +C
m

∑
i=1

ξi

subject to ||Φ(xi)−o||2 ≤ R2 +ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

where o is the center of the sphere, ξi are slack variables allowing for soft constraints and C is a cost
parameter balancing the radius of the sphere versus the number of outliers. We consider the Lagrangian

L(R,o,ξ,α,β) = R2 +C
m

∑
i=1

ξi−
m

∑
i=1

αi(R2 +ξi−||Φ(xi)−o||2)−
m

∑
i=1

βiξi,

with αi ≥ 0 and βi ≥ 0 for all i∈ [1,m], and by vanishing the derivatives with respect to the primal variables
R, o and ξi we obtain

∂L
∂R

= 1−
m

∑
i=1

αi = 0→
m

∑
i=1

αi = 1

∂L
∂o

= o−
m

∑
i=1

αiΦ(xi) = 0→ o =
m

∑
i=1

αiΦ(xi) (12)

∂L
∂ξi

= C−αi−βi = 0→ αi ∈ [0,C].

Substituting into the Lagrangian we derive the Wolf dual problem

max
α∈IRm

m

∑
i=1

αiΦ(xi)
2−

m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉, (13)

subject to
m

∑
i=1

αi = 1, 0≤ αi ≤C, i = 1, . . . ,m.

The distance of a given point x from the center of the sphere

R2(x) = ||Φ(x)−o||2

can be written using (12) as

R2(x) = 〈Φ(x),Φ(x)〉−2
m

∑
i=1

αi〈Φ(x),Φ(xi)〉+
m

∑
i=1

m

∑
j=1

αiα j〈Φ(xi),Φ(x j)〉. (14)

As for the other SV algorithms, both (13) and (14) contain only dot products in the feature space, which
can be substituted by a kernel function k. The KKT conditions [17] imply that at the saddle point of the
Lagrangian
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βiξi = 0
αi(R2 +ξi−||Φ(xi)−o||2) = 0

showing the presence of (see fig. 4):

Fig. 4 Novelty detection
by smallest enclosing hyper-
sphere. The solid line is the
border of the hypersphere
enclosing most of the data
and represents the decision
boundary. Black points are
unbound SV laying on the hy-
persphere border. Grey points
are outliers which are left out-
side of the hypersphere. All
other points do not contribute
to the decision function.

• Unbound support vectors (0 < αi <C), whose images lie on the surface of the enclosing sphere.
• Bound support vectors (αi =C), whose images lie outside of the enclosing sphere, which correspond to

outliers.
• All other points (α = 0) with images inside the enclosing sphere.

The radius R∗ of the enclosing sphere can be computed by (14) provided x is an unbound support vector.
A decision function for novelty detection would predict a point as positive if it lays outside of the sphere
and negative otherwise, i.e.:

f (x) = sgn
(
R2(x)− (R∗)2)

3.4 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a standard technique for linear dimensionality reduction which
consists of projecting examples onto directions of maximal variance, thus retaining most of their informa-
tion content. We will introduce it considering explicit feature mappings Φ(x), and then show how these
can be computed only implicitly via kernels (see [71] for further details).

Given a set of orthonormal vectors u1, . . . ,uk, the orthogonal projection of a point Φ(x) into the sub-
space V spanned by them is computed as:

PV (Φ(x)) =
(
〈ui,Φ(x)〉

)k

i=1
(15)

where each dot product computes the length of the projection in the corresponding direction. Let X be a
matrix representation of a set of points {Φ(x1), . . . ,Φ(xm)}, with row i representing point Φ(xi)

T . Let’s
assume that the points are centered around the origin, i.e. their mean is zero. This can always be obtained
subtracting the mean from each point. The covariance matrix of the points C is computed as:

C =
1
m

m

∑
i=1

m

∑
j=1

Φ(xi)Φ(x j)
T =

1
m

XT X .
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The directions of maximal variance are the eigenvectors of C with maximal eigenvalue. PCA basically
projects points onto the first k eigenvectors of the covariance matrix, where k is the dimension of the
reduced space. The dimension k can be set a priori or chosen according to the amount of variance captured,
measured as the sum of the eigenvalues.

Standard PCA requires to explicitly use mappings Φ(x), both in computing covariance matrix C and in
doing the projection (Eq. (15)). However, it is possible to avoid this thanks to the relationship between the
eigen-decomposition of covariance and kernel matrices. Let K = XXT be the kernel matrix of the data. Let
(λ ,v) be an eigenvalue-eigenvector pair of K. It holds that:

C(XTv) =
1
m

XT XXTv =
1
m

XT Kv =
λ

m
XTv

showing that (λ/m,XTv) is an eigenvalue-eigenvector pair of C. The norm of the eigenvector is:

||XTv||2 = vT XXTv = vT Kv = λvTv = λ

where the last equality follows from the orthonormality of v. The normalized eigenvector is thus u =
1/
√

λXTv. Projecting Φ(x) onto this direction can be computed as:

Pu(Φ(x)) = 〈1/
√

λXTv,Φ(x)〉= 1/
√

λvT XΦ(x) = 1/
√

λ

m

∑
i=1
vi〈Φ(xi),Φ(x)〉= 1/

√
λ

m

∑
i=1
vik(xi,x)

where k is a kernel corresponding to the feature map Φ(·). Note that v is computed as eigenvector of the
kernel matrix K, thus we never need to explicitly compute Φ(x). Centering of the data in feature space can
also be addressed simply using a modified kernel:

k̂(x,x′) = 〈Φ(x)− 1
m

m

∑
i=1

Φ(xi),Φ(x′)− 1
m

m

∑
i=1

Φ(xi)〉

= k(x,x′)− 1
m

m

∑
i=1

k(xi,x′)−
1
m

m

∑
i=1

k(x,xi)+
1

m2

m

∑
i=1

m

∑
j=1

k(xi,x j).

A number of well-known dimensionality reduction techniques, like Locally Linear Embedding and
Laplacian Eigenmaps, can be seen [28] as special cases of kernel PCA. Kernel PCA has been used for
addressing a variety of problems, from novelty detection [30] to image denoising [40].

4 Kernels on Structured Data

Kernel design deals with the problem of choosing an appropriate kernel for the task at hand, that is a
similarity measure of the data capable of best capturing the available information. We start by introducing
a few basic kernels commonly used in practice, and show how to realize complex kernels by combination of
simpler ones, allowing to treat different parts or characteristics of the input data in different ways. We will
introduce the notion of kernels on discrete structures, providing examples of kernels for strings, trees and
graphs. We will then discusses two classes of hybrid kernels, based on probabilistic generative models and
logical formalisms respectively. For extensive treatments of kernels for structured data see also [22, 51].
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4.1 Basic Kernels

Let’s start with some basic kernels on inner product spaces. While they cannot be directly applied to
structured objects, they will turn useful when defining complex kernels as combinations of simpler ones.
The standard dot product is called linear kernel:

k(x,x′) = 〈x,x′〉.

Its normalized version computes the cosine of the angle between the two vectors:

knorm(x,x′) =
〈x,x′〉√
〈x,x〉〈x′,x′〉

. (16)

The polynomial kernel:

kd(x,x′) = (〈x,x′〉+ c)d (17)

with d ∈ IN and c ∈ IR+
0 , allows to combine individual features taking their products. The corresponding

feature space contains all possible monomials of degree up to d. Gaussian kernels are defined as:

kσ (x,x′) = exp
(
−||x− x′||2

2σ2

)
= exp

(
−〈x,x〉−2〈x,x′〉+ 〈x′,x′〉

2σ2

)
(18)

with σ > 0. They are an example of Universal kernels [54], a class of kernels which can uniformly ap-
proximate any arbitrary continuous target function. Note that the smallest the variance σ2, the most the
prediction for a certain point will depend only on its nearest (training) neighbours, eventually leading to
orthogonality between any pair of points and poor generalization. Tuning this hyperparameter according
to the complexity of the problem at hand is another mean to control overfitting (see also Section 5).

The simplest possible kernel for arbitrary domains is the matching or delta kernel:

kδ (x,x
′) = δ (x,x′) =

{
1 if x = x′

0 otherwise. (19)

While it clearly does not allow any generalization if used alone, it is another useful component for building
more complex kernels.

4.2 Kernel Combination

The class of kernels has a few interesting closure properties useful for combinations. It is closed under
addition, product, multiplication by a positive constant and pointwise limits [6], that is they form a closed
convex cone. Note that the addition of two kernels corresponds to the concatenation of their respective
features:

(k1 + k2)(x,x′) = k1(x,x′)+ k2(x,x′)

= 〈Φ1(x),Φ1(x′)〉+ 〈Φ2(x),Φ2(x′)〉
= 〈Φ1(x)�Φ2(x),Φ1(x′)�Φ2(x′)〉

where � denotes vector concatenation. Taking the product of two kernels amounts at taking the Cartesian
product between their respective features:
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(k1× k2)(x,x′) = k1(x,x′)k2(x,x′)

=
n

∑
i=1

Φ1i(x)Φ1i(x′)
m

∑
j=1

Φ2 j(x)Φ2 j(x′)

=
n

∑
i=1

m

∑
j=1

(Φ1i(x)Φ2 j(x))(Φ1i(x′)Φ2 j(x′))

=
nm

∑
k=1

Φ12k(x)Φ12 j(x′) = 〈Φ12(x),Φ12(x′)〉

where Φ12(x) = Φ1(x)×Φ2(x). Such properties are still valid in the case that the two kernels are defined
on different domains [29]. If k1 and k2 are kernels defined respectively on X1×X1 and X2×X2, then
their direct sum and tensor product:

(k1⊕ k2)((x1,x2),(x′1,x
′
2)) = k1(x1,x′1)+ k2(x2,x′2)

(k1⊗ k2)((x1,x2),(x′1,x
′
2)) = k1(x1,x′1)k2(x2,x′2)

are kernels on (X1×X2)× (X1×X2), with x1,x′1 ∈X1 and x2,x′2 ∈X2. These combinations allow to
treat in a diverse way parts of an individual which have different meanings. Finally, if k is defined on
S ×S with S ⊂X , a zero extension kernel on X ×X can be obtained setting k(x,x′) = 0 whenever x
or x′ do not belong to S .

