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Abstract

Machine learning is increasingly important in microbiology where it is 
used for tasks such as predicting antibiotic resistance and associating 
human microbiome features with complex host diseases. The 
applications in microbiology are quickly expanding and the machine 
learning tools frequently used in basic and clinical research range 
from classification and regression to clustering and dimensionality 
reduction. In this Review, we examine the main machine learning 
concepts, tasks and applications that are relevant for experimental 
and clinical microbiologists. We provide the minimal toolbox for a 
microbiologist to be able to understand, interpret and use machine 
learning in their experimental and translational activities.
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allow microbiologists to grasp the potential of machine learning in their 
field and enable them to consider using it in their research. Readers can 
expand their knowledge on the topic with other relevant reviews5,6.

Supervised machine learning
Supervised machine learning tasks build a model that links entities 
or samples (for example, specific bacterial strains) with an outcome 
variable of interest (for example, their a priori unknown taxonomic 
label) using information from available experimental data (for exam-
ple, known assignments of well-studied strains to their taxonomy) 
(Fig. 1a). Biological samples are associated both with outcomes of inter-
est (any information about the sample and its context) and with a set of 
features that can be extracted from the sample itself with experimental 
approaches (for example, the sequence of the gene or genome of the 
strain, or phenotypic information obtained by in vitro experiments on 
the strain). Together, outcomes and features from samples are called 
examples and make up the ‘Training examples’ that are the input of 
the machine learning model (Fig. 1a). During the ‘Training phase’ the 
algorithm exploits the training examples to train the model that can 
be used to make predictions — in the ‘Prediction phase’ — about the 
outcome variable of new samples for which only its features are avail-
able (Fig. 1a). For example, a supervised classifier trained on known 
genome–species assignments that uses the presence or absence of 
specific genes in the genomes as features could be used to predict the 
species assignment of a new isolate lacking taxonomic information but 
for which the same types of features are available. When supervised 
learning uses categorical labels (for example, taxonomic labels) for the 
outcome variable, it is referred to as classification (Fig. 1b), whereas 
regression (Fig. 1c) refers to the case in which the outcome variable 
is a numerical continuous variable (for example, the optimal pH for 
a bacterium to grow). Many different methods for supervised (and 
unsupervised) learning are available and their diversity is enriched by 
the availability of many software implementations (see Supplementary 
Table 1 and Supplementary Box 1), allowing researchers to explore the 
most suitable solution for their machine learning tasks.

Taxonomic classification is a typical example of supervised 
learning in microbiology. The Ribosomal Database Project (RDP) 
classifier7, for instance, trains a naive Bayes model to link 16S rRNA 
gene sequences to their taxonomic labels and then uses the trained 
model to assign taxonomic labels to new 16S rRNA gene sequences.  
A naive Bayes classifier is a simple probabilistic model performing lin-
ear classification, and has been shown to be effective for the taxonomic 
classification of features coming from shotgun metagenomics8,9. Other 
tools employing many different machine learning algorithms for taxo-
nomic classification of 16S rRNA genes from isolate sequences or of 16S 
rRNA gene fragments from microbiome experiments have been devel-
oped for this task10–14, including k-mer profiling and support vector 
machines (SVMs), frequently with better success than simple naive  
Bayes solutions15.

Other supervised learning approaches that use genomic data 
as features are those, for example, that try to predict functional or 
phenotypic characteristics. Several existing systems16–18 are exam-
ples of different machine learning approaches to predict antibiotic 
resistance from genomic and metagenomic data19,20. The pathogenic 
species Mycobacterium tuberculosis has genomic elements with a 
complex antimicrobial resistance evolution, and the SVM algorithm 
has been used to identify known and novel antimicrobial resistance 
genes starting from a training set of >1,500 M. tuberculosis genomes18 
with experimentally tested antibiotic resistance profiles. A machine 

Introduction
Machine learning is a flexible set of tools for identifying patterns 
and relationships in complex data and for making decisions based 
on those data. A machine learning model can allow a vehicle to drive 
autonomously or use stool microbiome sequencing data to predict 
the presence of a disease. The experimental data collected in modern 
microbiology studies have reached a level of complexity where machine 
learning becomes necessary and an opportunity for tasks ranging from 
diagnostics in medicine to biomarker discovery.

Machine learning is a very broad discipline. It can be generally 
categorized as supervised machine learning, aimed at developing 
predictive models given training data where the answers are known, 
and unsupervised machine learning, aimed at grouping observations 
or creating simplified representations of major structures of the data. 
Examples for the former include inferring the antibiotic resistance pro-
file of an isolate from its genome, learning whether and which compo-
nents of human-associated microbial communities are involved with a 
given host condition or developing clinical decision support systems to 
recommend treatment options from pathogen or microbiome experi-
mental data (Box 1). For unsupervised machine learning, applications 
range from grouping microbial genes with similar expression patterns 
to binning 16S rRNA gene amplicons into operational taxonomic units.

The importance of machine learning in microbiology is increasing 
and software tools are becoming more convenient and easier to adopt 
in this field. However, microbiologists are still being trained with little 
focus on quantitative and often insufficient statistical background to 
empower the potential of machine learning in their fields. Machine 
learning has complex statistical and theoretical backgrounds that will 
remain inaccessible to most microbiologists. However, machine learn-
ing is now structured in such a way that understanding the details of its 
formal foundations is not necessary to be able to use it, as long as there 
is a clear understanding about how to correctly apply it. The present  
Review has the goal of enabling microbiologists to ‘drive’ the machine 
learning car without necessarily knowing how the engine of the car 
works internally. Microbiologists with limited background in statistics 
and computer science should thus be able to grasp the main concepts 
of machine learning and include them in their activities ranging from 
their own experiments to the critical assessments of the work done 
by colleagues.

In this Review, we cover the aspects that we consider most impor-
tant to enable microbiologists to use machine learning. In the first part, 
we introduce supervised and unsupervised machine learning tech-
niques (with a specific focus on high-throughput microbiology set-
tings), and we examine approaches for dimensionality reduction, as 
they are frequently used for exploratory microbiological investiga-
tions, and also feature selection, which is key to identifying the most 
relevant aspects of the microbiological phenomenon. We mention 
some specific machine learning algorithms of interest, but we do not 
aim to discuss them in depth and we refer the interested reader to 
more specialized literature1–4. In the second part, we review the main 
aspects of model selection that are important to maximize the power 
of the machine learning approach, before focusing on the key practical 
aspects of how to evaluate a machine learning model and how to apply 
it in real-world scenarios minimizing underlying biases. We complete 
our view with several practical examples of available software imple-
mentations that can be used by microbiologists with limited compu-
tational background, discuss common pitfalls to avoid in the field and 
provide a practical checklist to consider when reading or assessing a 
machine learning-based work. The topics presented in this work will 
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learning framework based on a set of adaptive boosting classifiers21 
was developed to extend the identification of antimicrobial resistance 
to several bacterial species16, whereas the DeepARG model17 uses deep 
learning22 to predict antibiotic-resistant genes that can be used for 
the monitoring of environmental sources such as water, wastewater 
and food (Box 1). The prediction performance of machine learning is 
typically dependent on the size of the training set (assuming the qual-
ity of the data is granted), and the automatic detection of antibiotic 
resistance genes in Escherichia coli, for which a lot of experimental 
data are available, is shown to be particularly effective19. Other machine 
learning approaches were developed to predict less specific phenotype 
characteristics, including DeepBGC23 for identifying biosynthetic gene 
clusters and Traitar24 to predict different phenotype traits including 

carbon and energy sources, aerobic and spore-forming capabilities, 
and enzymatic activities.

Supervised learning in high-throughput 
microbiology settings
With the advent of high-throughput assays in microbiology such as 
next-generation sequencing of environmental samples (metageno
mics), supervised machine learning methods are key to modelling com-
plex and high-dimensional feature sets with phenotypes and clinical 
data of interest. High-dimensional quantitative features can represent 
a microbiological sample, for instance, by using the relative abun-
dance of the hundreds of species present in it, the presence or absence  
profile of genes of a particular catalogue, or the single-nucleotide 

Box 1

Tasks and examples of supervised machine learning applications  
in microbiology
Example 1. Machine learning to mine host–microorganism 
interactions
Understanding host–microorganism interactions can provide insights 
into molecular mechanisms underlying infectious diseases, guide 
discoveries of novel therapeutic modalities or lead to the repurposing 
of available drugs. Supervised machine learning methods such as 
DeNovo127 have been developed to predict interactions between 
viral proteins and human proteins, irrespective of viral taxonomy 
and intra-species protein–protein interactions.

•• Data set: VirusMentha128, a data set containing 5,753 unique 
interactions between 2,357 human proteins and 453 viral proteins, 
covering 173 different virus species in 25 subfamilies.

•• Features: protein amino acid sequences.
•• Target variable to predict: whether there is an interaction between 
two proteins.

