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Abstract We introduce relational information gain, a refinement scoring function measur-
ing the informativeness of newly introduced variables. The gain can be interpreted as a con-
ditional entropy in a well-defined sense and can be efficiently approximately computed. In
conjunction with simple greedy general-to-specific search algorithms such as FOIL, it yields
an efficient and competitive algorithm in terms of predictive accuracy and compactness of
the learned theory. In conjunction with the decision tree learner TILDE, it offers a benefi-
cial alternative to lookahead, achieving similar performance while significantly reducing the
number of evaluated literals.
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1 Introduction

Many ILP or relational learning systems build discriminative models by a stepwise refine-
ment of logical-relational features. For example, in general-to-specific rule learners like
FOIL (Quinlan and Cameron-Jones 1993), features are the bodies of Horn clauses that are
constructed by adding one literal at a time. In models that adopt a decision-tree style design
(in a wide sense), like TILDE (Blockeel and De Raedt 1998), Multi-Relational Decision
Trees (Knobbe et al. 1999), Relational Probability Trees (Neville et al. 2003), or Type Ex-
tension Trees (TETs) (Frasconi et al. 2008), features are represented by branches in the tree
structure, which are constructed in an iterative top-down process.
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A distinguishing characteristic of incremental feature construction in relational learning
is the possibility to refine a current feature for a given set of entities X by introducing new
entities Y and their attributes via relations r(X,Y ).

The search for the best feature refinement is typically directed by some scoring func-
tion that evaluates its usefulness for discriminating the class label of X. A refinement that
does not introduce any new entities can be scored in a relatively straightforward manner
using standard information gain metrics. A refinement introducing new entities is more
difficult to evaluate, however: standard metrics can measure the direct informativeness of
such a refinement, i.e., the direct improvement in the feature’s discriminative power. How-
ever, it is widely recognized that the main benefit of introducing Y is not always its di-
rect informativeness, but the possibility it opens up to construct, in further refinement
steps, informative features for X by imposing suitable conditions on Y . Two main ap-
proaches have been used to take into account this potential informativeness of a literal
introducing new entities. A first approach evaluates determinate literals (Quinlan 1991),
which are literals where for each X there exists exactly one Y with r(X,Y ). Determi-
nate literals are not directly informative, but their inclusion in the clause is computation-
ally relatively inexpensive, which is why, e.g., FOIL adds all possible determinate liter-
als to a clause in order to exploit their potential informativeness. A second approach con-
sists of lookahead techniques (Blockeel and De Raedt 1997; Castillo and Wrobel 2004;
Struyf et al. 2006), where for the scoring of the literal r(X,Y ) already further possible re-
finement steps using Y are considered. Both determinate literals and lookahead have severe
limitations: the former represents only a very special kind of potentially informative literals,
and the latter is subject to a combinatorial search space explosion when performing looka-
head over multiple refinement steps (which is why, in practice, lookahead may need to be
constrained to certain user-defined refinement patterns).

The goal of this paper is to develop a notion of relational information gain (RIG) for
scoring candidate literals that introduce new variables, such that both direct and potential
informativeness can be measured. Specifically, we have the following desiderata for RIG:

1. RIG captures a sound and general information theoretic concept of reduction in condi-
tional entropy of the class label distribution. It thereby is widely applicable, and not a
specialized heuristic scoring function for a specific model or search strategy.

2. RIG increases as a function of the direct informativeness of a literal r(X,Y ), defined as
the information about the target relation associated with the existence of X,Y such that
r(X,Y ) (or, more generally, with the number of such pairs).

3. RIG increases as a function of the potential informativeness of a literal r(X,Y ), defined
as the maximum information that can be gained about the target relation thanks to the
introduction of Y via r(X,Y ) and further refinements using Y (without lookahead, only
based on the immediate relational properties of r).

In the following sections we develop a RIG score that is motivated by these desiderata.

2 Data: relational and pseudo-iid

Since information gain is a statistical concept based on a probabilistic data model, we first
investigate what kind of statistical model of relational data is appropriate to support the de-
finition of RIG. We assume that the data consists of a single relational or logical database
containing constants c1, . . . , cn, attributes a1, . . . , ak , and relations r1, . . . , rl . We use C to
denote the set of constants. When taking a more semantic view, we may also refer to the
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Fig. 1 A small relational
structure

elements of C as domain elements or entities. The data set can be identified with an interpre-
tation function I that assigns to each ground atom ai(c) a value in the range of attribute ai ,
and to each ground atom rj (c) a truth value true, false (throughout we use bold font to de-
note tuples of constants or variables). We can therefore write a data set as a pair D = (C, I ),
and view it as a Herbrand interpretation (in the slightly generalized sense that we allow
non-boolean attributes).