These concepts are at the basis of the so called convolution kernels [29, 85] for discrete structures.
Suppose x ∈X is a composite structure made of “parts” x1, . . . ,xD such that xd ∈Xd for all i ∈ [1,D].
This can be formally represented by a relation R on X1×·· ·×XD×X such that R(x1, . . . ,xD,x) is true
iff x1, . . . ,xD are the parts of x. For example if X1 = · · · = XD = X are sets containing all finite strings
over a finite alphabet A , we can define a relation R(x1, . . . ,xD,x) which is true iff x = x1 ◦ · · · ◦ xD, with
◦ denoting concatenation of strings. Note that in this example x can be decomposed in multiple ways. If
their number is finite, the relation is said to be finite. Let R−1(x) = {x1, . . . ,xD : R(x1, . . . ,xD,x)} return the
set of decompositions for x. Given a set of kernels kd : Xd ×Xd → IR, one for each of the parts of x, the
R-convolution kernel is defined as

(k1 ? · · ·? kD)(x,x′) = ∑
(x1,...,xD)∈R−1(x)

∑
(x′1,...,x

′
D)∈R−1(x′)

D

∏
d=1

kd(xd ,x′d) (20)

where the sums run over all the possible decompositions of x and x′. For finite relations R, this can be shown
to be a valid kernel [29]. Let X ,X ′ be sets and let R(ξ ,X) be the membership relation, i.e. ξ ∈ R−1(X) ⇐⇒
ξ ∈ X . The set kernel is defined as:

kset(X ,X ′) = ∑
ξ∈X

∑
ξ ′∈X ′

kmember(ξ ,ξ
′) (21)

where kmember is a kernel on set elements. Simple examples of set kernels include the intersection kernel:

k∩(X ,X ′) = |X ∩X ′|

and the Tanimoto kernel:

kTanimoto(X ,X ′) =
|X ∩X ′|
|X ∪X ′|

.

A more complex type of R-convolution kernel is the so called analysis of variance (ANOVA) kernel [83].
Let X = S n be the set of n-sized tuples built over elements of a certain set S . Let ki : S ×S → IR,
i ∈ [1,n] be a set of kernels, which will typically be the same function. For D ∈ [1,n], the ANOVA kernel
of order D, kAnova : S n×S n→ IR, is defined by
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kAnova(x,x′) = ∑
1≤i1<···<iD≤n

D

∏
d=1

kid (xid ,x
′
id ).

Note that the sum ranges over all possible subsets of cardinality D. For D = n, the sum consists only
of the term for which (i1 = 1, . . . , iD = n), and k becomes the tensor product k1⊗ ·· · ⊗ kn. Conversely,
for D = 1, each product collapses to a single factor, while i1 ranges from 1 to n, giving the direct sum
k1⊕·· ·⊕ kn. By varying D we can run between these two extremes. In order to reduce the computational
cost of kernel evaluations, recursive procedures are usually employed [80].

Mapping kernels [72] were recently introduced as a generalization of R-convolution kernels, in which
the kernel sums over a subset of all possible decompositions of x and x′. If the mapping system Mx,x′

selecting the subset is transitive, i.e. (xd ,x′d)∈Mx,x′ ∧(x′d ,x′′d)∈Mx′,x′′⇒ (xd ,x′′d)∈Mx,x′′ , then the resulting
mapping kernel is positive definite.

Finally, once a kernel k on an arbitrary type of data has been defined, it can readily be composed with
basic kernels on inner-product spaces, like the ones seen in the previous section (just set 〈x,x′〉= k(x,x′)).
This will produce an overall feature mapping which is the composition of the mappings Φ(·) and Φ ′(·)
associated to the two kernels:

Φ
∗ : X →H ′ |Φ∗ = Φ

′ ◦Φ .

Polynomial (eq. 17) and Gaussian (eq. 18) kernels are commonly employed to allow for nonlinear
combinations of features in the mapped space of the first kernel. Cosine normalization (eq. 16) is often
used to reduce the dependence on the size of the objects. In the case of set kernels, an alternative is that
of dividing by the product of the cardinalities of the two sets, thus computing the mean value between
pairwise comparisons:

kmean(X ,X ′) =
kset(X ,X ′)
|X ||X ′|

.

4.3 Kernels on Discrete Structures

R-convolution and mapping kernels are very general classes of kernels, which can be used to model simi-
larity between objects with discrete structures, such as strings, trees and graphs. A large number of kernels
on structures have been defined in the literature, mostly as instantiations of these kernel classes. A very
common approach consists of defining similarity in terms of counts of common substructures. However,
efficiency is a key issue in order to develop kernels of practical utility. A kernel can also be thought of as a
procedure efficiently implementing a given dot product in feature space. In the following, we will report a
series of kernels developed for efficiently treating objects with discrete structure. We do not aim at provid-
ing an exhaustive enumeration of all kernels on structured data developed in the literature. We will focus on
some representative approaches, whose description should help in figuring out how kernel design works,
while providing pointers to additional literature. In most of the cases, we will explicitly show a feature
space corresponding to the kernel. This is one of the most common ways of proving that a kernel is positive
definite. An alternative is showing that it belongs to a class of known valid kernels, like the up-mentioned
R-convolution and mapping ones.

4.3.1 Strings

Strings allow to represent data consisting of sequences of discrete symbols. They account for variable
length objects in which the ordering of the elements matters. Biological sequences, for instance, can be
represented as strings of symbols, amino-acids for proteins or nucleotides for DNA and RNA. Text docu-
ments can be represented as strings of characters. We introduce some notation before describing a number
of common kernels for strings.
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Consider a finite alphabet A . A string s is a finite sequence of (possibly zero) characters from A . We
define by |s| the length of string s, A n the set of all strings of length n, and

A ∗ =
∞⋃

n=0

A n

the set of all strings. Concatenation between strings s and t is simply represented as st. A (possibly non-
contiguous) subsequence u of s is defined as u := s(i) := s(i1) . . .s(i|u|), with 1≤ i1 < · · ·< i|u|≤ |n| and s(i)
the ith element of s. The length l(i) of the subsequence u in s is i|u|− i1 +1. Note that if i is not contiguous,
l(i)> |u|.

The spectrum kernel [46] is a simple string kernel originally introduced for protein classification. The
k-spectrum of a string is the set of all its k-mers, i.e. contiguous substrings of length k. The feature space
Hk = IR|A |

k
of the spectrum kernel has a coordinate for each possible k-length sequence given the alphabet

A . Its corresponding feature map is:

Φ(s) = (φu(s))u∈A k

where

φu(s) = number of times in which u occurs in s

giving a weighted representation of the k-spectrum. The k-spectrum kernel kk is the inner product in this
feature space:

kk(s, t) = 〈Φ(s),Φ(t)〉= ∑
u∈A k

φu(s)φu(t).

Fig. 5 Feature mappings for different types of string kernels on a toy example with an alphabet made of two symbols (A =
{A,B}). The feature space is indexed by all substrings of length k = 3 in all cases. (a) Mapping for spectrum kernel. Each
entry is the number of occurrences of the corresponding 3-mer in s. (b) Mapping for mismatch string kernel (m = 1). Note
that each entry is equal to the sum of the entries of the spectrum kernel mapping for all 3-mers with one mismatch (e.g.
AAA,AAB,ABA,BAA for entry AAA). (c) Mapping for the string subsequence kernel. Each entry is the number of times the
corresponding substring is found in s, possibly with gaps, weighted according to the length of the match. Substring ABA for
instance has matches ABA,ABAA,ABAABA with zero, one and three gaps respectively.

Figure 5(a) shows the feature mapping corresponding to a 3-spectrum kernel for a toy example with a
simple alphabet of two symbols. For real-world cases, the feature space will have a very large dimension
and feature vectors for strings will be typically extremely sparse. A very efficient procedure to compute
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the kernel can be devised using suffix trees [27]. A suffix tree for a given string s of length n is a tree with
exactly n leaves, where each path from the root to a leaf is a suffix of the string s. The suffix tree for the
string s can be constructed in O(n) time using Ukkonen’s algorithm [79]. In our case, a suffix tree can
be used to identify all k-mers contained in the given sequence, simply following all the possible paths of
size k starting from the root of the tree. Moreover, the problem of calculating the number of occurrences
of each k-mer can be solved just counting the number of leaves in the subtree that starts at the end of the
corresponding path. Given that the number of leaves of the tree is simply the size of the represented string,
we have a linear-time method to calculate the k-spectrum of a string. Further modifications are needed to
avoid the need of directly calculating the scalar product of the two feature vectors for the computation of
the kernel. A generalized suffix tree is a suffix tree constructed using more than one string [27]. Given a
set of strings there exists a variant of Ukkonen’s algorithm that can build the corresponding generalized
suffix tree in a time linear in the sum of the sizes of all the strings. A generalized suffix tree can be used
to calculate the k-spectrum kernel of two strings at once, just traveling the tree in a depth first manner and
summing up the products of the number of occurrences of every k-mer in the two strings. The procedure
can also be used to compute a whole Gram matrix at once.