•• Machine learning model: support vector machines.
•• Training or testing sets: due to the intricacies of the experiment, 
the authors created subsets that contained interactions of 
viruses taxonomically far from those in the training set to imitate 
predicting a novel virus.

•• Validation setting: cross-validation.
•• Main result: accuracy of up to 81% and 86% when predicting 
protein–protein interactions of viral proteins that had no and 
distant sequence similarity to the ones used for model training.

Example 2. Machine learning to identify antimicrobial 
resistance
Early identification of the microbial species causing an infection can 
aid in the choice of antimicrobial therapy and dosage, which are critical 
for the outcome of an infection. Rapid and accurate methods are 
needed in the clinic, with one approach applying supervised machine 
learning using matrix-assisted laser desorption/ionization–time of 
flight (MALDI-TOF) mass spectra to predict antimicrobial resistance129.

•• Data set: 300,000 mass spectra with more than 750,000 
antimicrobial resistance phenotypes derived from four medical 
institutions.

•• Features: MALDI-TOF mass spectra profiles of clinical isolates.
•• Target variable to predict: antimicrobial resistance.
•• Machine learning models: logistic regression, gradient-boosted 
decision trees and neural networks.

•• Training or testing sets: random split into 80% training and 
20% testing, stratifying for antimicrobial class and the species, 
ensuring that multiple samples from the same patient were part  
of either the training or testing set, but not both.

•• Validation setting: cross-validation.
•• Main result: areas under the receiver operating characteristic 
curves between 0.80 and 0.74 for detecting antimicrobial-resistant 
and clinically important pathogens such as Staphylococcus 
aureus, Escherichia coli and Klebsiella pneumoniae.

Example 3. Machine learning to predict host disease status
The use of microbial features to predict host characteristics has been 
particularly successful in the study of the human microbiome, where 
studies have independently linked the gut microbiome to colorectal 
cancer and two works identified robust and reproducible associations 
across different cohorts and populations25,26. These findings provide a 
foundation for future mechanistic studies and clinical prognostic and 
diagnostic tests.

•• Data set: 969 faecal metagenomes from seven data sets.
•• Features: presence and relative abundances of microbiome 
species.

•• Target variable to predict: colorectal cancer versus control.
•• Machine learning model: random forest and least absolute 
shrinkage and selection operator (LASSO).

•• Training or testing sets: random split into 80/20 for training and 
testing sets (cross-validation); training on all but one data set  
and testing on the left out data set from the leave-one-data  
set-out (LODO) approach.

•• Validation setting: cross-validation and LODO validation.
•• Main result: average area under the receiver operating 
characteristic curve consistently above 0.80 in predicting 
colorectal cancer.
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Fig. 1 | General workflow and examples for machine learning applications  
in microbiology. a, High-level workflow of supervised machine learning 
describing different types of molecular (DNA, RNA, proteins and so on) and 
phenotypic (morphology, motility, pH and so on) characteristics derived 
from biological samples (pink background) that form the set of features 
(indicated as F1–Fn), and target values generated from potential other 
information (blue background) associated with the biological samples 
(indicated with double-headed black arrows). The ‘Training phase’ details 
the input data (for example, relative abundance, metabolite quantification, 
gene expression and so on; violet background) and the steps that will produce 
the trained model, which include model selection, adjustment of the parameters, 
construction of the model and feature selection. The same set of features 
used for training the model but derived from new unseen and unlabelled 
biological samples (yellow background) are the input for the trained model 

(‘Prediction phase’) to predict the unknown corresponding outcome variable 
(‘?’). b, Application of supervised learning, using 737 species-level relative 
abundance values as input features to classify 107 stool microbiome samples 
into control versus colorectal cancer categories (original data from ref. 119 
and available in ref. 120). This example uses the random forest classification 
algorithm and shows the median model’s performance (bold red line). For 
comparison, the dashed black line shows the performances of a random model. 
c, Application of supervised learning to estimate Bacillus subtilis growth rates 
(measured as optical density) from 3,848 gene expression values from more 
than 20,000 B. subtilis cells as input features80. The example uses the random 
forest regression algorithm and reports the distributions of the predicted 
optical density values for each of the measured values. AUC, area under the 
curve; BMI, body mass index.
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variants detected in genes of interest. Many machine learning 
approaches focus in this context on discriminating between cases 
and controls in clinical settings to inform mechanistic experiments or 
design new diagnostic tools (Fig. 1a,b). For instance, two large multi- 
data set analyses25,26 linked colorectal cancer with the composition 
of the gut microbiome using random forest and sparse linear clas-
sifiers such as the least absolute shrinkage and selection operator 
(LASSO) (Box 1). These analyses identified a highly similar reproduc-
ible microbial signature that has been independently validated in sev-
eral cohorts. It is important to underline how two different machine 
learning approaches achieved almost identical results, as it is usually 
not possible to establish which is the best machine learning approach 
even for a specific task, and investigators should focus more on mak-
ing sure the machine learning algorithms are applied in a sound way 
and on clean data rather than on the choice of machine learning (sub)
approaches. Microorganisms can also be found in cancer tissues, and 
machine learning discrimination based on microbial reads found in 
host sequencing efforts has a diagnostic potential27.

Links between the human microbiome and six different diseases 
were described in a work28 where more than 2,400 metagenomic sam-
ples from eight studies were used in a machine learning framework 
using a panel of different classifiers. An SVM algorithm trained on 50 gut 
microbial gene markers discriminated individuals with type 2 diabetes 
from healthy controls29, whereas the random forest method applied on 
plaque microbiome profiles characterized the health status of dental 
implants with diagnostic and prognostic potential30. The random forest 
method also allowed predictions of overall mortality risk by training 
based on human gut microbiome features31, and LASSO was used to 
identify a microbial signature from faecal microbiome samples with 
pancreatic cancer32. Many more examples are available as machine 
learning is increasingly used to estimate the strength of association 
between microbiomes and host characteristics such as diet, body mass 
index (BMI) and other cardiometabolic markers33. Accurate prediction 
is an objective distinct from causal inference, another common goal in 
microbiome studies (see Supplementary Box 2).

Supervised machine learning in microbiology has the potential to 
support clinical tasks. As the microbiome has been shown to stratify,  
to some extent, patients with melanoma who respond to immuno-
therapy from non-responders34–37, rapid metagenomic testing sup-
ported by a machine learning-based decision system could indicate 
the most promising treatment option in a precision medicine setting. 
This is a very active research area and current results have not yet 
reached clinical application34,35,38–40. Machine learning can also sup-
port fighting the burden of infectious diseases by early identification 
of the infectious agents, for example by identifying microbial volatile 
organic compounds that discriminate between human pathogens41. 
Predicting the clinical success of faecal microbiota transplantation and 
the engraftment success of the transplant based on the characteristics 
of the donor sample is a similarly key medical task39,40,42. Early results 
suggest that machine learning-based matching of donor-recipient 
individuals can expand the clinical relevance of faecal microbiota 
transplantation beyond the current consolidated indication for the 
treatment of recurrent Clostridiodes difficile infections42–44.

Unsupervised machine learning
Machine learning is also extensively applied for tasks in which no 
outcome variable is available (Fig. 1a). In this ‘unsupervised’ setting, 
machine learning algorithms aim to find unknown structures in the 
data (for example, groups of similar samples) without any a priori 

knowledge of potential associations among samples. For example, 
consider isogenic bacterial cell populations in a liquid batch culture 
over time. The measurement of gene expression of each cell at different 
time points should identify cell growth phases. Unsupervised learning 
algorithms can partition groups of cells with similar gene expression 
profiles reflecting growth patterns. Similarly, a microbiologist with 
a large set of clonal colonies isolated from the same multi-species 
microbial source could use unsupervised learning on morphologies 
to identify strains from the same taxonomic units before focusing on 
specific species or functions. Unlike supervised learning, unsupervised 
learning can be used when labelled training sets are unavailable and 
when it is not known a priori what information is important. Unsuper-
vised learning has the potential to identify novel types of information, 
as it is not constrained to specific predefined labels.

Clustering is an unsupervised learning method that organizes sam-
ples into groups (clusters) based on a similarity measure. The k-means 
and k-medoids are examples of partitional clustering methods that 
minimize the average distance between samples in a given cluster and 
the sample designated as the centre of the cluster, respectively. They 
both require the number of clusters (k) to be specified a priori (Fig. 2a). 
Applying partitional clustering suggested the presence of distinct 
microbial community composition types driven by the abundance of 
certain members of the bacterial community in the gut (enterotypes)45 
and in other human body sites46, although others have noted a lack of 
defined boundaries between these clusters47–49. Clustering on its own 
does not provide an algorithm to classify other samples in the future, 
but the clusters can be used as labels to train a supervised classifier for 
this purpose. However, using the same measurements (for example, 
taxonomic relative abundance) both to cluster samples and, then, to 
compute statistical tests for differences between those clusters should 
be avoided as this leads to inflated P values and type 1 error50.