Based on this logical view of relational data, we can use for a logical expression φ in the
relations of D the notation D |= φ to say that φ is true in D.

Usually, there will be a distinguished class attribute or relation. For notational simplicity
we will assume that class is binary with values positive (+) and negative (−). The domain

C will usually be partitioned into sets of constants representing different types of objects,
and the arguments of attributes and relations will also be typed. However, for notational
simplicity we will not make such type constraints explicit.

Figure 1 shows a graphical representation of a relational data set with 10 constants, a
class attribute, one further Boolean attribute a (elements for which a = true are represented
by grey shading), and one binary relation r (indicated by the edges in the graph). The class
attribute here only applies to entities of a type that just comprises c1, . . . , c4.

We note that in this data model we can also accommodate the case where the data consists
of several relational structures, each representing one observation or example (the “learning
from interpretations” setting (De Raedt 1997), which is appropriate, e.g., for molecular data,
where each example corresponds to a distinct molecule). Such data can be encoded as a
single structure by introducing constants representing the examples, and adding to each
relation an argument for the example identifier: if, e.g., contains(sulfur) is true in the 11th
example (molecule), then this becomes contains(e11, sulfur).

In a probabilistic interpretation of the data, one will view the ground atoms of the Her-
brand base as random variables, and the observed Herbrand interpretation as a draw from
the joint distribution of these atoms. It is a distinctive feature of relational learning that
one does not want to make strong assumptions of independence and identical distributions
for these random variables. This leads to some limitations for the applicability of standard
statistical and information-theoretic methods. For example, to apply notions of informa-
tion gain, one would first have to be able to estimate the entropy of the class label dis-
tribution. However, without independence assumptions for the random variables class(c1),
class(c2), . . . , class(cn) one cannot use the observed empirical frequencies of pos and neg
labels to estimate properties of the class label distribution, including its entropy.

It seems that in order to leverage certain types of statistical analysis tools, one actually
has to compromise the holistic relational data model, and extract from the overall relational
structure a number of separate sub-structures, which are then treated as iid samples. Such a
transformation of relational data into a collection of pseudo-iid data fragments is performed
in various ways by several relational learning systems. For example the local training sets
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employed by FOIL can be seen in this way; the learning routines in the Proximity system
(http://kdl.cs.umass.edu/software) operate on collections of sub-graphs extracted from the
underlying database. Most notably, perhaps, propositionalization approaches to relational
learning can be seen as consisting of a construction of a pseudo-iid data view in the sense of
the following definition, and the subsequent application of a standard learner for attribute-
value data on this data view (see De Raedt 2008, Chap. 4 for an overview of propositional-
ization).

Before formally defining pseudo-iid data views, we introduce some notational prelimi-
naries. Uppercase letters X,X1,X2, Y, . . . are used to denote variables. Tuples of variables
are denoted in boldface X,Y , . . . . Tuples are also seen as the set of variables they contain,
and set-theoretic notation like X ∪ Y ,X \ Y , . . . can be used to construct new sets of vari-
ables. A substitution of constants for variables X is a mapping X → C , and CX is the set of
all such substitutions.

We use θ, θ ′, . . . to denote substitution mappings. The concrete substitution that maps X

to the tuple of constants c is denoted X/c. We write F(Y )[θ ] for the result of performing
substitution θ on the free variables Y of a formula F . When θ, θ ′ are substitutions that
are defined on disjoint domains of variables, we can write F(Y )[θ, θ ′] for the result of
performing both substitutions.

Definition 1 Let D = (C, I ) be a relational data set. A pseudo-iid (p-iid) data view of D
consists of

(i) an integer m, and variables X = X1, . . . ,Xm.
(ii) a set of examples, where each example consists of a substitution θ ∈ CX . We usually

write examples as tuples ci = (ci1 , . . . , cim), where it is understood that cij is the sub-
stitution value for Xj .

(iii) A set of attributes F(X1, . . . ,Xm) defined on CX , where an attribute can be any function
(e.g., boolean, integer-, or real-valued).

We write dv(X1, . . . ,Xm) to denote a p-iid data view in the variables X1, . . . ,Xm.

Part (iii) of this definition is extremely general. Usually, one will only consider attributes
that only depend on the relational structure of D, and, thus, are invariant under renaming
of the constants. However, for the purpose of the present paper we need not formalize these
natural restrictions.