Spectrum kernels can be generalized to consider weighted combinations of substrings of arbitrary
length:

k(s, t) = ∑
u∈A ∗

wuφu(s)φu(t) (22)

where the non-negative coefficients wu can be used for instance to give different weights according to
the substring length. The k-spectrum kernel, for instance, is recovered setting wu = 1 if |u| = k and zero
otherwise. Viswanathan and Smola [82] devised an efficient procedure for computing these types of kernels
which exploits feature sparsity. The basic idea is to use the suffix tree representation for sorting all non-zero
entries in (φu(s))u∈A ∗ and (φu(t))u∈A ∗ for s and t and evaluate only the matching ones.

The mismatch string kernel [47] is a variant of the spectrum kernel allowing for approximate matches
between k-mers. Let the (k,m)−neighbourhood of a k-mer u the set of all k-mers v which differ from u by
at most m mismatches. Let N(k,m)(u) indicate this neighbourhood. The feature map of a k-mer u is:

φk,m(u) = (φv(u))v∈A k

where φv(u) = 1 if v ∈ N(k,m)(u) and zero otherwise. The feature map of a string s is computed summing
the feature vectors of all its k-mers:

Φ(s) = ∑
k-mers u in s

φk,m(u).

Figure 5(b) shows the feature mapping corresponding to a mismatch string kernel with k = 3 and m = 1,
on the same toy example used for the spectrum kernel. Note the increase in density of the feature vector.
On real-world cases with large alphabets this will nonetheless be still very sparse. A (k,m)-mismatch tree
is a data structure similar to a suffix tree. At each depth-k node, it allows to compute the number of k-mers
in the string which have at most m mismatches with the one along the path from the root to the node.
Generalized (k,m)-mismatch trees can be created as for the suffix tree in order to directly compute the
kernel for pairs of strings or full Gram matrices.

The string subsequence kernel (SSK) [49] is an alternative string kernel also considering gapped sub-
strings in computing similarities. The feature map Φ for a string s is defined as:

Φ(s) = (φu(s))u∈A k =

(
∑

i:s(i)=u
λ

l(i)

)
u∈A k

where 0 < λ ≤ 1 is a weight decay penalizing gaps. Such feature measures the number of occurrences
of u in s, weighted according to their lengths. Note that the longer the occurrence, the more gaps in the
alignment between u and s. Figure 5(c) shows the feature mapping obtained for k = 3 and arbitrary λ on the
toy example already discussed, highlighting the contribution of the different occurrences of each substring.
The inner product between strings s and t is computed as:
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kk(s, t) = ∑
u∈A k

φu(s)φu(t) = ∑
u∈A k

∑
i:s(i)=u

∑
j:t(j)=u

λ
l(i)+l(j).

In order to make this product computationally efficient, we first introduce the auxiliary function

k′i(s, t) = ∑
u∈A i

∑
i:s(i)=u

∑
j:t(j)=u

λ
|s|+|t|−i1− j1+2

for i = 1, . . . ,k− 1, counting the length from the beginning of the substring match to the end of s and
t instead of l(i) and l(j). The SSK can now be computed by the following recursive procedure, where
a ∈A :

k0(s, t) = 1 ∀s, t ∈A ∗

k′i(s, t) = 0 if min(|s|, |t|)< i

ki(s, t) = 0 if min(|s|, |t|)< i

k′i(sa, t) = λk′i(s, t)+ ∑
j:t( j)=a

k′i−1(s, t[1, . . . , j−1])λ |t|− j+2,∀ i ∈ [1,k−1]

kk(sa, t) = kk(s, t)+ ∑
j:t( j)=a

k′k−1(s, t[1, . . . , j−1])λ 2. (23)

To prove the correctness of the procedure note that kk(sa, t) is computed by adding to kk(s, t) all the terms
resulting by the occurrences of substrings terminated by a, matching t anywhere and sa on its right terminal
part. In fact, in the second term of the recursion step for kk, k′k−1 will count any matching substring found
in s as if it finished at |s|, and the missing λ for the last element a is added for both s and t.

This kernel can be readily expanded to consider substrings of different lengths, i.e. by using a linear
combination like

k(s, t) = ∑
k

ckkk(s, t)

with ck ≥ 0. In such case, we simply compute k′i for all i up to one less than the largest k required, and then
apply the last recursion in (23) for each k such that ck > 0, using the stored values of k′i.

A number of fast kernels for inexact string matching have been proposed in [48]. Alternative types of
string kernels will be discussed in Section 4.4.

4.3.2 Trees

Trees allow to represent structured objects which include hierarchical relationships (without cycles). Phylo-
genetic trees, for instance, are commonly used in biology to represent the evolutionary relationships among
different species or biological sequences. Parse trees are a standard way to represent the syntactic structure
of a string in a certain language. Let’s start with some definitions useful for describing examples of kernels
on trees.

A tree is a connected graph without cycles. A rooted tree is a tree where one node is chosen as the root.
A natural orientation arises in rooted trees, moving along paths starting from the root. The nodes on the
path from the root to v are called ancestors of v, with the last one being its parent. The nodes on the path
leaving v are its descendants. The direct descendants of v are its children. A leaf is a node with no children.
An ordered tree is a tree with a total order relationship among the children of each node. A labelled tree is
a tree where each node is labelled with a symbol from an alphabet A . Let l(v) return the label of node v.
A subtree t ′ of t is a tree made of a subset of nodes and edges in t. A proper subtree t ′ of t is a tree made of
a node a and all its descendants in t. A subset tree is a subtree with more than one node, having either all
children of a node or none of them. Figure 6 shows examples of different types of subtrees.
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Fig. 6 Examples of different types of subtrees for a rooted ordered labelled tree. Tree kernels typically construct feature
spaces based on these kind of fragments.

First of all, note that a generic string kernel can be applied to trees provided they are turned into a
suitable string representation. Viswanathan and Smola [82] show how to employ the weighted substring
kernel of eq. (22) to develop a kernel matching arbitrary subtrees. First, a procedure tag(v) encodes a tree
rooted at v in a string as follows:

• if v is an unlabelled leaf then tag(v) = [ ];
• if v is a labelled leaf then tag(v) = [l(v)];
• if v is an unlabelled node with children v1, . . . ,vm then tag(v) = [tag(v1) · · · tag(vm)];
• if v is a labelled node with children v1, . . . ,vm then tag(v) = [l(v)tag(v1) · · · tag(vm)].

If the tree is unordered, the tags of the children are sorted in lexicographic order. The top leftmost tree
in Fig. 6, for instance, would be encoded as: [A[C][B[A][A]]].

The resulting string is fed to the weighted substring kernel, again relying on its suffix tree representa-
tion to exploit feature sparsity. Different choices for the ws lead to different subtree features. Only proper
subtrees, for instance, can be used by setting ws = 0 for substrings not starting and ending with balanced
brackets.

Collins and Duffy [10, 11] introduced a subset tree kernel based on subset tree matches in the field of
Natural Language Processing (NLP). Here parse trees are rooted ordered labelled trees representing the
syntactic structure of a sentence according to an underlying (stochastic) context free grammar (CFG). Each
subtree consisting of a node and the set of its children is a production rule of the grammar. Only subset trees
are considered as valid features for the kernel. The rationale behind this choice is not splitting production
rules in defining subtrees.

Let T be a set of rooted ordered labelled trees. The feature space has a coordinate for each possible
subset tree in T . Given by M the number of these fragments, a tree t is mapped to:

Φ(t) = (φi(t))i∈[1,M]

where:

φi(t) = number of times in which the ith tree fragment occurs in t

We define the set of nodes in t1 and t2 as N1 and N2 respectively. We further define an indicator function
Ii(n) to be 1 if subset tree i is seen rooted at node n and 0 otherwise. The kernel between t1 and t2 can now
be written as
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k(t1, t2) =
M

∑
i=1

φi(t1)φi(t2) =
M

∑
i=1

∑
n1∈N1

Ii(n1) ∑
n2∈N2

Ii(n2) = ∑
n1∈N1

∑
n2∈N2

C(n1,n2)

where we define C(n1,n2) = ∑
M
i=1 Ii(n1)Ii(n2), that is the number of common subset trees rooted at both n1

and n2. Given two nodes n1 and n2, we say that they match if their have the same label, same number of
children and each child of n1 has the same label of the corresponding child of n2. The following recursive
definition permits to compute C(n1,n2) in polynomial time:

• If n1 and n2 don’t match C(n1,n2) = 0.
• if n1 and n2 match, and they are both pre-terminals3 C(n1,n2) = 1.
• Else

C(n1,n2) =
nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))) (24)

where nc(n1) is the number of children of n1 (equal to that of n2 for the definition of match) and ch(n1, j)
is the jth child of n1.

To prove the correctness of (24), note that each child of n1 contributes exactly 1+C(ch(n1, j),ch(n2, j))
common subset trees for n1,n2, the first with the child alone, and the other C(ch(n1, j),ch(n2, j)) with the
common subset trees rooted at the child itself. The product in (24) considers all possible combinations of
subset trees contributed by different children.