Clustering can be applied in diverse contexts using ad hoc distance 
functions or metrics: by defining genetic and phylogenetic distances 
between genomes within a single species, clustering allowed the identi-
fication of subspecies of the intestinal commensal Eubacterium rectale. 
This approach relied solely on uncultured metagenome-assembled 
genomes, highlighting differences in motility and carbohydrate utiliza-
tion genes among the identified subspecies51. Hierarchical clustering 
methods provide additional flexibility by bypassing the need to specify 
the number of clusters prior to the analysis. Hierarchical clustering can 
use either an agglomerative approach, assigning each data point to its 
own cluster and merging similar pairs of clusters as the algorithm moves 
up the hierarchy, or a divisive one, assigning all data points to a single 
cluster and then partitioning clusters by least similar cluster members 
(Fig. 2b). Agglomerative hierarchical clustering methods applied on 
genetic similarity metrics have enabled the analysis of large volumes of 
sequence data, such as the organization of millions of prokaryotic 16S 
rRNA gene sequences into operational taxonomic units52–54, or the defi-
nition of known and unknown species-level genome bins from hundreds  
of thousands of microbial genomes assembled directly from 
metagenomes55. Cluster similarity thresholds for these tasks are typi-
cally set to 97% identity among 16S rRNA genes56,57 to define operational 
taxonomic units and 95% whole-genome identity among strains to 
define species55,58. Although there is multiple support, especially for the 
latter, investigators should be always aware that clustering thresholds 
cannot fully represent the nuances of microbiological entities59,60.

Given the unprecedented increase in microbiological data 
generation, algorithms employing clustering concepts have been 
fundamental to overcoming computational challenges faced in 
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sequencing-based molecular approaches. By reducing the redun-
dancy of sequence sets and costs of downstream analysis and stor-
age, greedy clustering algorithms53,54,61 have enabled an in-depth view 

of the structure, diversity and function of microbial communities 
across habitats ranging from human body sites to the depths of the 
Arctic Mid-Ocean Ridge62–64. Gene catalogues covering the genomic 
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Fig. 2 | Practical examples of unsupervised learning tasks. a, k-Means is a 
clustering algorithm that requires an a priori number of clusters (k) into which 
samples are grouped. In the example, k-means with k = 2 was applied on Jaccard 
distances calculated using the protein content of 3,598 genomes collected 
by Méheust et al.121 from four published data sets122–125 and visualized using 
principal component analysis (PCA). This data set includes 22,977 protein 
clusters representing 4,449,296 sequences from 2,321 candidate phyla radiation 
(CPR) genomes, 1,198 non-CPR bacterial genomes and 79 archaeal genomes. 
PCA is used for visualization and points are coloured according to cluster 
assignment. The two clusters, Cluster 1 and Cluster 2, separate according to the 
assigned taxonomy, with Cluster 1 containing most of the CPR genomes falling 
within a single cluster. Bar plot shows the fraction of genomes assigned to each 
cluster (top right). b, Heatmap showing the presence (yellow) and absence 
(black) profiles of the protein clusters (columns) across the genomes (rows). 
The genomes were sorted using agglomerative hierarchical clustering applied 

on Jaccard pairwise distances and calculated using the protein content of the 
genomes. Hierarchical clustering defines clusters by ‘cutting’ the hierarchical 
tree at a certain height. In the example, two clusters can be defined, and also in 
this case Cluster 1 contains most of the CPR genomes. Bar plot shows the fraction 
of original labels assigned to each of the 3,598 genomes separated into the two 
clusters as defined by the hierarchical tree (as in panel a for the clusters defined 
by k-means). c, PCA is a dimensionality reduction technique used to visualize 
high-dimensional data into a lower-dimensional space. Points represent each of 
the individual genomes with taxonomic kingdoms overlaid on the plot for visual 
exploration. Bar plot shows the first six principal components that explain most 
of the variance across the genomes according to their protein content (top right). 
d, Each component of the PCA can explain a fraction of the variance present in the 
data. The first two components, for instance, explain 29% of the variance, and  
the first principal component alone already permits partial separation of 
taxonomic divisions of origin of the protein clusters.
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repertoire of microbiomes in given environments deeply rely on clus-
tering and redundancy reduction and serve as a reference resource 
for the field65–67. Sequence clustering algorithms such as MMSeq2 
(ref. 68) aid in dealing with challenges faced in functional gene infer-
ence including homology detection, which is particularly relevant 
as sequences without annotations can range from 29% to 35% of the 
total depending on the environment69. Scalability is also important, 
as protein catalogue searches require large computational resources 
and catalogues comprise more than 205 million genes from the UniProt 
database70 and 170 million genes from the human gut71.

Unsupervised learning beyond clustering: 
dimensionality reduction
Another class of unsupervised learning algorithm aims to represent 
high-dimensional data (for instance, where a very high number of 
features are measured) in a lower-dimensional space (for example, in 
two dimensions that can be conveniently plotted), and is called dimen-
sionality reduction. These techniques have become a very common 
approach in microbiology for data visualization, for exploratory data 
analysis and for reducing the dimensionality of the data for downstream 
machine learning tasks. Principal component analysis (PCA) is a dimen-
sionality reduction technique based on the Euclidean distance among 
samples72 that reduces data into a lower-dimensional space of compo-
nents representing groups of correlated original variables, where the 
first component will contain the major source of variance between 
samples (Fig. 2c,d). Applying PCA to the chemical property space of 
small molecules has shown non-obvious associations between chemical 
structure and differing permeabilities among bacteria, as well as dif-
ferences between antibacterial compounds and non-anti-infectives73. 
Extensions of PCA to exploit other distance metrics or dissimilarity 
measures among samples instead of samples’ raw variables, such as 
principal coordinate analysis (PCoA), have been particularly success-
ful in the microbiome field as β-diversity estimates could be plugged 
directly into the dimensionality reduction procedure to reveal the 
overall structure of a data set64,74–76.

Other dimensionality reduction methods try to preserve, as much 
as possible, the local non-linear neighbourhood structures when pro-
jecting data in low-dimensional space. Two such approaches that 
became very popular are t-distributed stochastic neighbour embed-
ding (t-SNE)77 and uniform manifold approximation and projection 
(UMAP)78. These tools have been useful in elucidating cellular trajecto-
ries that reflect developmental transitions in the parasite Plasmodium 
berghei using single-cell RNA sequencing79, as well as transcriptional 
responses to heat shock treatment and transcriptional states across 
Bacillus subtilis growth curves80.

Many microbiome research reports include a two-dimensional 
representation of the samples based on dimensionality reduction with 
β-diversity metrics (for instance, micro-ecology distance functions 
between microbiomes). In this initial exploratory data analysis, the 
conditions of interest (for example, cases versus controls, or sampling 
of different environments) are overlaid by colouring the samples in the 
plot30,64,81–83. Although this approach can lead to the intuitive identifica-
tion of patterns in the sample space linked with relevant conditions, 
such findings should not be overinterpreted48 and should be verified 
with statistical approaches (for example, by analysis of variance-based 
methods) or machine learning tools (for example, by classification or 
clustering analysis).

With new technologies enabling both phenotypic and geno-
typic profiling of single bacterial cells and communities at an 

unprecedented scale and depth80,84,85, reducing the feature space of 
these high-dimensional data sets and grouping together similar cel-
lular or community profiles will aid in revealing underlying biological 
patterns and spatiotemporal processes86.

Feature selection and extraction
In machine learning, the main objective of feature selection is the 
reduction of the original number of input features that will be used 
for training the machine learning model. This is not to be confused 
with feature extraction, which refers instead to the generation of 
new features starting usually from a (very large) set of input features, 
that can be used together with the original features. In a microbiome 
study, for example, samples may be represented by millions of features, 
corresponding to the number of genes contained in microbial gene 
catalogues that can be found in samples87, and it is inconvenient to 
maintain this high-dimensional data space for all machine learning 
tasks. Both feature selection and feature extraction can improve the 
generalization and simplification of the machine learning model by 
using a reduced set of input features. They can also help mitigate the 
‘curse of dimensionality’ (refs. 88,89), and can improve the overall 
learning performance. Additionally, feature selection can have the 
more practical goal of reducing the computational running times of 
the algorithms90. In many cases, however, feature selection has the 
final goal of providing a biological interpretation of the model and 
informing targeted follow-up experiments. As an example, the observa-
tion that Fusobacterium nucleatum and Clostridium symbiosum were 
among the most important features in diagnosing colorectal cancer 
from an analysis of the stool microbiome91,92 promoted the use of these 
microbial markers in clinical use93,94 and pointed to several mechanistic 
studies that partially elucidated causative links of F. nucleatum with 
colorectal cancer95,96. Feature selection and feature extraction should, 
of course, be applied only on data of sufficient quality because this 
step — as well as the whole machine learning process — is subject to 
the general principle of ‘garbage in, garbage out’; if the input data are 
of poor quality, the output predictions will also be unreliable (Box 2).