Table 1 shows two possible extractions of p-iid data views from the relational structure of
Fig. 1. In the first view, m = 1. The first two attributes in this data view are just the original
attributes class(X1), a(X1) given in the data. The third attribute, denoted ∃Yr(X1, Y ), is
a boolean attribute that has value true for an example ci if D |= ∃Yr(ci, Y ). The attribute
#Yr(X1, Y ) is integer-valued, and it represents, for example ci , the number of entities c′ for
which r(ci, c

′) is true. Table 1(b) shows a p-iid data view of the same relational data with
m = 2 obtained by selecting all r-connected pairs of entities with the first component being
one of c1, . . . , c4. The first four columns here are attributes that are directly obtained from
the attributes and relations in the data. The last two attributes are derived attributes, similar to
the ones in Table 1(a). Note that attributes in a pseudo-iid data view can be internal attributes
of the example tuples, i.e., attributes whose values is determined only by the substructure
induced by the example m-tuple (the first two, respectively four attributes in Table 1(a)
and (b)), or embedding attributes whose values depend on the relational connections between
the example tuples and the rest of the domain (the last two attributes in both tables).

http://kdl.cs.umass.edu/software
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Table 1 Pseudo-iid relational data

(a)

Example

X1 class(X1) a(X1) ∃Yr(X1, Y ) #Yr(X1, Y )

c1 + f t 2

c2 + t t 2

c3 − t f 0

c4 − f t 1

(b)

Example

X1,X2 class(X1) a(X1) r(X1,X2) r(X2,X1) ∃Yr(X2, Y ) #Yr(X2, Y )

c1, c′
1 + f t f t 2

c1, c′
3 + f t f t 1

c2, c′
1 + t t f t 2

c2, c′
2 + t t f t 2

c4, c′
3 − f t f t 1

Data-tables such as the ones shown in Table 1 could be generated from the underlying
relational data for any number of purposes. We refer to them as p-iid data views when the
tables are used to support operations that usually require an iid assumption. For the purpose
of this paper, this is mostly the computation of entropies and conditional entropies between
different data columns. In other cases, a p-iid data view may underly the split of a relational
data set into test and training sets. The implicit iid assumption for p-iid data views can
be technically incorrect (e.g., in Table 1(b) the attribute a(X1) corresponds to the same
random variable a(c1) in the first and second example, and so, with probability one, this
attribute has the same value in the two examples), but may also actually hold (e.g., when
the examples in the p-iid data view correspond to the original iid observations of distinct
relational structures).

As mentioned above, an important example of p-iid data views are tables created in
propositionalization approaches to relational learning. It is important to note, however, that
when we talk about p-iid data views we are not implicitly assuming a propositionalization
approach to relational learning. P-iid data views are only a conceptual model that provide
the foundation for the application of certain statistical operations. It is not assumed that any
p-iid data views are explicitly generated and operated on by the learner (even though the lo-
cal training sets of FOIL, and the local example sets in TILDE can be seen as ’materialized’
p-iid data views). Furthermore, it is not assumed that the attributes in the p-iid data views
we consider are the attributes actually available for the final model. For example, the defin-
ition of relational information gain that we propose is based on p-iid data views containing
attributes of the form defined by (6) and (7) below. However, these views are only used to
justify the definition of a particular refinement scoring function for use in existing rule learn-
ing systems. In the actual learning process, no tables containing values for these attributes
are constructed, and the learned model cannot use the attributes (6) and (7) directly.
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3 Relational information gain

Our goal is to set up a general framework for measuring information gain of refinements.
The p-iid data views introduced in the previous section serve as the basis for information
theoretic concepts. We now proceed to relate p-iid data views with refinement steps in induc-
tive learners, and to use information gain measures computed on p-iid data views to score
candidate refinements.

We assume that the following is given in a learning scenario for scoring a refinement:

– A p-iid data view dv(X1, . . . ,Xm).
– A current query Q(Y ), i.e., a conjunction of literals jointly containing variables Y .

We refer to a pair dv(X),Q(Y ) as a refinement scenario. A candidate refinement in a
refinement scenario is

– A literal l(Z) containing variables Z. We call l(Z) a basic refinement of Q(Y ) if Z ⊆
X ∪ Y ; otherwise l(Z) is called a variable introduction refinement (VI-refinement). We
write Znew := Z \ (X ∪ Y ) for the new variables introduced by l(Z).

Example 1 Suppose we use FOIL to learn a model for classifying the entities in the rela-
tional structure of Fig. 1. The initial learning situation is given by the labeled entities, i.e.,
the p-iid data view dv(X1) given by the first two columns of Table 1(a), and an empty query
Q(Y ) = ∅ (i.e., body of the clause under construction). The literal l(X1) = a(X1) then is
a basic refinement, whereas l(X1,X2) = r(X1,X2) is a VI-refinement. When refining with
r(X1,X2) (i.e., constructing the clause class(X1) ← r(X1,X2)), FOIL constructs a new lo-
cal training set, which is a new p-iid data view dv(X1,X2) consisting of the first two columns
of Table 1(b). The refinement scenario in the next step then consists of this data view and
the query Q(X1,X2) = r(X1,X2).