Given the large difference in size of trees to be compared, it is usually convenient to employ a normalized
version of the kernel (see eq. (16)). Moreover, the kernel tends to produce extremely large values for
very similar trees, thus making the algorithm behave like a one-nearest neighbour rule. This effect can be
reduced by restricting the depth of the allowed subset trees to a fixed value d, or by scaling their relative
importance with their size. To this extent we can introduce a parameter 0 < λ ≤ 1, turning the last two
points of the definition of C into:

• if n1 and n2 match, and they are both pre-terminals C(n1,n2) = λ .
• Else

C(n1,n2) = λ

nc(n1)

∏
j=1

(1+C(ch(n1, j),ch(n2, j))).

This corresponds to a modified inner product

k(t1, t2) =
M

∑
i=1

λ
sizeiφi(t1)φi(t2)

where sizei is the number of nodes of the corresponding subset tree.
Most tree kernels developed in the literature are extensions of the subset tree kernel. Moschitti [55]

proposed the partial tree kernel in which arbitrary subtrees are used as fragments in place of subset trees.
The kernel is obtained replacing equation (24) with:

C(n1,n2) = 1+ ∑
J1,J2:|J1|=|J2|

|J1|

∏
i=1

C(ch(n1,J1i),ch(n2,J2i)))

where J1 = (J11,J12, . . . ,J1|J1|) and J2 = (J21,J22, . . . ,J2|J2|) and index sequences associated with ordered
child sequences of n1 and n2 respectively. The elastic tree kernel extends the subset tree kernel by allowing:
1) matches between nodes with different number of children, provided the comparison still follows their
left-to-right ordering; 2) approximate label matches, by introducing a similarity measure between them;
3) elastic matching between subtrees, where subtrees can be “stretched” in a tree provided the relative

3 A pre-terminal is the parent of a leaf.
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positions of the nodes in the subtree are preserved. Aiolli et al. [1] show that kernels defined on routes
between tree nodes provide competitive discriminative power at reduced computational complexity with
respect to most tree kernels. For a detailed treatment of the literature on tree kernels see [50].

4.3.3 Graphs

Graphs are a natural and powerful way to represent structured objects in a variety of domains, ranging from
chemo- and bio-informatics to the World Wide Web. Here we will focus on graphs representing individual
objects, like a chemical compound with atoms as vertices and bonds as edges. A different problem is that
of treating objects that are related to each other by a graph structure. For a description of kernels on this
type of data see [42, 21, 20, 69]. Let’s start with some useful definitions concerning graphs.

A graph G = (V ,E ) is a finite set of vertices (also called nodes) V and edges E ∈ V ×V . In directed
graphs edges (vi,v j) are oriented from initial node vi to terminal node v j. In undirected graphs edges have
no orientation. This can be represented for instance by letting (vi,v j) ∈ E ⇐⇒ (v j,vi) ∈ E . A labelled
graph is a graph with a set of labels L and a function long(·) assigning labels to nodes (node-labelled
graph), edges (edge-labelled graph) or both (fully-labelled graph). In the following we will call node-
labelled graphs simply labelled graphs unless otherwise specified. A labelled graph can also be represented
by its adjacency and label matrices A and L. The adjacency matrix is such that Ai j = 1 if (vi,v j) ∈ E and
zero otherwise. The node-label matrix L is such that Li j = 1 if l(v j) = `i and zero otherwise. A walk in a
graph is a sequence of vertices (v1, . . . ,vn+1) with vi ∈ V and (vi,vi+1)∈ E for all i. The length of a walk is
the number of its edges (n in the example before). Let Wn(G) return all n-length walks in graph G. A path
is a walk such that vi 6= v j ⇐⇒ i 6= j. A cycle is a path such that (vn+1,v1) ∈ E . A walk can contain an
arbitrary number of cycles. A connected graph is a graph having at least one undirected path for each pair
of its nodes. The distance between two nodes is the length of the minimal undirected path between them (if
any). Given a graph G a subgraph G′ is a graph made of a subset of the nodes and edges of G. Given a set
of nodes V ′ ⊂ V , the subgraph induced by V ′ is made of nodes V ′ and all edges E ′ ⊂ E connecting them.
Two graphs G and G′ are isomorphic if there is an isomorphism, a bijection φ such that for any two nodes
v1,v2 ∈ V there is an edge (v1,v2) ∈ E ⇐⇒ (φ(v1),φ(v2)) ∈ E ′. For labelled graphs the isomorphism
must also preserve label information, i.e. l(v) = l(φ(v)). An isomorphism basically defines equivalence
classes for graphs.

First, note that as discussed in the case trees, string kernels can be applied to the string encoding of a
graph. The Simplified Molecular Input Line Entry Specification (SMILES), for instance, is a popular string
notation for chemical molecules. Kernels for SMILES strings are described in [74], among other kernels
for 2D and 3D molecular representations.

In defining kernels on graphs, we of course do not want to distinguish among isomorphic graphs. Given
the set G of all graphs, the subgraph feature space is the space of all possible subgraphs of G modulo
isomorphism, i.e. any two isomorphic subgraph are mapped to the same coordinate. Gärtner et al. [23]
proved that no polynomial time algorithm can be devised for computing an inner product in such space
(unless P = NP). The same holds if we restrict the feature space to consider paths only. Most existing
kernels on generic graphs either use features based on graph walks, or employ some strategy to limit the
set of valid subgraphs.

Examples of the first approach can be found in [19]. Consider the case of undirected node-labelled
graphs. The simplest examples compute similarities in terms of walks in the two graphs which start and
end with the same labels, i.e. (v1, . . . ,vn+1) ∈Wn(G) and (v′1, . . . ,v

′
m+1) ∈Wm(G′) for which l(v1) = l(v′1)

and l(vn+1) = l(v′m+1). The feature space of the kernel is defined in terms of features for label pairs:

Φ(G) =
(

φ`i,` j(G)
)
`i,` j∈L

where:

φ`i,` j(G) =
∞

∑
n=1

λn|{(v1, . . . ,vn+1) ∈Wn(G) : l(v1) = `i∧ l(vn+1) = ` j}|.
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and λ is a sequence of non-negative weights (λn ∈ IR+
0 for all n ∈ IN). The feature map for a label pair

`i, ` j returns a weighted sum of the number of walks of length n starting with `i and ending with ` j for all
possible lengths n.

The feature mapping can be computed by operations on the graph matrices. The adjacency matrix has
the useful property that its n power An extends the adjacency concept to walks of length n, that is (An)i j is
the number of walks of length n from vi to v j. By introducing the label matrix we obtain that (LAnLT )i j is
the number of walks of length n which start and end with labels `i and ` j respectively. Thus:

φ`i,` j(G) =

(
∞

∑
n=1

λnLAnLT

)
`i,` j

and the corresponding kernel is:

k(G,G′) = 〈L

(
∞

∑
i=1

λiAi

)
LT ,L′

(
∞

∑
j=1

λ jA′ j
)

L′T 〉

where the dot product between two matrices M,M′ is defined as:

〈M,M′〉= ∑
i, j

Mi jM′i j. (25)

Note that the kernel has to be absolute convergent in order to be a valid positive definite kernel. A
sufficient condition for absolute convergent graph kernels can be found in [19]. An example of valid kernel
is the exponential graph kernel defined as:

kexp(G,G′) = 〈LeβALT ,L′eβA′L′T 〉

where β ∈ IR is a parameter and the exponential of a matrix M is defined as

eβM = lim
n→∞

n

∑
i=0

(βM)i

i!
.

Feasible matrix exponentiation usually requires diagonalizing the matrix. If we can diagonalize A such
that A = T−1DT , we can easily compute any power of A as An = (T−1DT )n = T−1DnT , where the power
of the diagonal matrix D is calculated component-wise [Dn]i j = [Di j]

n. Therefore we have

eβA = T−1eβDT

where eβD is calculated component-wise.
It’s straightforward to extend this kernel to graphs with weighted edges by setting Ai j = weight(vi,v j).

The feature space of these kernels has a dimension equal to the square of the number of labels. When there
are few possible labels, this can prevent the realization of an informative similarity measure. Extensions to
this type of kernels consider the labels along the entire walk instead of only those of the terminal nodes.
The feature space in this case is indexed by strings u, i.e.:

Φ(G) = (φu(G))u∈A ∗

where:

φu(G) = λn|(v1, . . . ,vn+1) ∈Wn(G) : n = |u|−1∧ l(v1) = u1∧·· ·∧ l(vn+1) = un+1}|.

Note that it is straightforward to consider edge-labelled or fully-labelled graphs by replacing or adding
edge labels in the comparisons. The kernel can be computed based on the powers of the adjacency matrix of
the direct product 4 of the two graphs. A further extension accounts for up to m≥ 0 mismatches in the walk

4 The direct product of two graphs G,G′ has nodes (v,v′) ∈ V ×V ′ : l(v) = l(v′) and edges ((v,v′),(u,u′)) ∈ (V ×V ′)2 :
(v,u) ∈ E ∧ (v′,u′) ∈ E ′ ∧ l(v,u) = l(v′,u′). Nodes and edges in the direct product inherit the labels of the corresponding
nodes and edges in two graphs.



24 Andrea Passerini

labels. The kernel can be computed by a combination of the direct product of the labelled and unlabelled
graphs respectively. See [22] for the details of these kernels.