There are several types of feature selection techniques. Some 
machine learning algorithms already embed feature selection steps, 
including the random forest method that provides a feature impor-
tance score, or the LASSO that constrains most regression coefficients 
to be exactly zero. General-purpose feature selection approaches used 
in the field extend to the removal of low-abundance or low-prevalence 
features, independently of the outcome labels97, univariate filters98 or 
sure independence screening99. Feature selection can be combined 
with any learning tools by evaluating prediction performance. This 
involves the iterative removal or addition of features to identify those 
that seem redundant or provide no new information. Other feature 
selection approaches include recursive feature elimination based 
on SVMs, which was proposed for selecting genes associated with 
cancer tissues from micro-array data100, and the minimum redundancy 
maximum relevance, which selects features with a weak correlation at 
input but a strong correlation with the target value101. Dimensionality 
reduction is a popular feature extraction approach that represents the 
initial feature set with a smaller number of components that do not nec-
essarily correspond to any of the initial features. Such dimensionality 
reduction-based feature extraction methods are very effective when 
aggressive reduction of the dimensionality of data is needed and is not 
necessary to preserve the original features within the model.

Among the many examples available, feature selection using the 
LASSO was followed by SVMs to classify patients with diabetes treated 
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with metformin, untreated patients with diabetes and non-diabetic 
controls102. In another work103, three feature selection approaches 
were tested (ridge regression, LASSO and elastic net) in combination 
with several machine learning classification algorithms (Adaboost, 
SVM, FURIA, decision tree, Logitboost, neural network, random 
forest and k-NN with Logitboost) to identify disease-associated 
microbiome biomarkers from individuals with inflammatory bowel 
disease. Feature selection with LASSO was used also in combination 

with the random forest method to classify colorectal cancer using 
microbiome samples from the gut and oral body sites, and their 
combination104,105.

Several machine learning algorithms can also output an estimation 
of the importance of the features in the model (for example, the random 
forest method provides the relative importance of each feature), which 
can be used to identify the features that can help explain the predictions 
of the model or can be followed up by targeted studies.

Box 2

Common critical pitfalls of machine learning application  
in microbiological studies
Evaluating the model. Evaluation metrics are never general enough 
to express how the model performs under all conditions and it is 
important to understand what each metric expresses and what it 
hides108. Unbalanced machine learning problems (that is, problems 
in which the samples of one class are substantially fewer than those 
of the other classes) should not be evaluated with the accuracy 
measure but, rather, with the F1 measure or the area under the 
precision–recall curve.

The problem of overfitting. Selecting and tuning learning models 
with the appropriate complexity to fit the underlying relationship 
between variables requires a balance between the capacity of the 
model to capture this relationship and the risk of fitting the noise or 
the unique exceptions to each sample. Importantly, to verify model 
performance and avoid over-optimistic (and overfitted) estimates, 
an independent test set never used during the training phase should 
be applied to evaluate the model. In some situations, overfitting 
is also the consequence of an error in the design of the machine 
learning experiment; for example, reducing the features to the most 
relevant ones in a data set and then using those features to perform 
classification on the same data set (see Fig. 4a) is an unfortunately 
frequent error that completely invalidates the experiment130.

Predictors confounded with the outcome. Confounders are 
common effects of both the predictors and the outcome and can 
lead to spurious and biased predictions102,131. Matching confounding 
variables across data sets, as well as standardization and stratification, 
can help mitigate this dependency. Confounders can be used in a 
regression analysis to produce residualized variables and used as 
input for prediction models.

Input training (and testing) data quality: ‘garbage in, garbage out’.  
Even the best possible machine learning algorithm applied to 
the simplest machine learning problem cannot generate reliable 
predictions if the quality of the input data (samples and examples)  
is not sufficiently high. Errors, mislabelling, noise, file corruptions  
and wrong or missing pre-processing or normalizations are just  
some of the potential ‘data quality’ issues, and all have a crucial 
impact on the machine learning results. It is thus very important 
to assess the quality of the input data before starting any machine 
learning analysis.

Batch effect. This refers to systematic variations that occur during 
data acquisition or processing, which can hinder the biological signal 
not related to biological factors, biasing the results by introducing 
spurious variations in a group of samples. Batch effects can be 
generated at different steps of the project, such as sample collection 
and storage, DNA extraction, library preparation, sequencing and 
data processing109,132. To address batch effects, a careful study 
design, normalization and appropriate statistical models, as well as 
replication and validation cohorts, should be considered. Accounting 
for batch effects through blocking and randomization of samples to 
batches during experimental design can improve the reliability and 
reproducibility of results.

Low sample size. In high-dimensional data, the greatest gains 
in prediction accuracy come from increasing the sample size. 
Leave-one-out cross-validation — in which a model is trained on  
all examples but one and tested on the single left-out example,  
and the procedure is iterated over all examples — is a common 
strategy to estimate performance in small data sets, although it  
is not free from technical issues and over-optimistic estimates.

Missing reproducibility. Obtaining a high accuracy for a machine 
learning task on a data set evaluated via cross-validation or discovery/
validation approaches does not usually translate into having the  
same performance on unseen samples from different data sets.  
For a model performance to be reproducible, it is key to test the 
model on new data sets in cross-data set evaluation and using  
the leave-one-data set-out (LODO) approach (Fig. 3d).

Association is not causation. Correlation and causation are different 
concepts, as causes cannot be reduced to correlations, or to any 
other statistical relationship. Correlations are symmetrical (if ‘x’ 
correlates with ‘y’, then ‘y’ correlates with ‘x’), lack direction and are 
quantitative. By contrast, causal relationships are asymmetrical (if ‘x’  
causes ‘y’, then ‘y’ is not a cause of ‘x’), directional and qualitative. 
Being purely observational, machine learning models are generally 
blind to causality because they fit underlying correlations between 
variables, and have been shown to be positively biased towards  
fitting spurious correlations instead of direct causal relationships, 
which can lead to biological misinterpretation and translational gaps. 
Causal inference is discussed in Supplementary Box 2.
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Model selection
The step of model selection exploits the training data to identify the 
best machine learning model based on the evaluation of different types 
of models, or across models of the same type but with different hyper-
parameter settings. Choosing a model with appropriate complexity  
and parameter settings requires balancing its capabilities of represent-
ing the underlying relationships between variables (model bias) and its 
sensitivity to overcome noise (model variance) that can be due to both 
biological and technical reasons106. A machine learning model that is 
too simple to capture underlying relationships typically suffers from 
high bias and low variance (underfitting), whereas an overly complex 
model typically suffers from low bias and high variance (overfitting) 
and performs well on training data but is unlikely to perform well on 
new unseen data107. Microbiological experiments generally produce a 
high number of variables that exceed the number of samples. Hence, 
choosing appropriate strategies to evaluate machine learning models 
is important to provide robust and generalizable estimations and avoid 
biased models6. Feature selection is also an important aspect of model 
selection, as modelling variables not associated with the target label can 
lead to overfitting, over-optimistic model evaluation and diminished 
cross-data set performance. The performance of machine learning 

models can be maximized by using fewer and more discriminative 
features, resulting in models that better generalize to new unseen data, 
improving both model bias and variance.

Evaluation metrics for machine learning classifiers 
and regressors
A machine learning model without assessment of its prediction per-
formances on non-training data is of no value and should not be inter-
preted as a predictor. For machine learning evaluation, it is crucial to 
choose the appropriate evaluation metric for the task and select the 
most unbiased evaluation setting possible. Assuming to have a suffi-
ciently large set of instances for which the target variable is known and 
available for evaluation (that is, not used for model training) (Fig. 3a), 
the choice of the performance evaluation metric depends on the goal  
of the machine learning model, the experimental setting and also the 
label type108. For binary supervised problems, classifiers aim to distin-
guish the class of the ‘positives’ from the class of the ‘negatives’. The 
classification of a test sample will result in four types of outcomes: 
positive examples correctly classified as positives (true positives), 
negative examples correctly classified as negatives (true negatives), 
positive examples incorrectly predicted as negatives (false negatives) 

a c

b d

Training and testing strategies

Label information used 
only for model evaluation

Single data set Multi-data sets

Ite
ra

tio
ns

Folds (each with a random subset of 20% of samples)

Left-out same data set
Randomly split data set into training and testing sets

Cross-data sets
Train on one data set and test on the other

80% 20% Data set 1

Data set 2

k-Fold cross-validation (k = 5)

Fold 1

Fold 3

Fold 4

Fold 5

Fold 2

Split all samples into k folds, at each iteration train 
on all k – 1 folds and test on the left-out fold

Leave-one-data set-out (LODO)
Train on all but one data set and test on the left-out data set