Now consider using TILDE to learn a logical decision tree. The initial learning situation
is analogous as in FOIL, with Table 1(a) specifying the initial set of examples. After refin-
ing (the empty query) with r(X1,X2) a new node is constructed with the associated set of
examples

Example
X1 class
c1 +
c2 +
c4 −

(1)

which is the p-iid data view dv′(X1) in the next refinement scenario (also consisting of the
query Q(X1,X2) = r(X1,X2)).

Even though the p-iid data views are different when FOIL or TILDE go through the same
sequence of refinement steps, the definitions coincide with regard to which refinements are
basic or VI-refinements.

A candidate refinement l(Z) gives rise to a Boolean attribute in the p-iid data view that
represents whether ∃YZQ(Y ), l(Z) is true for example c ∈ dv(X). Since Y and Z may also
contain some of the variables from X for which we substitute the example c, we need to
write this feature more precisely as ∃(Y ∪ Z) \ X Q(Y ), l(Z). Thus, we define (relative to a
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given refinement context dv(X),Q(Y )):

F exists
l(Z) (c) :=

{
true if ∃θ ∈ CZnew : D |= ∃Y \ X : Q(Y )[θ,X/c], l(Z)[θ,X/c]
false otherwise

(2)

The condition in the true case of the above definition can be equivalently expressed as
D |= ∃(Y ∪ Z) \ X : Q(Y )[X/c], l(Z)[X/c]. The asymmetric treatment of the existential
quantification over the variables Znew and Y \ X in (2) is motivated by the fact that in this
way we obtain a definition that is more uniform with the following one. This second type of
feature that we now introduce is more informative than F exists. It returns the actual number
of substitutions for Znew that make Q(Y )[X/c], l(Z)[X/c] true:

F count
l(Z) (c) := ∣∣{θ ∈ CZnew | D |= ∃Y \ X : Q(Y )[X/c], l(Z)[θ,X/c]}∣∣ (3)

Based on F count or F exists features one can score candidate refinements l(Z) by standard
information gain

ig(Fl(Z)) = H(class) − H(class | Fl(Z)) (4)

where H(·) and H(·|·) denote the entropy function and the conditional entropy function,
respectively. We omit the superscripts count or exists when statements or definitions apply
uniformly to both versions. The formal definitions of the F count and F exists features apply to
basic and VI-refinements. For basic refinements F count degenerates to a 0/1-valued equiv-
alent of F exists

l(Z) . Scoring refinements based on F count only is appropriate when the models
constructed from the resulting query Q(Y ), l(Z) can actually use the quantitative informa-
tion of counts of substitutions, e.g., TILDE with counting literals (Van Assche et al. 2006),
Relational Probability Trees (Neville et al. 2003), Markov Logic Networks (Richardson and
Domingos 2006), and Type Extension Trees (Frasconi et al. 2008). Classic ILP systems
with existential semantics for newly introduced variables, on the other hand, should score
all candidate refinements using F exists.

So far, we have set up a framework in which refinements can be scored based on standard
information theoretic principles. ig(Fl(Z)) scores the direct informativeness of the refinement
l(Z), i.e., the improvement of discriminative power for the class label from the new literal
alone, without any further refinements. Moreover, ig(F count ) can measure the direct infor-
mativeness presented by degree disparity, i.e., the situation in which positive examples tend
to have more (or fewer) relational neighbors connected via l(Z) than negative examples.

We now extend this approach to also measure potential informativeness of VI-refine-
ments. To motivate our approach, consider the case where the current refinement scenario
consists of a data view dv(X), Q(Y ) = ∅ (as usually the case in the first step of the induc-
tion), and we consider the VI-refinement r(X,Z). Suppose that r(X,Z) is a determinate
literal, i.e., for each c ∈ dv(X) there exists exactly one c′ ∈ C with D |= r(c, c′). We can
now consider the set of domain entities that are associated via r with positive and negative
examples, respectively:

B+ := {c′ ∈ C | ∃c ∈ dv(X) with class(c) = + and r(c, c′)}
B− := {c′ ∈ C | ∃c ∈ dv(X) with class(c) = − and r(c, c′)} (5)

If the two sets B+,B− are sufficiently distinct, then we may be able to discriminate be-
tween positive and negative examples with a refined query r(X,Z), a(Z), where a(Z) is an
attribute on Z that is correlated with membership in B+ (or B−).
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Fig. 2 Potential informativeness via determinate (a), (b) and general (c) relations

Table 2 Values for selected
F exists attributes Example

X F exists
r(X,Z),B+ F exists

r(X,Z),B+ F exists
r(X,Z),B+ F exists

r(X,Z),{c′
1}

c1 t t t t

c2 t t t t

c3 t t t t

c4 f t t f

c5 f t f f

c6 f t f f

(a) (b) (c)