A large number of kernels have been developed relying on possibly domain-inspired strategies for choos-
ing which subgraphs to include in the feature space. The cyclic pattern kernel [32] extracts features consist-
ing of cycle and tree patterns. Cycles are directly extracted from the graph. A set of trees (called a forest)
is obtained by removing from the graph all edges of all cycles. A canonical string representation for cycles
and trees is employed in order to map each of them to a distinct feature coordinate modulo isomorphism
(the pattern). Note that cyclic pattern kernels still cannot be computed in polynomial time in general [32],
but it’s sufficient to limit the computation to a subset of well-behaved graphs with a small enough num-
ber of cycles. The shortest-path kernel [8] considers the shortest-path between pairs of nodes. The graph
fragment kernel [84] considers all connected subgraphs up to a given number of edges.

Note that kernels on graphs are not limited to exact or approximate matches between substructures.
The weighted decomposition kernel (WDK) [52], for instance, compares two graphs by a combination
of kernels between node pairs together to their contexts. Recalling the general form for R-convolution
kernels (see eq. (20)), let R−1(G) be a decomposition of the graph into a node v and its context V in the
graph. A possible context is the subgraph induced by all nodes at distance at most d from v (called its
n-neighbourhood subgraph). The WDK is defined as:

k(G,G′) = ∑
(v,V )∈R−1(G)

∑
(v′,V ′)∈R−1(G′)

δ (l(v), l(v′))kneigh(V,V ′)

where δ is the matching kernel (see eq.(19)) and kneigh is a kernel on the neighbourhood subgraph. Further
details on graph kernels can be found e.g. in [22, 7].

4.4 Kernels from Generative Models

Generative models such as Hidden Markov Models [61] are a principled way to represent the probability
distribution underlying the generation of data, and allow to treat aspects like uncertainty and missing infor-
mation under a unifying formalism. On the other hand, discriminative methods such as kernel machines are
an effective way to build decision boundaries, and often outperform generative models in prediction tasks.
It would thus be desirable to have a learning method able to combine these complementary approaches. In
the following we will present some examples of kernels derived from generative models, by directly mod-
eling joint probability distributions [85, 29], defining a similarity measure between the models underlying
two examples [35, 34], or defining arbitrary kernels over observed and hidden variables and marginaliz-
ing over the hidden ones [78, 38]. For an additional general class of kernels from probability distributions
see [36].

4.4.1 Dynamic Alignment Kernels

Joint probability distributions are a natural way of representing relationships between objects. The similar-
ity of two objects can be modeled as a joint probability distribution that assigns high probabilities to pairs
of related objects and low probabilities to pairs of unrelated objects. These considerations have been used
in [85] to propose a kernel based on joint probability distributions. An analogous kernel was independently
presented in [29] as a special case of convolution kernel (see section 4.2).

Definition 5. A joint probability distribution is conditionally symmetrically independent (CSI) if it is a
mixture of a finite or countable number of symmetric conditionally independent distributions.

In order to show that a CSI joint p.d. is a positive definite kernel, let’s write it as a dot product. Let
X ,Z,C be three discrete random variables such that

p(x,z) = P(X = x,Z = z) = p(z,x)
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and

p(x,z|c) = P(X = x,Z = z|C = c) = p(x|c)p(z|c)

for all possible realizations of X ,Z,C. We can thus write

p(x,z) = ∑
c

p(x|c)p(z|c)p(c) = ∑
c

(
p(x|c)

√
p(c)

)(
p(z|c)

√
p(c)

)
where the sum is over all possible realizations c ∈ C of C. This corresponds to a dot product with feature
map

Φ(x) = {p(x|c)
√

p(c) |c ∈ C }.

For a more general proof see [85].
A joint p.d. for a finite symbol sequence can be defined with a pair Hidden Markov Model. Such models

generate two symbol sequences simultaneously, and are used in bioinformatics to align pairs of protein
or DNA sequences [16]. A PHMM can be defined as follows, where A,B represent the two sequences
modeled.

• A finite set S of states, given by the disjoint union of:

SAB - states that emit one symbol for A and one for B,
SA - states that emit one symbol only for A,
SB - states that emit one symbol only for B,
a starting state START and an ending state END, which don’t emit symbols.

• An |S|× |S| state transition probability matrix T .
• An alphabet A .
• For states emitting symbols:

– for s ∈ SAB a probability distribution over A ×A ,
– for s ∈ SA or s ∈ SB a probability distribution over A .

END

A AB B

START

Fig. 7 State diagram for PHMM modeling pairs of sequences AB. The state AB emits common or similar symbols for both
sequences, while the states A and B model insertions in sequence A and B respectively.

The state diagram for this PHMM is represented in figure 7. The state AB emits matching or nearly
matching symbols for both sequences, while states A an B model insertions, that is symbols found in one
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sequence but not in the other. The joint p.d. for two sequences is given by the combination of all possible
paths from START to END, weighted by their probabilities. This can be efficiently computed by well
known dynamic programming algorithms [61]. Sufficient conditions for a PHMM to be CSI can be found
in [85].

4.4.2 Fisher Kernel

The basic idea of the Fisher Kernel [35, 34] is that of representing the generative processes underlying
two examples into a metric space, and compute a similarity measure in such space. Given a generative
probability model P(X |θ) parametrized by θ = (θ 1, . . . ,θ r), the gradient of its loglikelihood with respect
to θ , Vθ (X) := ∇θ logP(X |θ), is called Fisher score. It indicates how much each parameter θ i contributes
to the generative process of a particular example. The gradient is directly related to the expected sufficient
statistics for the parameters. In the case that the generative model is an HMM, such statistics come as a by
product of the forward backward algorithm [61] used to compute P(X |θ), without any additional cost. The
derivation of the gradient for HMM and its relation to sufficient statistics is described in [33].

A class of models P(X |θ), θ ∈Θ defines a Riemannian manifold MΘ (see [2, 3]), with metric tensor
given by the covariance of the Fisher score, called Fisher information matrix and computed as

F := Ep[Vθ (X)Vθ (X)T ]

where the expectation is over P(X |θ). The direction of steepest ascent of the loglikelihood along the man-
ifold is given by the natural gradient Ṽθ (X) = F−1Vθ (X) (see [3] for a proof). The inner product between
such natural gradients relative to the Riemannian metric,

k(X ,X ′) = Ṽθ (X)T FṼθ (X) =Vθ (X)T F−1Vθ (X)

is called Fisher kernel. When the Fisher information matrix is too difficult to compute, it can be approxi-
mated by F ≈ σ2I, where I is the identity matrix and σ a scaling parameter. Moreover, as Vθ (X) maps X
to a vectorial feature space, we can simply use the dot product in such space, giving rise to the plain kernel

k(X ,X ′) =Vθ (X)TVθ (X).

The Fisher kernel has been successfully employed for instance for detecting remote protein homolo-
gies [33], where the generative model is chosen to be an HMM representing a given protein family.

4.4.3 Marginalized Kernels

Marginalized kernels [78] are a hybrid class of kernels combining probabilistic models and arbitrary ker-
nels over structures. Assume that a reasonable probabilistic model for the examples should include both
observed variables x and hidden ones h. For instance, a set of images of handwritten characters could
come from a number of different writers. Let p(h|x) be the posterior probability of hidden variables given
observed ones. Let z = (x,h) and let kz(z,z′) be a joint kernel over both observed and hidden variables.
A marginalized kernel is obtained taking the expectation of the joint kernel with respect to the hidden
variables, i.e.:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′)kz(z,z′).

A first example of this type of kernel is the marginalized count kernel [78] for strings. Let x be a string
of symbols from an alphabet Ax. A very simple kernel is the 1-mer spectrum kernel (see Section 4.3.1),
based on the counts of symbol co-occurrences:

k(x,x′) = ∑
u∈Ax

φu(x)φu(x′)
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where φu(x) counts the number of occurrences of symbol u in x. This kernel treats all elements of the string
the same, i.e. as if they were coming from the same distribution. Knowledge of the domain can suggest us
that considering a number of different distributions should be more appropriate. For instance, in treating
protein sequences we could distinguish between residues which are exposed at the surface and those that
are buried in the protein core. We would thus like to compute separate counts for residues in the two
conditions. As this information is not directly available from the sequence, we will model it using hidden
variables. Let h be a string of hidden variables from an alphabet Ah (Ah = {E,B} in the protein example),
with |h|= |x|. The marginalized count kernel is defined as:

k(x,x′) = ∑
h

∑
h′

p(h|x)p(h′|x′) ∑
ux∈Ax

∑
uh∈Ah

φux,uh(z)φux,uh(z
′)

where

φux,uh(z) = number of times in which ux and uh appear in the same position in x and h respectively

The kernel can be written in terms of marginalized counts φ̂ux,uh :

k(x,x′) = ∑
ux∈Ax

∑
uh∈Ah

∑
h

p(h|x)φux,uh(z)︸ ︷︷ ︸
φ̂ux ,uh (x)

∑
h′

p(h′|x′)φux,uh(z
′)︸ ︷︷ ︸

φ̂ux ,uh (x
′)

.

Note that counts can be easily generalized to k-mers with k > 1. Marginalized kernels have been defined
for graphs [38] by defining transition probabilities between nodes and computing kernels in terms of ran-
dom walks. These are tightly related to the walk-based kernels described in Section 4.3.3. See [81] for a
unifying framework.