Data set 1

Data set 2

Data set 3

Data set 4

TestingTraining Data set 4Data set 1 Data set 2 Data set 3

Fig. 3 | Training and testing strategies for supervised machine learning 
model evaluation. a,b, Supervised machine learning training (lighter boxes) 
and testing (bold boxes) strategies for when a single data set is available using 
splitting and re-sampling. Splitting one single data set into two subsets (usually 
with 80% and 20% of the samples, respectively) and using the larger one for 
model training and the smaller for model testing (panel a). k-Fold cross-validation 
iterates the previous splitting strategy k times (usually k = 5 or 10). It is also 
possible to repeat the k-fold cross-validation multiple times with random choices 
of the samples belonging to the folds. This strategy improves the validation 
power of the left-out same data set as it is less dependent on the choice of the 
samples in the testing set (panel b). c,d, Multi-data sets training and testing 

strategies using cross-data set or leave-one-data set-out (LODO) approaches. 
A cross-data set approach exploits one data set for training the model and 
the other independent data set for testing it. This is a better estimation of the 
generalization power of the model compared with single data set evaluations 
as it directly tests the performances of a different data set with potentially 
unavoidable differences (panel c). When more than two data sets are available, 
the LODO approach exploits n – 1 data sets for the training phase and uses the 
left-out data set for testing, repeating for all data sets. It combines the improved 
generalizability of the model when trained on distinct data sets with potentially 
different underlying differences with the comprehensive evaluation performed 
on multiple left-out data sets (panel d).
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and negative examples incorrectly classified as positives (false posi-
tives). Based on these four outcomes, several measures of the predic-
tion error can be calculated: accuracy, which is the fraction of correct 
predictions over all predictions; precision, which is the fraction of true 
positives over all positives; recall or sensitivity, which is the fraction of 
true positives over all correct predictions; and specificity, correspond-
ing to the fraction of true negatives over all negatives. The choice of 

the most appropriate metric to use is context-specific. For example, in 
a diagnostic setting, it is usually much more problematic to misiden-
tify a diseased individual (generating a false negative) than wrongly 
indicate disease (generating a false positive), and therefore recall is 
preferred over precision.

Many classifiers can produce, or estimate a posteriori, prob-
abilities for the classes to predict. These probabilistic scores can be 

Glossary

Accuracy
The number of correct classification 
predictions (true positives + true negatives) 
divided by the total number of predictions 
(true positives + true negatives + false 
positives + false negatives).

Area under the ROC curve
(AUC-ROC). A number between 0 and 1  
that is obtained by integrating the 
receiver operating characteristic (ROC) 
curve over the different classification 
thresholds and that represents the 
ability of a binary classification model 
to discriminate between two classes, 
where 0.5 and 1 represent the random 
and perfect classification of the 
samples, respectively.

Cross-validation
An approach to provide robust 
performance estimates of how well 
the trained model generalizes on new 
data by splitting a data set into multiple 
subsets and iteratively training on some 
subsets and testing on the others.

Data set
A set of examples with input features 
and target values (if available), used to 
train and/or evaluate machine learning 
models, that can be divided into three 
non-overlapping subsets: training, 
validation and test sets. It is crucial to 
ensure that the same example is not 
present in both training and test (or 
validation) sets for a correct estimate  
of the generalizability of the learned 
model.

Decision tree
A non-parametric supervised learning 
method with a hierarchical tree 
structure to represent a set of if–then–
else rules for different conditions. The 
internal nodes define conditions, and 
the leaves represent outputs.

Example
A processed version of the 
microbiological sample, including 
features and, possibly, targets.

Features
The microbiological data information 
extracted from the samples that are 
provided as input to the machine 
learning model.

Least absolute shrinkage and 
selection operator
(LASSO). A linear model approach that 
performs both variable selection and 
regularization (stabilization of regression 
coefficients) and tends to give solutions 
with few non-zero coefficients, to 
reduce the number of features and 
enhance the interpretability of the 
model.

Leave-one-data set-out
(LODO). An approach used to estimate 
model generalizability across data 
sets, that can be employed if multiple 
different data sets are available.

Model
A mathematical object with 
appropriately set parameters used 
to make predictions.

Naive Bayes
A supervised learning algorithm based 
on the application of Bayes’ theorem 
with the ‘naive’ assumption that all 
features are independent.

Neural network
A model with at least one hidden layer, 
a set of unobserved variables called 
‘neurons’ derived from input features. 
Deep neural networks contain at 
least two hidden layers, where each 
neuron in a hidden layer connects to 
all the neurons of the next hidden layer. 

Combining many hidden layers and 
their interconnections enable modelling 
complex and non-linear relationships 
between input features and target 
values.

Precision
A metric for classification models 
that measures the fraction of true 
positive examples over the set of 
examples predicted as positives (true 
positives / (true positives + false positives)).

Random forest
An ensemble method that relies on a 
collection of independently trained 
decision tree models whose predictions 
are then aggregated to make one single 
prediction.

Recall
A metric for classification models that 
measures the fraction of true positive 
examples over the set of positive 
examples, also known as coverage 
(true positives / (true positives + false 
negatives)).

Receiver operating 
characteristic (ROC) curve
Generally plotted as a graph between the 
true positive rate and the false positive 
rate at different classification thresholds 
for evaluating a binary classification 
model, the curve’s shape reflects the 
ability of the binary classification model 
to separate the two classes.

Samples
Original items, for example 
microbiological entities, from which 
features data and target values are 
derived.

Supervised machine learning
An algorithm that trains a model to 
predict the target based on input 

features, resulting in a trained model 
capable of classifying new and unseen 
samples using the same set of features.

Support vector machines
(SVMs). A set of supervised learning 
prediction methods based on statistical 
learning theory that aims to maximize 
the boundary between the positive and 
negative classes.

Target value
A priori defined classes or quantities  
of microbiological interest (for example, 
case or control labels, Gram positive  
or negative staining, optimal pH  
values for bacterial growth) associated 
with examples, that are available only  
at training time and need to be 
predicted at test time from the features 
alone.

Test set
The (sub)set of a data set used for the 
final evaluation of the trained model or 
for which the outcomes of interest are 
not known and should be predicted by 
the trained model.

Training set
The (sub)set of a data set that is used for 
training a machine learning model.

Unsupervised machine 
learning
An algorithm that trains a model based 
solely on input features to derive 
patterns without further knowledge 
about the samples from which features 
were extracted.

Validation set
The (sub)set of a data set used to 
evaluate a trained model.
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evaluated using threshold-free measures, such as the receiver oper-
ating characteristic (ROC) curve, which plots pairs of specificity and 
sensitivity values calculated at all possible threshold scores. The area 
under the ROC curve (AUC-ROC) summarizes the performances regard-
less of the threshold and ranges from 0.5 (random classification) to 
1.0 (perfect classification). It is particularly challenging to evaluate 
a classifier in the presence of imbalanced classes (that is, with largely 
different numbers of positive and negative instances) (Box 2). In such 
cases, measures on binary outcomes such as the F1 score (the harmonic 
mean of precision and recall) or on probabilistic output such as the 
area under the precision–recall curve should be preferred. Regression 
models instead need to quantify how close the models’ predictions are 
to the real values, called the estimation error. Relative measures such 
as the coefficient of determination (R2) quantify how much variability 

in the dependent variable can be explained by the model, whereas 
absolute measures such as the (root) mean square error quantify how 
much the predicted results deviate from the real ones. Correlation 
measures are also used to evaluate the strength of the relationship 
between the real and the predicted values and have highlighted, for 
example, how well healthy plant-based foods in the habitual diet shape 
gut microbiome composition33.

Approaches for unbiased evaluation of machine 
learning methods
The supervised machine learning classification performances should be 
evaluated on a test set of instances for which the target is known. The test  
set is usually called the validation set, as opposed to the discovery set 
used for training the classifier. A generalization of this approach, called 
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Fig. 4 | Supervised machine learning evaluation methods in a real-data 
example. The diagnosis potential of colorectal cancer using only stool 
microbiome features with a supervised machine learning approach. a, We 
applied biased and unbiased training and testing strategies to detect colorectal 
cancer in three publicly available data sets using faecal quantitative species-level 
relative abundances105,119,126. Boxplots show area under the receiver operating 
characteristic (ROC) curve (AUC-ROC) values obtained via training a random 
forest model on true labels (colorectal cancer versus control; top panel) and 
randomized labels (no biological signal; bottom panel). For ‘original labels’, 
different training and testing strategies can lead to differences in the estimated 
classifiers’ performances, especially when considering the model generalizability 
to other independent cohorts. For ‘randomized labels’, an overfitted classifier 
can perform better in cross-validation but will not generalize well on other 
independent data sets and can completely invalidate an experiment by fitting 
the noise of a single cohort. We show the results of model evaluation using 
single data sets and multi-data set training and testing strategies (as in Fig. 3). 
Cross-data set evaluation of unbiased classifiers achieves lower AUC-ROCs than 