Figure 2 shows three different data sets, where in all cases the labeled nodes c1, . . . , c6

represent the entities in a current p-iid data view, and the arrows represent a binary relation r .
In (a) and (b) r is determinate. In (a) the sets B+ and B− are disjoint, and if an attribute (or
conjunction of attributes) can be found that is true for c′

1 but not for c′
2, then we would

be able to perfectly classify the examples. In (b), in contrast B+ = B−, and, moreover,
positive and negative examples have exactly the same properties with regard to r , so that
the refinement with r(X,Z) is neither directly nor potentially informative. In Fig. 2(c) r

is not determinate. Nevertheless, the sets B+ = {c′
1, c

′
2} and B− = {c′

2, c
′
3} are still defined

by (5). While the two sets are not disjoint, an attribute a(Z) characterizing membership in
B+ would still allow us to split with the query r(X,Z), a(Z) the data set into {c1, c2, c3, c4}
and {c5, c6}. However, characterizing membership in B+ here would not be optimal: if a(Z)

characterized membership in B = {c′
1} instead, then r(X,Z), a(Z) would yield a perfect

split.
In general, for any set B ⊆ C we can define the Boolean feature F exists

r(X,Z),B(c) that repre-
sents whether c has any r-successor in B . Table 2 gives the resulting values for B = B+ in
the three data sets of Fig. 2. For data set (c) also the value for B = {c′

1} is shown.
The main idea on which we build our definition of relational information gain, now, is

that the refinement r(X,Z) is potentially informative if there exists at least some set B for
which F exists

r(X,Z),B is informative. To cast this into a formal definition, we first define the F exists
l(Z),B
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attribute in the full generality for arbitrary refinement scenarios. In the general case where
the VI-refinement l(Z) introduces more than one new variable, we have to consider subsets
B of possible substitutions for all new variables, i.e., B ⊆ CZnew , rather than just B ⊆ C . For
any such B we define as a small modification of (2):

F exists
l(Z),B(c) :=

{
true if ∃θ ∈ B : D |= ∃Y \ X : Q(Y )[X/c], l(Z)[θ,X/c]
false otherwise

(6)

As before, this definition is relative to a given refinement scenario, and we also define
the more informative count version:

F count
l(Z),B(c) := ∣∣{θ ∈ B | D |= ∃Y \ X : Q(Y )[X/c], l(Z)[θ,X/c]}∣∣ (7)

For B = CZnew (6) and (7) become our measures (2), respectively (3) for direct infor-
mativeness. Finally, we can now define relational information gain as a measure for direct
and potential informativeness by maximizing over the information gains obtained from the
features Fl(Z),B for any possible set B:

Definition 2 Let dv(X),Q(Y ) be a refinement scenario. For a candidate refinement l(Z)

we define the existential and count version of relational information gain as follows:

RIGexists(l(Z)) := max
B⊆CZnew

ig(F exists
l(Z),B) (8)

RIGcount(l(Z)) := max
B⊆CZnew

ig(F count
l(Z),B). (9)

Thus, in the definition of RIG we are taking an optimistic attitude towards evaluating po-
tential informativeness (or rather, stressing the “potential”) by basing the definition on the
most discriminating subset B , even though we do not know whether we will be able to char-
acterize this optimal B by further refinements using the available attributes and relations.

Example 2 Consider the candidate refinement r(X,Z) for the refinement scenarios given
by the data views represented by Fig. 2 (i.e., taking c1, . . . , c6 as labeled p-iid examples),
and Q(Y ) = ∅. For Fig. 2(a) we have that for B = {c′

1} H(class | Fexists
r(X,Z),B) = H(class |

Fcount
r(X,Z),B) = 0, so both RIGexists(r(X,Z)), and RIGcount(r(X,Z)) obtain the maximal possi-

ble value H(class).
For Fig. 2(b) we have that for all B both Fexists

r(X,Z),B and Fcount
r(X,Z),B are constant for all ci

(being true/false, respectively 0/1, depending on whether B contains c′
1), so all Fr(X,Z),B

have zero information gain, and hence RIGexists(r(X,Z)) = RIGcount(r(X,Z)) = 0.
In Fig. 2(c) the maximal ig(Fr(X,Z),B) scores are attained for B = {c′

1}. As in (a), this
leads to the maximal possible RIGexists and RIGcount scores.