4.5 Kernels on Logical Representations

Logic representation formalisms allow to naturally express complex domain knowledge and perform rea-
soning on it. Developing kernels capable of handling this type of representation can greatly enhance their
expressive power, allowing them to incorporate the semantics of the domain under consideration. In this
section we will describe a generic class of kernels on logic terms. We will then show how to employ it to
define kernels based on logic proofs. We will focus on the widespread Prolog programming language [73],
which is based on first order logic enriched with partial support for arithmetic operations and some higher
order structures like sets. Further details and additional examples of logic kernels can be found in [18]. For
a general treatment of kernels on higher order logic representations see [24].

Let’s first introduce some definitions and notation. A definite clause is an expression of the form
h← b1, ...,bn, where h and the bi are atoms and commas indicate logical conjunctions. Atoms are ex-
pressions of the form p(t1, ..., tn) where p/n is a predicate symbol of arity n and the ti are terms. Terms are
constants (denoted by lower case), variables (denoted by upper case), or structured terms. Structured terms
are expressions of the form f (t1, ..., tk), where f /k is a functor symbol of arity k and t1, ..., tk are terms. A
term is ground if it contains no variable. The atom h is also called the head of the clause, and b1, ...,bn its
body. Intuitively, a clause represents that the head h will hold whenever the body b1, ...,bn holds. A clause
with an empty body is called a fact. A set of clauses forms a knowledge base B. When representing a
domain of interest, we typically distinguish between extensional knowledge modeling single individuals
of the domain (typically as a set of ground facts) and intensional knowledge providing general rules. A
substitution θ = (V1/t1, . . . ,Vn/tn) is an assignment which applied to a formula F (written as Fθ , where F
is a clause, atom or term) replaces each occurrence of variable Vi in h with term ti, for all i. Queries can be
used in order to derive novel information from a knowledge base. A query is a special clause (called goal)
with an empty head. A goal← g is entailed by a knowledge base B (written as B |= g) if and only if can
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be proved using clauses in B (otherwise B 6|= g). A correct answer for g is a (possibly empty) substitution
θ used to prove the goal.

Fig. 8 Example of Prolog-based representation for an artificial domain. Top: extensional knowledge for two sample scenes.
Bottom: intensional knowledge representing generic polygons and nesting in containment. The first argument of all predicates
indicates the scene, the other arguments are objects within the scene.

Figure 8 shows an artificial domain with scenes containing nested polygons, highlighting extensional
and intensional knowledge. The polygon/2 predicate models generic polygons, while inside/3
models the concept of nesting in containment. Novel facts can be derived from the knowledge base.
Substitution θ = (X/bong1,A/o3), for instance, is a correct answer for goal ← polygon(X,A),
while inside(bong2,o2,o4) can be proved from goal ← inside(X,A,B) with answer θ =
(X/bong2,A/o2,B/o4).

4.5.1 Kernels on Ground Terms

Complex objects can be represented as structured terms. In the individual-as-term representation an entire
individual in the domain (e.g. a molecule) is encoded as a single structured term. Defining kernels between
terms allows to apply kernel methods on this type of representation.

Let C be a set of constants and F a set of functors, and denote by U the corresponding Herbrand
universe (the set of all ground terms that can be formed from constants in C and functors in F ). Let’s
assume that a type syntax exists. Types of constants are indicated with single characters (e.g. τ). Structured
terms f (t1, ..., tk) have type signatures τ1×, . . . ,×τk 7→ τ ′, where τ ′ is the type of the term and τ1×, . . . ,×τk
the types of its arguments. We write s : τ to indicate that s is of type τ . The kernel between two ground
typed terms t and s is a function k : U ×U → IR defined inductively as follows:

• if s ∈ C , t ∈ C , s : τ , t : τ then
k(s, t) = κτ(s, t)

where κτ : C ×C 7→ IR is a valid kernel on constants of type τ;
• else if s and t are structured terms that have the same type but different functors or signatures, i.e., s =

f (s1, . . . ,sn) and t = g(t1, . . . , tm), s : σ1×, . . . ,×σn 7→ τ ′, t : τ1×, . . . ,×τm 7→ τ ′, then

k(s, t) = ιτ ′( f /n,g/m)

where ιτ ′ : F ×F 7→ IR is a valid kernel on functors that construct terms of type τ ′
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• else if s and t are structured terms and have the same functor and type signature, i.e., s = f (s1, . . . ,sn),
t = f (t1, . . . , tn), and s, t : τ1×, . . . ,×τn 7→ τ ′, then

k(s, t) = ιτ ′( f /n, f /n)+
n

∑
i=1

k(si, ti) (26)

• in all other cases k(s, t) = 0.

As a simple example consider data structures intended to describe scientific references:

r = article("Kernels on Gnus and Gnats",journal(ggj,2004))

s = article("The Logic of Gnats",conference(icla,2004))

t = article("Armadillos in Hilbert space",journal(ijaa,2004))

Using κτ(x,z)= δ (x,z) for all τ and x,z∈C and ιτ ′(x,z)= δ (x,z) for all τ ′ and x,z∈F , we obtain k(r,s)=
1, k(r, t) = 3, and k(s, t) = 1. The fact that all papers are published in the same year does not contribute
to k(r,s) or k(s, t) since these pairs have different functors describing the venue of the publication; it does
contribute to k(r, t) as they are both journal papers. Note that strings have been treated as constants. A more
informed similarity measure can be obtained employing a string kernel for comparing constants of type
string.

Positive semi-definiteness of kernels on ground terms follows from their being special cases of decom-
position kernels (see [57] for details). Variants where direct summations over sub-terms are replaced by
tensor products are also possible. These kernels can be generalized to deal with higher order logic repre-
sentations, see [24] for a detailed treatment.

4.5.2 Kernels on Proof Trees

In proving goals, an interpreter is required to recursively prove a number of subgoals according to a certain
ordering (top-down for different clauses in the knowledge base and left-to-right in the clause body for
Prolog). The proof has a structure which contains relevant information for the reasons for the final outcome.
It would be desirable to be able to exploit this additional information in computing similarity between
examples. This can be achieved by defining kernels directly on proofs [57], instead of simply on their
outcomes in terms of goal satisfaction and goal variable substitutions. Given a knowledge-base B and a
goal g, the proof tree for g is empty if B 6|= g or, otherwise, it is a tree t recursively defined as follows:

• if there is a fact f in B and a substitution θ such that gθ = f θ , then gθ is a leaf of t.
• otherwise there must be a clause h← b1, ...,bn ∈ B and a substitution θ ′ such that hθ ′ = gθ ′ and

B |= b jθ
′ ∀ j, gθ ′ is the root of t and there is a subtree of t for each b jθ

′ that is a proof tree for b jθ
′.

Each internal node contains a clause head and its ordered set of children is the ordered set of atoms
in its body. A simple bottom-up recursive procedure to turn a proof tree into a structured term consists of
appending after the clause arguments the term representation of each of its children. A kernel on Prolog
ground terms like the ones defined in the previous section can be applied to this representation. Note that a
goal g can often be proved in multiple ways (if it is satisfiable), leading to a set of proof trees. A set kernel
(eq. 21) can be used to compare two sets of proof trees by combining each pairwise comparison between
proofs.

Let’s recall the artificial example in Figure 8. Assume that positive scenes contain two triangles nested
into one another with exactly n objects (possibly triangles) in between. The scene on the left would be
positive for n = 1, the one on the right for n = 2. Having hints on the target concept, one could define a
predicate (let’s call it visit) looking for two polygons contained one into the other:

visit(X) ← inside(X,A,B),polygon(X,A),polygon(X,B)

Figure 9 shows the proofs trees obtained running such a visitor on the first scene in Figure 8, plus their
representation as terms. Note that all the information required to identify the target concept is buried in
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Fig. 9 Proof trees obtained by running the visitor on the first scene in Fig. 8. Representation of proof trees as ground
structured terms (functor name abbreviated).

the tree/term structure. A very simple kernel capable of exploiting this information would employ product
(instead of sum) between terms (see eq. (26)), delta kernel (see eq. (19)) between functors, and a kernel
between constants always evaluating to one. Applied to a pair of proof trees, this kernel evaluates to one
if they both contain the same pair of polygons (e.g. a triangle and a circle) nested one into the other with
the same number of objects in between, and zero otherwise. For any value of n, such a kernel maps the
examples into a feature space where there is a single feature discriminating between positive and negative
examples. Simply using extensional knowledge would not allow to produce effective similarities for this
task. See [57] for a more extensive treatment of proof tree kernels and real-world applications.