cross-validation, which is expected given the unavoidable differences between 
data sets, but is a more reliable evaluation of how the model would perform 
on new data. To show the effects of overfitting on model performance, we ran 
the same analysis but pre-selected the ten species with the lowest significant 
unadjusted P value (P < 0.05, Wilcoxon rank-sum test). As expected, the biased 
classifier that would perform very well on the training set is outperformed by the 
unbiased one in the evaluation on test sets. Importantly, the biased classifier still 
performs well in cross-validation, but this is the result of overfitting as the result 
is also obtained when the labels are randomly assigned (and so no AUC-ROC 
significantly above 0.5 is possible). b, Cross-prediction matrix showing AUC-ROC 
mean values obtained via training a random forest model to detect colorectal 
cancer in four publicly available data sets using faecal quantitative species-level 
relative abundances91,105,119,126. The matrix encompasses both single data set 
cross-validation and multi-data set training and testing strategies to evaluate the 
model’s performance. Among the described approaches, the leave-one-data set-
out (LODO) AUC-ROCs should be regarded as the best possible estimations of the 
performance the model should achieve on new data.
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k-fold cross-validation (Fig. 3b), is used especially when the number of 
samples is small. In k-fold cross-validation, k distinct validation sets 
(test folds) are selected (with or without replacement) from the only 
data set available and, correspondingly, k training folds are generated 
using all the samples not in the test folds. The supervised machine 
learning training and evaluation can then be performed on each training 
and testing fold (Fig. 3b) and the overall performance can be reported 
as the average and standard deviation of the test evaluation over the 
folds (usually 10 or 20). Importantly, when performing cross-validation 
for evaluating prediction performance, model selection as well as any 
variable selection must be performed on each training fold indepen-
dently, and any cross-validation for hyperparameter tuning must be 
additionally nested inside each training fold.

Evaluating a supervised machine learning model via 
cross-validation implies that the model is tested in a setting in which, 
by definition, all of the samples belong to the same underlying distribu-
tion. For this reason, the performance on new unseen samples, possibly 
from other data sets, may be overestimated. When independent related 
data sets are available, it is of high relevance to validate cross-validation 
results in external cohorts (cross-data set validation) (Fig. 3c).

Testing the generalizability of prediction models
The accuracy of prediction models is impacted both by variance 
(random variability in models trained on repeated random samples) 
and by bias (consistent, non-random error even in large samples). 
Prediction models are usually created with the intention of applying 
them to settings beyond the one in which they were trained, and this 
goal of generalizability is defined as “unbiased inferences regarding 

a target population (beyond the subjects in the study)”109. The tar-
get population likely differs from the study sample in relevant ways 
including geography110 and sociodemographics111. Furthermore, 
differences in experimental protocols of independent studies may 
affect metagenomic quantification112. On the other end, technical 
batch effects correlated with the outcome of interest can optimisti-
cally bias cross-validation accuracy, and correction for batch effects 
may not remedy this bias113. Therefore, for various reasons, accuracy 
estimated by splitting the available set into discovery and validation 
or by cross-validation may not reflect the performance expected in the 
generalized application of the model. This loss of accuracy in indepen
dent validation compared with cross-validation has been observed in 
practice, in various contexts25,34,114. However, public availability of data 
from similar studies makes it possible to estimate the loss of prediction 
accuracy in cross-study validation compared with cross-validation115,116, 
to improve the generalizability of prediction models by training on 
more diverse samples from independent studies and to achieve both 
of these goals simultaneously through the leave-one-data set-out 
(LODO) validation (Fig. 3d). In this scenario, each independent study 
is used in turn for validation whereas all other studies are used to train 
a model for validation on that data set. This approach was proposed for 
transcriptomic114 and microbiome studies28. The microbiome-based 
colorectal cancer screening task has been particularly well tested in the 
LODO setting, showing promising clinical applications as the AUC-ROC 
performances on left-out data sets are predictive and consistent across 
populations25,26 (Fig. 4a,b). The LODO approach has also highlighted 
generalization problems in other metagenomic tasks such as predict-
ing response to immunotherapy for advanced-stage melanoma34,35. 

Box 3

Checklist of points to verify when reading or reviewing a machine 
learning analysis in microbiology
For all machine learning analyses

•• Is the methodology (that is, the machine learning algorithm  
and the implementing software) clearly reported?

•• Is the strategy for selecting models and hyper-parameters 
accurately described? For example, whether hyper-parameters 
are set to their default values, identified by validation or 
cross-validation on subsets of the data, or identified with other 
approaches.

•• Are all of the data sets and all algorithms reported and linked well 
enough so that the analysis is fully reproducible by the reader?

For supervised learning
•• Is the validation strategy clear and sound? This includes an a priori 
definition of a validation set, a cross-validation approach internal 
to the data set of interest or a cross-data set validation (see Fig. 3).

•• Are validation and testing data completely hidden during model 
training? Watch out for information ‘leakage’ from validation 
to training data via imputation, normalization, batch correction, 
selection of relevant taxa or any use. Validation data cannot be 
used in any way when preparing or training the machine learning 
algorithm.

•• Have steps been taken to ensure that the outcome of  
interest is not associated with any kind of batch effect  
one can think of?

For unsupervised learning
•• Is the analysis performed without using any phenotype or 
outcome information, such as pre-selecting taxa associated with 
a phenotype or outcome of interest? Otherwise, it may better be 
described as (semi-)supervised.

•• If semi-supervised learning is used, is it clearly stated in the work 
and results interpreted accordingly?

•• If a claim of novel clusters is made, is it a measure of cluster 
strength or coherence provided at different numbers of clusters? 
Is a fully specified model provided that can be used to make 
cluster assignments in new samples? Does it provide any estimate 
of the uncertainty in cluster assignment?

•• Is a statistical test used to show differences between clusters 
on variables used for the clustering? For example, if relative 
abundance profiles are used to cluster samples, then the average 
relative abundance of most species is guaranteed to differ 
between the clusters.
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However, in the absence of publicly available independent data sets, 
it can be difficult to identify the key sources of heterogeneity with 
the greatest impact on generalizability, as these may not be the most 
obvious ones known to affect the outcome of interest115.

Conclusions, practical recommendations 
and outlook
It can be challenging for scientists in life science to approach the field of 
machine learning due to several statistical, practical and study design 
aspects that are specific to machine learning and rarely considered in 
microbiology bachelor curricula. In this Review, we provide an overview 
of the main machine learning techniques, how they are applied and 
how they should be interpreted.

Becoming familiarized with machine learning will enable micro
biology researchers to apply machine learning tools in their scientific 
or clinical practice. This can be achieved using available software imple-
mentations from different approaches that are progressively becom-
ing more user-friendly and accessible (see Supplementary Table 1 
and Supplementary Box 1). A strong computational background is no 
longer needed to use and apply machine learning methods in practice. 
Rather than the details of the specific machine learning algorithms, 
microbiologists exploring machine learning applications should focus 
on the general principles and guidelines outlined in this Review and on 
avoiding frequent potential issues affecting machine learning (Box 2) 
ranging from evaluation issues to study design problems. The choice 
of a particular machine learning algorithm should be less relevant 
than its correct application and usage, and different machine learning 
algorithms applied in the right way should provide consistent results. 
Understanding appropriate feature selection steps, evaluation met-
rics and validation settings will enable efficient choice of appropriate 
methods for the learning task at hand, avoiding overfitting problems 
and overinterpreted results. We believe the importance of these fun-
damentals far outweighs the incremental gains in the performance of 
learning tools that can typically be achieved through extensive model 
selection and more complex methods (Fig. 4).

A basic understanding of machine learning in microbiology is 
necessary not only for researchers aiming to adopt such tools but also 
for microbiologists to understand and critically evaluate machine 
learning applications performed by colleagues and other studies, to 
avoid drawing incorrect conclusions from wrongly applied machine 
learning methods. This is particularly relevant during peer review, 
because machine learning is now so prevalent in the scientific litera-
ture that it can be impossible to find reviewers with specific expertise 
in machine learning for every paper under review. In this context, a 
simple checklist such as the one we propose in Box 3 can be useful to 
remember the main aspects and potential red flags that need to be 
considered when assessing work done by colleagues.

As microbiologists become more familiar with machine learning, 
the field will be better positioned to overcome current limitations. 
These span from the need for substantially larger data sets to improve 
predictions in clinically relevant tasks, to more precisely pinpointing 
microbiological aspects linked with relevant host characteristics and to 
the development and adoption of advanced deep learning approaches 
that are still suffering the high-dimensionality and low sample size of 
many microbiological applications117. The lack of precise and compre-
hensive metadata annotation of microbiological samples and their 
frequently very partial public availability are other factors currently 
limiting machine learning usage in this field, due to a combination 
of practical and ethical reasons118. Updated policies favouring open 

data sharing as well as supporting machine learning approaches such 
as semi-supervised learning can mitigate these issues in the future.

In this Review, we have provided an introduction to the main 
machine learning methods and their corresponding applications in 
the field of microbiology. We focused on the most widely used and 
relatively standard approaches to prioritize a general understanding 
of the principles rather than comprehensively review the last advances 
in the field. For these reasons, advanced machine learning settings 
(for example, semi-supervised learning or active learning) and tech-
niques (for example, deep learning) are left for the interested reader 
to investigate in the more specialized literature.

