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Abstract. We present an application of machine learning algorithms
for the identification of metalloproteins and metal binding sites on a
genome scale. An extensive evaluation conducted in combination with X-
ray absorption spectroscopy shows the great potentiality of the approach.

1 Metal binding in proteins

A significant fraction of known proteins is believed to bind metal ions in their na-
tive conformation. Metal ions play a variety of crucial roles in proteins [1], from
stabilizing their three dimensional structure, to acting as cofactors in enzyme
catalysis. Moreover, metals are implicated in many diseases for which medicine
is still seeking an effective treatment, such as Parkinson’s or Alzheimer’s [2] .
Identifying unknown metalloproteins and detecting their metal binding site(s)
is an important step in understanding their function and characterizing many
crucial processes involved in living systems. A metal binding site is characterized
through its metal ion, the protein amino acid residues directly involved in bind-
ing it (called ligands) and the binding geometry, i.e. the spatial arrangement of
the ion and its ligands. Some metal binding sites actually involve compounds
(e.g. the heme group binding hemoglobin) including one or more ions, and some
proteins contain more than one metal binding site. The problem of identifying
and characterizing metalloproteins can be seen as a series of increasingly complex
tasks. Given a protein, one aims at: 1) determining whether it is a metallopro-
tein or not, i.e. if it binds metal ions in its native conformation; 2) determining
the metal bonding state of each of its residues, i.e. whether they bind a metal
ion or not; 3) determining the composition of metal binding sites, i.e. the num-
ber of ions binding the protein and the set of their respective ligands. Answers
may be obtained experimentally, by means of in-silico prediction tools, or by a
combination of the two classes of methods.
Experimental methods. High-throughput techniques based on X-ray absorp-
tion spectroscopy [3] (HT-XAS) allow detection, identification and quantification
of metals bound to proteins based on the energy and intensity of the X-ray fluo-
rescence signal emitted by the metals. HT-XAS can thus be used to address the
first task, i.e. metalloprotein identification. Exact determination of binding sites,
however, is only possible using more labor-intensive techniques, such as X-ray
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crystallography or Nuclear Magnetic Resonance, which provide high-resolution
three-dimensional structural information. Even when a 3D structure is avail-
able, exact characterization of binding sites may be non trivial and error prone.
For example false positives may be due to spurious artifacts where metals bind
at adventitious sites, and false negatives may emerge when metalloproteins are
experimentally solved in their apo-form lacking the metal ion.
In silico methods. The three above tasks can be tackled from a machine
learning point of view. Here we focus on predictions from sequence alone1, where
(1) is a sequence classification problem, (2) is a sequence labeling problem, and
(3) is a more complex structured output problem from sequences to bipartite
graphs. Some simplifying assumptions may be made to reduce the difficulty of
these problems in their generality. First, prediction may be limited to transition
metals and a small number of candidate residues (CYS and HIS). Transition
metals (especially iron and zinc) are the most commonly found ions in proteins,
covering about 2/3 of all known metalloproteins. Their preferred ligands are CYS
and HIS, followed by ASP and GLU, which have a much lower binding propensity
given their relatively high abundance in proteins. Finally, the solution space may
be limited to sites where an ion is coordinated by four or less residues as more
complex binding sites are extremely rare.
MetalDetector. The MetalDetector software [5, 6] uses state-of-the-art ma-
chine learning methods to solve the above three prediction problems. A first ver-
sion of the software [5] employed Disulfind predictor to identify cysteine disulfide
bridges [7] and a combination of support vector machines and bidirectional re-
current neural networks for metal bonding state prediction. The current version2

of the server [6] employs a two-stage approach for metal bonding state and metal
binding sites prediction respectively. The first stage relies on an SVM-HMM [8]
which collectively assigns the bonding state of all the CYS/HIS residues in the
sequence. Residues predicted as metal-bound are fed to the second stage. Here
a search-based structure output approach greedily adds links between candidate
ligands and candidate ions, until each ligand is connected to an ion. The search is
guided by a kernel-based scoring function trained to score correct moves higher
than incorrect moves. The problem has the structure of a weighted matroid,
which is basically the discrete counterpart of concave functions. The greedy
search is thus guaranteed to lead to the global optimum of the (learned) scoring
function. The method was initially introduced in [9] and further refined and ana-
lyzed in [10], where an extensive experimental validation across different protein
structural folds and superfamilies was conducted.