5 Learning Kernels

Choosing the most appropriate kernel for the problem at hand is usually a rather hard task. Standard ap-
proaches consist of trying a number of candidate alternatives (e.g. Gaussian kernels with varying width,
spectrum kernels with varying k) and selecting the best one according to some cross validation procedure.
Measures of kernel quality can also be used to this aim. Kernel target alignment [14], for instance, com-
putes the alignment between a kernel and the “target” kernel, kt(xi,x j) = yiy j for the binary classification
case. Given a Gram matrix K and a target matrix Y = yyT , the kernel target alignment is computed as:

A(K,Y ) =
〈K,Y 〉√
〈K,K〉〈Y,Y 〉

(27)

where the dot product is defined as in Eq. (25). The selection procedure can be problematic in the common
situation in which multiple kernels provide useful complementary features, or when there is no clue on
which kernels to try. An effective alternative consists in jointly learning the kernel and the kernel machine
based on it (i.e. the coefficients ci of the kernel combination). In the following we present two rather
complementary approaches to this aim: learning a sparse convex combination of basic kernels and learning
a logic kernel relying on Inductive Logic Programming techniques.
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5.1 Learning Kernel Combinations

It is often the case that multiple different kernels can be defined on a certain domain. Using the closure
properties of the kernel class, it is always possible to combine all of them on an equal basis, for instance by
direct summation or product. However, this is not necessarily the best choice in case many of them actu-
ally provide noisy or redundant features. Learning functions based on a large set of kernels has drawbacks
also from an interpretation viewpoint, as it becomes difficult to identify the most relevant features for the
discrimination. Recent approaches to kernel learning try to overcome these issues by learning weighted
combinations of kernels and forcing sparsity in the weights. The overall kernel becomes a convex combi-
nation of basis kernels:

k(x,x′) =
K

∑
k=1

dkkk(x,x′) (28)

where K is the total number of kernels, dk ≥ 0 for all m and ∑
K
k=1 dk = 1. Multiple kernel learning (MKL)

amounts at jointly learning the coefficients ci of the overall function f and the weights dk of the kernel
combination. A sparse combination, in which only few dk are different from zero, is typically enforced
using some sparsity-inducing norm like the one-norm. MKL was initially addressed using semidefinite
programming techniques [43]. A number of alternative solutions have been later proposed in the literature,
especially for boosting efficiency towards large-scale applicability. Here we report a simple and efficient
formulation named SimpleMKL [62].

Let f (x) = ∑
K
k=1 fk(x), where each fk belongs to a different RKHS Hk with associated kernel kk. The

SimpleMKL formulation addresses the following constrained optimization problem:

min
d

J(d)

subject to:
K

∑
k=1

dk = 1

dk ≥ 0 k = 1, . . . ,K

where:

J(d) =


min f ,ξ

1
2 ∑

K
k=1

1
dk
|| fk||2Hk

+C ∑
m
i=1 ξi

subject to: yi ∑
K
k=1 fk(xi)≥ 1−ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m.

Solving J(d) for a particular value of d amounts at solving a standard SVM classification problem with
a convex combination kernel as in equation (28). To see this, let’s compute the Lagrangian and derive the
dual formulation as in Section 3.1. The Lagrangian is given by:

L( f ,α,β) =C
m

∑
i=1

ξi +
1
2

K

∑
k=1

1
dk
|| fk||2Hk

−
m

∑
i=1

αi(yi

K

∑
k=1

fk(xi)−1+ξi)−
m

∑
i=1

βiξi

where αi,βi ≥ 0 for all i are the Lagrange multipliers. Zeroing the gradient with respect to the primal
variables gives:

∂L
∂ fk(·)

=
1
dk

fk(·)−
m

∑
i=1

αiyik(·,xi) k = 1, . . . ,K

∂L
∂ξi

= C−αi−βi = 0 i = 1, . . . ,m
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where we used the reproducing property (see eq. (3)) to derive ∂ fk(xi)
∂ fk(·)

= ∂ 〈k(·,xi), fk(·)〉
∂ fk(·)

= k(·,xi). Substituting
into the Lagrangian we obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

αiyiα jy j

K

∑
k=1

dkkk(xi,x j)+
m

∑
i=1

αi

subject to: αi ∈ [0,C] i = 1, . . . ,m

which is the standard SVM dual formulation for k(xi,x j) as in eq. (28) and can be solved with one of the
available SVM solvers. Differentiating J with respect to the weights d gives:

∂J
∂dk

=−1
2

m

∑
i=1

m

∑
j=1

α
∗
i yiα

∗
j y jkk(xi,x j) k = 1, . . . ,K

where α∗ are the solutions of the inner dual maximization problem. This gradient is used to update d
along a gradient descent direction which retains its equality and non-negativity constraints. For a detailed
description of the optimization algorithm see [62].

5.2 Learning Logical Kernels

Inductive Logic Programming [56] (ILP) amounts at learning a logic hypothesis capable of explaining
a set of observations. In the most common setting of binary classification, the hypothesis should cover
positive examples and not cover negative ones. More formally, let B be a logic knowledge base. Let
D = {(x1,y1), . . . ,(xm,ym)} be a dataset of input-output pairs, where inputs are identifiers for entities in
the knowledge base. A hypothesis H is a set of definite clauses. Let H be the space of all hypotheses
which can be constructed from a language L . A generic ILP algorithm aims at addressing the following
maximization problem:

max
H∈H

S(H,D ,B)

where S(H,D ,B) is an appropriate scoring function for evaluating the quality of the hypothesis, e.g. accu-
racy of classification. The hypothesis space is structured by a (partial) generality relation �: a hypothesis
H1 is more general than a hypothesis H2 (H1 �H2) if and only if any example covered by H2 is also covered
by H1. Search in the hypothesis space is conducted in a general-to-specific or specific-to-general fashion,
using an appropriate refinement operator [56, 15]. The computational cost of searching in a discrete space
typically forces one to resort to heuristic search algorithms, such as (variations of) greedy search (see [15]
for more details).

Figure 10 shows a pair of chemical compounds from the NCI-HIV database which were measured active
in inhibiting HIV. Both extensional and intensional knowledge are (partially) reported. Clause active(M)
← atom(M,A1,o),bond(M,A1,A2,2), for instance, covers both compounds, while its special-
ization active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,s) covers m1 but not
m2.

The integration of ILP and statistical learning has the appealing potential of combining the advantages
of the respective approaches, namely the expressivity and interpretability of ILP with the effectiveness
and efficiency of statistical learning as well as its ability to deal with other tasks than standard binary
classification. ILP and kernel machines can be integrated by defining an appropriate kernel based on logic
hypotheses. Given that a hypothesis is a set of clauses, the simplest kernel consists of counting the number
of clauses which cover both examples. This corresponds to a feature space with one binary feature for each
clause.

Consider again the example of Figure 10. Let H = {c1,c2,c3} be a hypothesis consisting of the following
three clauses:
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Fig. 10 Example of logical representations for the NCI-HIV dataset of compounds. Extensional knowledge encodes the
atom-bond representation of molecules: atom(m,a,t) indicates that molecule m has atom a which is a t chemical element;
bond(m,a1,a2,t) indicates a chemical bond of type t (e.g. ar for aromatic bond) between atoms a1 and a2 of molecule
m. Intensional knowledge encodes functional groups such as benzene and other aromatic rings. An aromatic ring is a ring of
atoms connected by aromatic bonds. A benzene is an aromatic ring of six carbon atoms. A hetero aromatic ring is an aromatic
ring containing at least one non-carbon atom.

active(M) ← atom(M,A1,o),bond(M,A1,A2,2),atom(M,A2,s).

active(M) ← hetero aromatic 6 ring(M,List),member(A,List),atom(M,A,n).

active(M) ← benzene(M,[A1,A2,A3,A4,A5,A6]),bond(M,A5,A10,ar),atom(M,A10,se).

Clauses c1 and c2 succeed on molecule m1, while clauses c2 and c3 succeed on molecule m2. The resulting
feature space representation according to the up-mentioned kernel is given by:

ΦH(m1) =

 1
1
0

 ΦH(m2) =

0
1
1

 .

More complex kernels can be obtained using kernel composition (e.g. polynomial or Gaussian kernel, see
Section 4.2).

Given a kernel over logical hypothesis, we can construct a prediction function as:

f (x;H,B) =
m

∑
i=1

cik(x,xi;H,B).

The generic maximization problem becomes:

max
H∈H

max
f∈FH

S( f ,D ,B)

where FH is the set of all functions that can be generated with hypothesis H. Learning these logic kernel
machines [45] amounts at jointly learning the kernel, in terms of the logic hypothesis H, and the func-
tion in the RKHS associated with it. Learning convex combinations of basic kernel functions, as seen in
Section 5.1, can be cast into constrained optimization problems for which efficient algorithms exist. Con-
versely, here we face the discrete space of logic hypotheses and heuristic search algorithms need to be
employed.

kFOIL [44] is a simple example of this paradigm, based on an adaptation of the well-known FOIL
algorithm [60]. The algorithm is briefly sketched in Algorithm 1. It repeatedly searches for clauses that
score well with respect to the data set and the current hypothesis and adds them to the current hypothesis.
In the inner loop, kFOIL greedily searches for a clause that scores well. To this aim, it employs a general-
to-specific hill-climbing search strategy. Let p/n denote the predicate that is being learned. Then the most
general clause, which succeeds on all examples, is ”p(X1, ...,Xn)←”. The set of all refinements of a clause
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Algorithm 1 kFOIL learning algorithm.
Initialize H := /0
repeat

Initialize c := p(X1, · · · ,Xn)←
repeat

c := argmaxc′∈ρ(c) max f∈FH∪{c′}
S( f ,D ,B)

until stopping criterion
H := H ∪{c}

until stopping criterion
return argmax f∈FH

S( f ,D ,B)

c is produced by a refinement operator ρ(c). For our purposes, a refinement operator specializes a clause
h← b1, · · · ,bk by adding new literals bk+1 to the clause, though other refinements have also been used in the
literature. Scoring a clause amounts at training a kernel machine using the current hypothesis, including
the candidate clause, and returning a measure of its performance (e.g. its accuracy on the training set).
Learning in kFOIL is stopped when there is no improvement in score between two successive iterations.
Several extensions and improvements have been proposed. Substantial efficiency gains, for instance, can
be obtained using a kernel quality measure such as kernel target alignment (see Eq. (27)) to score clauses,
instead of training a kernel machine every time. Further details and extensions can be found in [45].