Published online: xx xx xxxx
References
1.	 Bishop, C. M. Pattern recognition and machine learning (Springer, 2006).
2.	 Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009).
3.	 James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning:  

with Applications in R (Springer Science & Business Media, 2013).
4.	 Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022).
5.	 Goodswen, S. J. et al. Machine learning and applications in microbiology. FEMS 

Microbiol. Rev. 45, fuab015 (2021).
6.	 Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., 4th, Wiens, J. & Schloss, P. D. A framework 

for effective application of machine learning to microbiome-based classification 
problems. mBio 11, e00434-20 (2020).  
This work focuses on applying machine learning to microbiome data for disease 
prediction, highlighting the important trade-off between model complexity and 
interpretability, and emphasizing the need for rigorous methodology towards more 
reproducible machine learning usage in microbiome research.

7.	 Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. 
Microbiol. 73, 5261–5267 (2007).

8.	 Parks, D. H., MacDonald, N. J. & Beiko, R. G. Classifying short genomic fragments from 
novel lineages using composition and homology. BMC Bioinformatics 12, 328 (2011).

9.	 Rosen, G. L., Reichenberger, E. R. & Rosenfeld, A. M. NBC: the Naive Bayes Classification 
tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 27, 
127–129 (2011).

10.	 McHardy, A. C., Martín, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate 
phylogenetic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 
(2007).

11.	 Patil, K. R., Roune, L. & McHardy, A. C. The PhyloPythiaS web server for taxonomic 
assignment of metagenome sequences. PLoS ONE 7, e38581 (2012).

12.	 Gregor, I., Dröge, J., Schirmer, M., Quince, C. & McHardy, A. C. PhyloPythiaS+:  
a self-training method for the rapid reconstruction of low-ranking taxonomic bins  
from metagenomes. PeerJ 4, e1603 (2016).

13.	 Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J.-B. & Vert, J.-P. Large-scale machine 
learning for metagenomics sequence classification. Bioinformatics 32, 1023–1032 
(2016).  
This work introduces a machine learning-based approach for tackling the taxonomic 
binning step, using a supervised approach that balances accuracy and speed and 
outperforms alignment-based methods.

14.	 Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K. & Nattkemper, T. W. TACOA — 
taxonomic classification of environmental genomic fragments using a kernelized nearest 
neighbor approach. BMC Bioinformatics 10, 56 (2009).

15.	 Sczyrba, A. et al. Critical assessment of metagenome interpretation — a benchmark  
of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

16.	 Davis, J. J. et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6, 
27930 (2016).

17.	 Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic 
resistance genes from metagenomic data. Microbiome 6, 23 (2018).

18.	 Kavvas, E. S. et al. Machine learning and structural analysis of Mycobacterium 
tuberculosis pan-genome identifies genetic signatures of antibiotic resistance.  
Nat. Commun. 9, 4306 (2018).

19.	 Moradigaravand, D. et al. Prediction of antibiotic resistance in Escherichia coli from 
large-scale pan-genome data. PLoS Comput. Biol. 14, e1006258 (2018).

20.	 Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine learning leveraging 
genomes from metagenomes identifies influential antibiotic resistance genes in the 
infant gut microbiome. mSystems 3, e00123–e00217 (2018).

21.	 Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an 
application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).

22.	 Baldi, P. Deep Learning in biomedical data science. Annu. Rev. Biomed. Data Sci. 1, 
181–205 (2018).

23.	 Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene 
cluster prediction. Nucleic Acids Res. 47, e110 (2019).



Nature Reviews Microbiology

Review article

24.	 Weimann, A. et al. From genomes to phenotypes: Traitar, the microbial trait analyzer. 
mSystems 1, e00101–e00116 (2016).  
This work uses machine learning to predict 67 microbial phenotypic traits from 
genome sequences, facilitating the analysis of large-scale microbial genomic data.

25.	 Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies 
cross-cohort microbial diagnostic signatures and a link with choline degradation.  
Nat. Med. 25, 667–678 (2019).

26.	 Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures 
that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

27.	 Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic 
approach. Nature 579, 567–574 (2020).

28.	 Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta- 
analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 
12, e1004977 (2016).

29.	 Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. 
Nature 490, 55–60 (2012).

30.	 Ghensi, P. et al. Strong oral plaque microbiome signatures for dental implant diseases 
identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 6, 47 (2020).

31.	 Salosensaari, A. et al. Taxonomic signatures of cause-specific mortality risk in human gut 
microbiome. Nat. Commun. 12, 2671 (2021).

32.	 Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. 
Gut 71, 1359–1372 (2022).

33.	 Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 
1,098 deeply phenotyped individuals. Nat. Med. 21, 321–332 (2021).

34.	 Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint 
inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

35.	 McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and 
immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 
28, 545–556 (2022).

36.	 Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against 
epithelial tumors. Science 359, 91–97 (2018).

37.	 Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 
immunotherapy in melanoma patients. Science 359, 97–103 (2018).

38.	 Derosa, L. et al. Intestinal Akkermansia muciniphila predicts overall survival in advanced 
non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II 
study. J. Clin. Orthod. 39, 9019–9019 (2021).

39.	 Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy 
in melanoma patients. Science 371, 595–602 (2021).

40.	 Baruch, E. N. et al. Fecal microbiota transplant promotes response in 
immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

41.	 Palma, S. I. C. J. et al. Machine learning for the meta-analyses of microbial pathogens’ 
volatile signatures. Sci. Rep. 8, 3360 (2018).

42.	 Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome 
composition after fecal microbiota transplantation across different diseases. Nat. Med. 
28, 1913–1923 (2022).  
This study uses machine learning to develop predictive models for selecting 
optimal donors for faecal microbiota transplantation, making personalized 
microbiome-targeted treatments more effective.

43.	 Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment 
in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 
229–240.e5 (2018).

44.	 Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal 
microbiota transplantation. Nat. Med. 28, 1902–1912 (2022).

45.	 Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 
(2011).

46.	 Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 
108, 4680–4687 (2011).

47.	 Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of 
microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, 
e1002863 (2013).

48.	 Knights, D. et al. Rethinking ‘enterotypes’. Cell Host Microbe 16, 433–437 (2014).
49.	 Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. 

Nat. Microbiol. 3, 8–16 (2018).
50.	 Gao, L. L., Bien, J. & Witten, D. Selective inference for hierarchical clustering. J. Am. Stat. 

Assoc. https://doi.org/10.1080/01621459.2022.2116331 (2022).
51.	 Karcher, N. et al. Analysis of 1321 Eubacterium rectale genomes from metagenomes 

uncovers complex phylogeographic population structure and subspecies functional 
adaptations. Genome Biol. 21, 138 (2020).

52.	 Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: 
tools, techniques, and challenges. Genome Res 19, 1141–1152 (2009).

53.	 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 
26, 2460–2461 (2010).

54.	 Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source 
tool for metagenomics. PeerJ 4, e2584 (2016).

55.	 Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 
150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 
1–14 (2019).

56.	 Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition 
for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

57.	 Nguyen, N.-P., Warnow, T., Pop, M. & White, B. A perspective on 16S rRNA operational 
taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2, 16004 
(2016).

58.	 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High 
throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. 
Nat. Commun. 9, 5114 (2018).

59.	 Murray, C. S., Gao, Y. & Wu, M. Re-evaluating the evidence for a universal genetic 
boundary among microbial species. Nat. Commun. 12, 4059 (2021).

60.	 Rodriguez-R, L. M., Jain, C., Conrad, R. E., Aluru, S. & Konstantinidis, K. T. Reply to: 
‘Re-evaluating the evidence for a universal genetic boundary among microbial species’. 
Nat. Commun. 12, 4060 (2021).

61.	 Li, W. & Godzik, A. cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

62.	 Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 
233–237 (2018).

63.	 Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and 
eukaryotes. Nature 521, 173–179 (2015).

64.	 Human Microbiome Project Consortium. Structure, function and diversity of the healthy 
human microbiome. Nature 486, 207–214 (2012).

65.	 Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33, 1103–1108 
(2015).

66.	 Qin, J. et al. A human gut microbial gene catalogue established by metagenomic 
sequencing. Nature 464, 59–65 (2010).

67.	 Chen, C. et al. Expanded catalog of microbial genes and metagenome-assembled 
genomes from the pig gut microbiome. Nat. Commun. 12, 1106 (2021).

68.	 Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching 
for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

69.	 Vanni, C. et al. Unifying the known and unknown microbial coding sequence space. eLife 
11, e67667 (2022).

70.	 Apweiler, R. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, 
D115–D119 (2004).

71.	 Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut 
microbiome. Nat. Biotechnol. 39, 105–114 (2021).

72.	 Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. 
Stat. 2, 433–459 (2010).