Example 3 We again consider the p-iid data view of the relational data in Fig. 1, as repre-
sented by the first two columns of Table 1(a), together with the initial query Q(Y ) = ∅. We
consider the candidate refinement r(X1,X2). The third column in Table 3(a) shows the fea-
ture values for F count

r(X1,X2), i.e., our measure for the direct informativeness of this refinement
when quantitative information can be used. Since the values for the positive examples are
distinct from the values for the negative examples, we have that ig(F count

r(X1,X2)) = H(class)
is the maximal possible, and hence also RIGcount(r(X1,X2)) is the maximal possible. The
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Table 3 Feature values in
Example 3

(a)

X1 class F count
r(X1,X2)

F exists
r(X1,X2)

F exists
r(X1,X2),{c′

1,c′
2}

c1 + 2 t t

c2 + 2 t t

c3 − 0 f f

c4 − 1 t f

(b)

X1 class F count
r(X2,X3)

F exists
r(X2,X3)

F exists
r(X2,X3),{c′′

1 }

c1 + 3 t t

c2 + 3 t t

c4 − 1 t f

feature F exists
r(X1,X2) provides some information gain, but not a perfect split of the examples.

Thus, for systems with an existential semantics, the refinement r(X1,X2) has some direct
information value, but does not yet lead to a perfect classification. However, the feature
F exists

r(X1,X2),{c′
1,c′

2} has maximal information gain, which leads to a maximal value of RIGexists.

This shows that beyond its direct informativeness there also is some additional potential
informativeness in the refinement r(X1,X2).

Suppose, now, that the initial query is refined by r(X1,X2), and that the next refine-
ment scenario is given by the dv(X1) given by the first two columns of Table 3(b), and the
query r(X1,X2) (this corresponds to a sub-problem that would be generated by TILDE).
We now consider the candidate refinement r(X2,X3). The feature F count

r(X2,X3)(ci), in this sce-
nario, represents the number of distinct entities reachable from ci via a path of length 2. This
feature, again, has maximal information gain, and so a maximal possible RIGcount value is
obtained (however, if we were using a system that can utilize quantitative count features,
then the induction would probably have ended after the first refinement, and this score is
not very relevant any more). The feature F exists

r(X2,X3)(ci), on the other hand, has zero informa-
tion gain, showing that for systems with existential semantics the refinement r(X2,X3) is
not directly informative. However, F exists

r(X2,X3),{c′′
1 }(ci), again, has maximal information gain,

indicating its potential informativeness. If the refinement is chosen, then in the next step it
would be found that the basic refinement a(X3) has maximal information gain, and that the
query r(X1,X2), r(X2,X3), a(X3) provides a perfect classification rule.

3.1 RIG in practice

In this section we discuss several important properties of RIG, especially those that have a
direct impact on an effective implementation of RIG score in existing relational learners.

3.1.1 Direct vs. potential informativeness

The information gain from the non-B-conditioned features (2) and (3) can be seen as mea-
sures for direct informativeness (for systems using purely logical and quantitative seman-
tics, respectively). Since these values are included in the maximizations (8) and (9) via
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Table 4 Approximate RIG computation

1. init: B = ∅
2. Pos_constants=∅; Neg_ constants=∅
3. Pos_score=0; Neg_score=0
4. Candidate_constants = {cnew ∈ CZnew | ∃c ∈ dv(X) :

D |= ∃Y \ X Q(Y )[X/c], l(Z)[X/c,Znew/cnew]}
5. for all cnew ∈ Candidate_ constants
6. score(cnew) = ig(Fl(Z),{cnew})
7. if P(class(X) = + | Fl(Z),{cnew} = true) > P (class(X) = +)

8. Pos_constants = Pos_constants ∪ {cnew}
9. Pos_score = Pos_score + score(cnew)

10. else
11. Neg_constants = Neg_constants ∪ {cnew}
12. Neg_score = Neg_score + score(cnew)

13. if Pos_score > Neg_score
14. for cnew ∈ Pos_ constants in decreasing order of score(cnew)

15. if ig(Fl(Z),B∪{cnew}) > ig(Fl(Z),B ) B := B ∪ {cnew}
16. else . . . // same as 14.,15 with Neg for Pos
17. return ig(Fr,B) // as approximation of RIG(r)

B = CZnew , we obtain that RIG(l(Z)) scores are lower bounded by the direct informative-
ness scores ig(Fl(Z)). Furthermore, the ratio ig(Fl(Z))/RIG(l(Z)) ∈ [0,1] shows to what ex-
tent the RIG score is based on potential informativeness. When the ratio is 0, then the RIG
score is entirely due to potential informativeness. This can be used in various ways to guide
the refinement search.

First, one can penalize or reward candidate refinements with a low ig/RIG ratio, thus
allowing a choice between exploitation (prefer refinements with direct information value)
and exploration (encourage refinements that lead to an extended search along chains of
relations).