Being able to address all three predictions problems, MetalDetector is a nat-
ural candidate to complement information provided by high-throughput exper-
imental techniques like HT-XAS. The potential impact of this integration was
recently shown on a large-scale experiment aimed at identifying potential metal-
loproteins within the New York SGX Research Center for Structural Genomics.

1 For applications of machine learning techniques to 3D structure data see e.g. [4]
2 MetalDetector is available as a web server at http://metaldetector.dsi.unifi.it.
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2 Results

MetalDetector and HT-XAS were jointly employed in a recent study [11] in
order to identify metal-bonded residues in 3,879 purified proteins generated by
the New York SGX Research Center for Structural Genomics and belonging to
hundreds of different protein families.

Of the whole set of proteins, 343 were identified by HT-XAS to contain at
least one metal ion among Mn, Fe, Co, Ni, Cu and Zn. The experimental anal-
ysis described in [11] compares the level of agreement between MetalDetector
and HT-XAS predictions: to this aim, MetalDetector predictions at residue level
have been combined in order to define a protein score, which is used to predict
whether that protein is a metalloprotein or not. This level of agreement obvi-
ously depends on the aggregation criterion used to produce such protein scores
for MetalDetector: in these experiments, the adopted criterion was to predict a
protein to be a metalloprotein if for at least N residues (either CYS or HIS)
the probability of metal bonding state, as predicted by MetalDetector, exceeded
a certain threshold TM . By choosing different values for N and TM , different
predictions can be accordingly obtained: the experiments showed that, at the
same recall level (i.e., when MetalDetector predicts the same number of metal-
loproteins as HT-XAS), MetalDetector and HT-XAS agree from 32% up to 45%
of the cases, depending on the choice of N and TM (note that a random baseline
predictor would achieve a 10% of precision with respect to the metalloproteins
identified by HT-XAS).

In addition, it must be underlined that in many protein samples metal occu-
pancy can be low, and therefore metal atoms cannot be detected by HT-XAS.
MetalDetector can in these cases complement HT-XAS evidence by suggest-
ing potentially missed metalloproteins. This happens, for example, for proteins
11211f and 11213j, which share the Pfam SCO1/SenC domain (PF02630) in-
volved in biogenesis of respiratory and photosynthetic systems. Protein 11211f
shares 26% sequence identity with Human SCO2 protein, a mitochondrial membrane-
bound protein involved in copper supply for the assembly of cytochrome c oxi-
dase. The residues predicted by MetalDetector to bind metal in 11211f align to
the residues that in the NMR structure of Human SCO2 bind a Cu+ ion. This
is likely one of the cases where the HT-XAS method fails in identifying a metal-
loprotein, while MetalDetector not only seems to recover the false negative, but
also to correctly predict the position of the binding site.

A comprehensive approach combining the use of MetalDetector predictions
with homology modeling has also been object of analysis and showed that the
proposed computational methodology can represent an extremely powerful tool
for the study of metalloproteins.

3 Perspectives

Recent years have witnessed a dramatic increase in the availability of high-
throughput experimental techniques for the analysis of biological data. This sce-
nario provides an unprecedented opportunity for machine learning approaches
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to deal with large amount of data and continuously novel problems and chal-
lenges. Structural genomics, which aims to map the protein sequence space with
structural information, is indeed pursuing a tight integration of high-throughput
experimental techniques and modeling approaches. Characterization of metallo-
proteins is an interesting example of how experimental techniques and machine
learning approaches can be fruitfully combined to deepen our understanding of
biological systems.
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