73.	 Davis, T. D., Gerry, C. J. & Tan, D. S. General platform for systematic quantitative evaluation 
of small-molecule permeability in bacteria. ACS Chem. Biol. 9, 2535–2544 (2014).

74.	 Suchodolski, J. S. et al. The fecal microbiome in dogs with acute diarrhea and idiopathic 
inflammatory bowel disease. PLoS ONE 7, e51907 (2012).

75.	 Mishiro, T. et al. Oral microbiome alterations of healthy volunteers with proton pump 
inhibitor. J. Gastroenterol. Hepatol. 33, 1059–1066 (2018).

76.	 Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing 
high-throughput microbial community data. Gigascience 2, 16 (2013).

77.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 
2579–2605 (2008).

78.	 Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP.  
Nat. Biotechnol. 37, 38–44 (2018).

79.	 Howick, V. M. et al. The Malaria Cell Atlas: single parasite transcriptomes across the 
complete Plasmodium life cycle. Science 365, eaaw2619 (2019).

80.	 Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 
371, eaba5257 (2021).

81.	 Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 
486, 222–227 (2012).

82.	 Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable 
soil. ISME J. 4, 1340–1351 (2010).

83.	 Aagaard, K. et al. A metagenomic approach to characterization of the vaginal 
microbiome signature in pregnancy. PLoS ONE 7, e36466 (2012).

84.	 Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA 
sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

85.	 Jeckel, H. & Drescher, K. Advances and opportunities in image analysis of bacterial cells 
and communities. FEMS Microbiol. Rev. 45, fuaa062 (2020).

86.	 Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the 
micrometre scale. Nat. Microbiol. 5, 498–510 (2020).

87.	 Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic 
markers. Nature 500, 541–546 (2013).

88.	 Li, H. Microbiome, metagenomics, and high-dimensional compositional data analysis. 
Annu. Rev. Stat. Appl. 2, 73–94 (2015).

89.	 Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets 
are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

90.	 Bermingham, M. L. et al. Application of high-dimensional feature selection: evaluation 
for genomic prediction in man. Sci. Rep. 5, 10312 (2015).

91.	 Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal 
cancer. Mol. Syst. Biol. 10, 766 (2014).

92.	 Zackular, J. P., Rogers, M. A. M., Ruffin, M. T. 4th & Schloss, P. D. The human gut 
microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121 (2014).

93.	 Wong, S. H. et al. Quantitation of faecal Fusobacterium improves faecal immunochemical 
test in detecting advanced colorectal neoplasia. Gut 66, 1441–1448 (2017).

94.	 Xie, Y.-H. et al. Fecal Clostridium symbiosum for noninvasive detection of early and 
advanced colorectal cancer: test and validation studies. EBioMedicine 25, 32–40 (2017).

https://doi.org/10.1080/01621459.2022.2116331


Nature Reviews Microbiology

Review article

95.	 Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and 
modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

96.	 Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis 
by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 
14, 195–206 (2013).

97.	 Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power 
for high-throughput experiments. Proc. Natl Acad. Sci. USA 107, 9546–9551 (2010).

98.	 Hua, J., Tembe, W. D. & Dougherty, E. R. Performance of feature-selection methods  
in the classification of high-dimension data. Pattern Recognit. 42, 409–424 (2009).

99.	 Fan, J. & Lv, J. Sure independence screening for ultrahigh dimensional feature space.  
J. R. Stat. Soc. Ser. B Stat. Methodol. 70, 849–911 (2008).

100.	 Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification 
using support vector machines. Mach. Learn. 46, 389–422 (2002).

101.	 Radovic, M., Ghalwash, M., Filipovic, N. & Obradovic, Z. Minimum redundancy 
maximum relevance feature selection approach for temporal gene expression data. 
BMC Bioinformatics 18, 9 (2017).

102.	 Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures  
in the human gut microbiota. Nature 528, 262–266 (2015).  
This study underlines the importance of considering the influence of medication  
in machine learning-based microbiome analysis. In particular, it shows the effects  
of metformin on the gut microbiome of individuals with type 2 diabetes, highlighting 
the need to distinguish microbial signatures of diseases from medication.

103.	 Hacılar, H., Nalbantoğlu, O. U. & Bakir-Güngör, B. in 2018 3rd Int. Conf. Computer Science 
and Engineering (UBMK) 434–438 (IEEE, 2018).

104.	 Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 
67, 1454–1463 (2018).

105.	 Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific 
phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

106.	 Maimon, O. & Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook 
(Springer, 2010).

107.	 Lever, J., Krzywinski, M. & Altman, N. Model selection and overfitting. Nat. Methods 13, 
703–704 (2016).  
This work highlights the importance of accurately assessing model performance  
to not fall into overfitting problems. Approaches that consider validation sets, test  
sets and cross-validation are extremely important especially when dealing with 
limited data.

108.	 Lever, J., Krzywinski, M. & Altman, N. Classification evaluation. Nat. Methods 13, 603–604 
(2016).  
This work highlights the importance of selecting the appropriate evaluation metrics 
when assessing the performances of classification models in the context of medical 
diagnosis. It also emphasizes the impact of class imbalance and the use of specific 
metrics in cases of imbalanced data sets.

109.	 Ange, B. A., Symons, J. M., Schwab, M., Howell, E. & Geyh, A. Generalizability in 
epidemiology: an investigation within the context of heart failure studies. Ann. Epidemiol. 
14, 600–601 (2004).

110.	 He, Y. et al. Regional variation limits applications of healthy gut microbiome reference 
ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

111.	 Renson, A. et al. Sociodemographic variation in the oral microbiome. Ann. Epidemiol.  
35, 73–80.e2 (2019).

112.	 Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing 
by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 
1077–1086 (2017).

113.	 Soneson, C., Gerster, S. & Delorenzi, M. Batch effect confounding leads to strong bias  
in performance estimates obtained by cross-validation. PLoS ONE 9, e100335 (2014).

114.	 Riester, M. et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 
patient samples. J. Natl Cancer Inst. 106, dju048 (2014).

115.	 Zhang, Y., Bernau, C., Parmigiani, G. & Waldron, L. The impact of different sources of 
heterogeneity on loss of accuracy from genomic prediction models. Biostatistics 21, 
253–268 (2018).  
This work examines the impact of different types of heterogeneity on the validation 
accuracy of omics-based prediction models across data sets and provides insights 
into the challenges of validating prediction models in the presence of study 
heterogeneity.

116.	 Bernau, C. et al. Cross-study validation for the assessment of prediction algorithms. 
Bioinformatics 30, i105–i112 (2014).

117.	 Moreno-Indias, I. et al. Statistical and machine learning techniques in human 
microbiome studies: contemporary challenges and solutions. Front. Microbiol. 12, 
635781 (2021).  
This work highlights the growing importance of statistical and machine learning 
techniques in human microbiome studies and challenges posed by the heterogeneity 
of microbiome data, and emphasizes the potential of machine learning in disease 
diagnosis, biomarker identification and prediction while addressing issues such as 
data standardization, overfitting and model interpretability.

118.	 Tonkovic, P. et al. Literature on applied machine learning in metagenomic classification: 
a scoping review. Biology 9, 453 (2020).

119.	 Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma 
sequence. Nat. Commun. 6, 6528 (2015).

120.	 Pasolli, E. et al. Accessible, curated metagenomic data through ExperimentHub.  
Nat. Methods 14, 1023 (2017).

121.	 Méheust, R., Burstein, D., Castelle, C. J. & Banfield, J. F. The distinction of CPR bacteria 
from other bacteria based on protein family content. Nat. Commun. 10, 4173 (2019).

122.	 Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain 
bacteria. Nature 523, 208–211 (2015).

123.	 Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected 
biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

124.	 Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for  
organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701  
(2015).

125.	 Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides 
metabolic insights for novel microbes adapted to high CO2 concentrations. Environ. 
Microbiol. 19, 459–474 (2017).

126.	 Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted 
non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

127.	 Eid, F.-E., ElHefnawi, M. & Heath, L. S. DeNovo: virus–host sequence-based  
protein–protein interaction prediction. Bioinformatics 32, 1144–1150 (2015).

128.	 Calderone, A., Licata, L. & Cesareni, G. VirusMentha: a new resource for virus–host 
protein interactions. Nucleic Acids Res. 43, D588–D592 (2015).

129.	 Weis, C. et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass 
spectra using machine learning. Nat. Med. 28, 164–174 (2022).

130.	 Wirbel, J. et al. Microbiome meta-analysis and cross-disease comparison enabled  
by the SIAMCAT machine learning toolbox. Genome Biol. 22, 93 (2021).

131.	 Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human 
disease. Nature 587, 448–454 (2020).

132.	 Hernán, M. A. The C-word: scientific euphemisms do not improve causal inference from 
observational data. Am. J. Public. Health 108, 616–619 (2018).  
This work emphasizes the importance of using the term ‘causal’, in particular when 
analysing data from observational studies, and highlights the need to distinguish 
between association and causation and address confounding factors properly.
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