Second, a low ig/RIG ratio means that l(Z) only is useful when further conditions
on Znew are imposed. This should influence the way new candidate refinements are con-
structed. Specifically, it can be useful then to force the next refinement to explore the po-
tential informativeness of Znew, i.e., to allow only literals that contain Znew. Without such
a search bias, it can happen that in a purely greedy construction successive refinements
l(Z), l(Z′), l(Z′′), etc. are chosen which are merely syntactic variants of the same literal
(differing only in the names of the new variables). Intuitively, multiple (equivalent) lines
of possible exploration are opened, without pursuing any of them. This phenomenon does
not indicate a fundamental problem with RIG scoring. It only shows that scoring functions
that take into account potential informativeness may need to be combined with somewhat
different search strategies than other scoring functions.

3.1.2 Computing RIG

The definition of RIG includes a maximization over all subsets of CZnew , which is presum-
ably computationally intractable (the exact complexity of computing RIG is an open prob-
lem). In our implementation we use an approximate method for computing RIG scores. The
algorithm shown in Table 4 constructs a set B that approximates the argmax in (8), respec-
tively (9).

First we observe that we only need to consider for inclusion in B tuples cnew ∈ CZnew that
make the extended query Q(Y ), l(Z) true for at least one example c ∈ dv(X) (line 4.). Other
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tuples can have no impact on the feature values Fl(Z),B , and thus are irrelevant for the RIG
scores.

The construction consists of two main steps: in the first step we determine whether the
set B should be composed of tuples that are mostly associated with positive examples, or of
tuples that are mostly associated with negative examples, i.e., whether we attempt to obtain a
feature Fl(Z),B for which Fl(Z),B = true is predictive for the positive, or for the negative class.
This decision is made by computing the information gain ig(Fl(Z),B) for each singleton set
B = {cnew}, and summing the information gain values separately for tuples associated with
the positive and negative class (lines 5–12). The obtained sums serve as a heuristic decision
criterion for whether we proceed with a construction of a set B associated with positive or
negative examples (lines 13, 16). In either case, the construction of B is a greedy process,
adding one candidate tuple at a time (lines 14, 15).

4 Related work

Most closely related to the RIG score in terms of purpose and applicability are the already
mentioned lookahead strategies for relational learners.

The most basic form of lookahead is an exhaustive fixed-depth lookahead, where all
possible refinements consisting of d or fewer literals are scored for their direct informative-
ness. Due to the exponential search space explosion, this approach is typically not feasible
in practice even for small d . To alleviate the problem, one can reduce the search space by
imposing user-defined constraints on admissible multi-literal refinements (Blockeel and De
Raedt 1997), or use purely syntactic conditions on admissible refinement macros (Castillo
and Wrobel 2004). Seeing that even depth-1 lookahead can be computationally very costly,
Struyf et al. (2006) propose an efficient approximation to exhaustive depth-1 lookahead,
called feature based estimation (FBE). In FBE the space of admissible single-literal refine-
ments is reduced, and information needed for scoring the candidate literals is pre-computed.
None of these approaches tries to score the potential informativeness of a candidate lit-
eral without explicitly computing direct information scores obtainable by further refinement
steps. A distinguishing feature of RIG score is that it measures the potential informativeness
of a single-literal VI-refinement only based on the current refinement scenario consisting of
the pseudo-iid example set and current query, but independent of all relations in the data not
yet occurring in the query. The downside of this approach is that it can lead to overly opti-
mistic estimates of potential informativeness, since the maximization over B sets in (8) and
(9) is based on the implicit expectation that the data contains sufficiently many and informa-
tive attributes and relations that will allow to characterize the elements in B in subsequent
refinement steps.

Also related to RIG scoring is the ACORA system described by Perlich and Provost
(2006). This system constructs features for relational learning by measuring to what ex-
tent positive and negative examples are connected to different entities via a given candidate
chain of relations. This is related to the RIG approach in that the identities of entities reached
by a relation are considered, and a relation is considered informative if positive and nega-
tive examples are connected to different entities. In a crucial difference to the RIG approach,
ACORA directly uses this kind of informativeness to construct features that refer to the iden-
tities of the objects reached by the chain. RIG, in contrast, is based on the assumption that
object identifiers are not available for feature construction, and that therefore objects asso-
ciated with negative and positive examples, respectively, need to be indirectly characterized
by their attributes. The ACORA approach, thus, is applicable only when test and training
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examples are connected to the same set of potentially related objects (as e.g., in collabora-
tive filtering scenarios, where test and training customers are connected to the same set of
books that they might potentially be interested in). RIG, on the other hand, is applicable for
the construction of models for domains that are not “stationary” in this sense (in molecular
data, for example, no atom in a training molecule is connected to the same atoms as any
atom in a test molecule).