6 Supervised Kernel Machines for Structured Output

Many relevant learning problems require to predict outputs which are themselves structures. Speech recog-
nition or protein secondary structure prediction, for instance, can eventually be formalized as sequential
labelling tasks. A key problem in NLP consists in predicting the parse tree of a sentence. Many techniques
have been developed in the literature to address this kind of problems, often based on directed or undi-
rected graphical models. A quite general approach consists of learning a function f (x,y) over both input
and output which basically evaluates the quality of y as an output for x (e.g. the conditional probability of
the output given the input i.e. P(Y = y|X = x)). Prediction then amounts at finding the output maximizing
this score, i.e.:

y∗ = argmax
y∈Y

f (x,y). (29)

Kernel machines can be generalized to this kind of setting by defining a joint feature map Φ(x,y)
over both input and output, with corresponding kernel k((x,y),(x′,y′)). A common approach consists of
defining basic feature maps for input and output components. The joint feature map is then obtained as a
combination of tensor products and direct sums (see Section 4.2) involving these basic maps. Multiclass
classification can be obtained for instance setting:

Φ(x,y) = Φ(x)⊗ Φ̂(y) (30)

where Φ̂(y) is the one-hot encoding of the class label. A sequential labelling algorithm encoding Markov
chain assumptions for dependencies would use a feature mapping like:

Φ(x,y) =

[
T−1

∑
t=1

φ̂(yt)⊗ φ̂(yt+1)

]
�

[
T

∑
t=1

φ(xt)⊗ φ̂(yt)

]
. (31)

Figure 11 shows an example in which the sequential labelling task is predicting coding (exons) and
non-coding (introns) regions in the genome. The joint feature map is obtained from Eq. (31) using one-
hot encoding for the input and output basic mappings. More complex kernels on structures can also be
employed in principle, (see Section 4.3). Note however that limitations to the form of the usable kernels
are often needed in order to retain efficiency in computing the argmax in Eq. (29).
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Fig. 11 Example of joint feature map for sequential labelling. One-hot encoding is used for feature mappings of both input
and output symbols.

A generalized version of the representer theorem gives the form of the solution of Tikhonov regularized
problems.

Theorem 3 (Generalized Representer Theorem). Let Dm = {(xi,yi) ∈ X ×Y }m
i=1 be a training set,

V (xi,yi, f ) a general loss function, H a RKHS with norm || · ||H . Then the general form of the solution of
the regularized risk

1
m

m

∑
i=1

V (xi,yi, f )+λ || f ||2H

is

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′k((xi,y′),(x,y)).

The solution is as a linear combination of kernel functions centered on “augmented” training examples
(xi,y′), where xi are training inputs and y′ ∈ Y possible outputs.

Structured-Output Support Vector Machines [77] (SO-SVM) generalize large-margin classification to
this setting, by enforcing a large separation between correct and incorrect output assignments. A hinge loss
for structured-output prediction can be written as:

V (x,y, f ) = |1− ( f (x,y)− argmax
y′ 6=y

f (x,y′))|+.

The resulting Tikhonov regularized functional is:

min
f∈H

1
m

m

∑
i=1
|1− ( f (x,y)− argmax

y′ 6=y
f (x,y′))|++λ || f ||2H .

As for the scalar case, f can be written as a dot product between the feature space representation of the
example and a parameter vector, i.e.:

f (x,y) =
m

∑
i=1

∑
y′∈Y

ciy′〈Φ(xi,y′),Φ(x,y)〉= 〈
m

∑
i=1

∑
y′∈Y

ciy′Φ(xi,y′),Φ(x,y)〉= 〈w,Φ(x,y)〉.

By introducing slack ξi for the cost paid for each incorrect prediction we obtain the following quadratic
optimization problem:
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min
w∈H ,ξ∈IRm

C
m

∑
i=1

ξi +
1
2
||w||2

subject to: 〈w,Φ(xi,yi)〉− argmax
y′ 6=yi

〈w,Φ(xi,y′)〉 ≥ 1−ξi i = 1, . . . ,m

ξi ≥ 0 i = 1, . . . ,m

where again we replaced C = 2/λm for consistency with most literature on SO-SVM. Multiclass SVM [12]
can be seen as a simple instantiation of this optimization problem, with a joint feature map as in Eq. (30).
Note that the margin constraint for each training example can be equivalently replaced with a set of con-
straints, one for each possible output y, all sharing the same slack variable ξi. The Langragian of the
optimization problem becomes:

L(w,α,β) =C
m

∑
i=1

ξi +
1
2
||w||2−

m

∑
i=1

∑
y′ 6=yi

αiy′(〈w,Φ(xi,yi)〉−〈w,Φ(xi,y′)〉−1+ξi)−
m

∑
i=1

βiξi

where αiy′ ,βi ≥ 0 for all i and y′. Zeroing the derivatives with respect to the primal variables gives:

∂L
∂w

= w−
m

∑
i=1

∑
y′ 6=yi

αiy′Φ(xi,yi)−Φ(xi,y′)︸ ︷︷ ︸
δΦi(y′)

= 0→w =
m

∑
i=1

∑
y′ 6=yi

αiy′δΦi(y′)

∂L
∂ξi

= C− ∑
y′ 6=yi

αi−βi = 0→ ∑
y′ 6=yi

αi ∈ [0,C]

where we replaced δΦi(y′) = Φ(xi,yi)−Φ(xi,y′) for compactness. Substituting into the Lagrangian we
obtain:

max
α∈IRm

−1
2

m

∑
i=1

m

∑
j=1

∑
y′ 6=yi

∑
y′′ 6=y j

αiy′α jy′′〈δΦi(y′),δΦ j(y′′)〉+
m

∑
i=1

∑
y′ 6=yi

αiy′ (32)

subject to: ∑
y′ 6=yi

αiy′ ∈ [0,C] i = 1, . . . ,m.

Note that replacing 〈δΦi(y′),δΦ j(y′′)〉= 〈Φ(xi,yi)−Φ(xi,y′),Φ(x j,y j)−Φ(x j,y′′)〉= k((xi,yi),(x j,y j))−
k((xi,yi),(x j,y′′))− k((xi,y′),(x j,y j))+ k((xi,y′),(x j,y′′)) we recover the kernel-based formulation where
the feature mapping is only implicitly done.

A main problem in optimizing (32) is the number of variables α , which is often exponential in the size
of the output. The problem is addressed using a cutting plane algorithm, which iteratively solves larger
optimization problems obtained incrementally adding the most violated constraint. Algorithm 2 reports a
sketch of the algorithm. Starting from an empty set of constraints, the algorithm repeatedly iterates over
training examples. For each training example the most violated constraint according to the current ver-
sion of f is computed (H(y) is the cost paid for predicting y). Its cost is compared with that of previous
constraints involving the same example (or zero if none exists). If the new cost is larger by more than a
user-defined tolerance ε , the constraint is added and a new optimization problem is solved. The algorithm
terminates when no further constraint is added for any of the training examples.

In both training and classification phases, the argument maximizing f needs to be returned. The effi-
ciency of this computation is crucial to the applicability of the approach. Dynamic programming techniques
can be employed in a number of common cases, like the Viterbi algorithm for sequential labelling or its
extension to probabilistic context free grammars for predicting parse trees.

A number of variants of the approach described here exist. A common extension consists in adding a loss
function ∆(yi,y′) to the constraints, measuring the loss incurred in predicting y′ in place of y. Alternative
approaches have also been proposed in the literature, for instance to address cases in which exact com-
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Algorithm 2 Cutting plane algorithm for SO-SVM.
Initialize Si := /0 for all i
repeat

for i = 1, . . . ,m do
H(y) = 1−〈w,δΦi(y)〉
where w = ∑ j ∑y′∈S j α jy′δΦ j(y′)
compute ŷ = argmaxy6=yi

H(y)
compute ξi = max{0,maxy∈Si H(y)}
if H(ŷ)> ξi + ε then

Si := Si∪{ŷ}
solve problem (32) restricted to variables S =

⋃
i Si

end if
end for

until no Si has changed during iteration

putation of argmax is intractable. For a comprehensive treatment of kernel methods for structured-output
prediction see [5].

7 Conclusions

In this chapter we provided a comprehensive introduction to kernel machines for structured data. We re-
viewed the mathematical foundations underlying kernel methods and described a number of popular kernel
machines for both supervised and unsupervised learning. We gave an extensive treatment of kernels for
structured data, including strings, trees and graphs, as well as kernels based on generative models and log-
ical representations. Techniques for learning kernels from data were also discussed. Finally we introduced
kernel machines for predicting complex output structures, a promising research direction combining kernel
methods with probabilistic graphical models and search-based approaches.

Research on kernel methods is extremely active and a large number of diverse problems have been
tackled under this formalism. This chapter is aimed at providing a clear and detailed explanation on kernel
methods and their use for dealing with structured data, rather than a complete survey on all approaches
which have been developed. Techniques which were not covered include Gaussian Processes [63] and
distribution embeddings. The former take a Bayesian viewpoint and allow to provide predictions in terms
of expected value and variance, where uncertainty is reduced in the proximity of observed points. The
latter is a recent trend of research aimed at embedding probability distributions in RKHS. This allows to
develop effective non-parametric techniques for problems like testing whether two samples come from the
same distribution [25] or measuring the strength of dependency between two variables [26]. Additional
references to advanced material on kernel methods can be found e.g. in [31].
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