5 Implementation details

5.1 RIG-TILDE

TILDE is a popular ILP system for learning logical decision trees in a top-down greedy
fashion inspired by the propositional decision tree learner C4.5. We modified the algorithm
by simply replacing the scoring heuristic with RIGexists whenever the refinement l(Z) intro-
duces new variables, and standard information gain otherwise. The default scoring heuristic
in TILDE is actually gain ratio, obtained by dividing information gain by the entropy ac-
cording to the outcomes of the test (instead of the label). This splitting information should
de-emphasize tests evenly spreading examples and is especially effective for conditions hav-
ing a large number of possible outcomes. While it is straightforward to conceive a ratio
version for both RIGexists and RIGcount, it is not necessarily the case that a large splitting
information implies a lower potential informativeness: even in the extreme case of a one-to-
one mapping between training examples c and bindings cnew—a totally useless attribute in
itself—entities Znew could be easier to discriminate by further refinements.

In order to compute RIGexists, the set of candidate constants to be considered for addition
to the set B needs to be generated. Given a refinement scenario dv(X),Q(Y ), which corre-
sponds to a node in the tree being constructed, and a candidate refinement l(Z), we need to
compute the set:

{cnew ∈ CZnew | D |= ∃Y \ X : Q(Y )[X/c], l(Z)[X/c,Znew/cnew]} (10)

for each training example c ∈ dv(X) (cf Table 4, line 4). Plain TILDE, on the other side,
simply needs to verify whether this set is non-empty:

∃cnew ∈ CZnew : D |= ∃Y \ X : Q(Y )[X/c], l(Z)[X/c,Znew/cnew] (11)

Equation (10) was implemented with the following Prolog query:

setof(Znew, (Y \ X)ˆ(Q(Y ), l(Z))[X/c],S) (12)

where S collects the set of possible bindings.
To avoid the problem described in Sect. 3.1.1 of introducing multiple equivalent copies of

the same literal, we force the next refinement of Q(Y ), l(Z) to only use literals with at least
one variable from Znew. To prevent too long clauses, we also bound the maximum number
of variables |Y ∪ Z| which can appear in the query.

Finally, it is worthwhile noting that the post-pruning feature implemented in TILDE has
an additional advantage in the RIG-TILDE version: whenever the potential informativeness,
which guided the selection of a certain relational refinement, does not eventually materialize
further down in the search, the unlucky guess will be pruned away in the post-processing
phase.
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5.2 WRIG-FOIL

The definition of RIG in Sect. 3 is based on two major components: (1) it was obtained as
a standard information gain from a suitably defined new attribute in a pseudo-iid data view
and (2) it measures potential informativeness by considering the informativeness of subsets
B of possible bindings for the new variables.

When implementing RIG as a replacement for the native weighted information gain
(WIG) scoring heuristic in the FOIL system, it turns out that the first design principle of
RIG conflicts with the FOIL architecture: as a standard information gain measure, RIG is
symmetric in how it treats positive and negative examples. Conditional class distributions
with a high posterior probability for the negative class are rated just as highly as posteriors
with a high probability for the positive class. Moreover, when conditioning on some feature
F , both conditionals P (· | F = true) and P (· | F = false) influence the score in the same
way. The FOIL architecture conflicts with these symmetries in two ways: first, FOIL itera-
tively covers positive examples, and can only make use of an increased posterior probability
for the positive class. Second, examples not covered by a current refinement are discarded
(for the construction of the current clause), and therefore a reduction in the conditional en-
tropy P (· | F = false) is of no interest. For these reasons we have implemented in FOIL a
modification of the RIG scoring metric that is better adapted to the FOIL architecture, and
combines elements of WIG and RIG score:

WRIG(l(Z)) := max
B⊆CZnew

(
P (F exists

l(Z),B = true)

× (−log(P (class = true)) + log(P (class = true | F exists
l(Z),B = true)))

)
The WRIG measure borrows three main elements from WIG: the score depends only on

the change of − log(P (class = true)) as a measure of the proportion of positive examples.
When considering a VI-refinement l(Z), only those examples that have an extension in the
new local training set defined by the refinement are considered (in our setup, these are the
examples for which F exists

l(Z),B = true). Finally, the change in class purity is weighted with the
factor P (F exists

l(Z),B = true) of how many examples of the original training set are represented
in the new local training set. Two key elements are taken from RIG: potential informative-
ness is measured by considering and maximizing over the B-relativized features F exists

l(Z),B .
Second, P (class = true | F exists

l(Z),B = true) measures the proportion of positive examples still
in the original training set, not (as WIG) in the extended training set obtained from the re-
finement l(Z). WRIG, unlike WIG, thus does not produce high scores just because positive
examples tend to have more extensions with l(Z) than negative examples (a behavior of
the score function that does not suit FOIL’s existential semantics for new variables very
well).

The implementation of WRIG within FOIL system is hence straightforward. When build-
ing a clause, WRIG is used for the scoring refinements. In the case of basic refinements, this
is equivalent to using FOIL’s original WIG measure.

The computation of WRIG can be performed using the same target tables which FOIL
generates as local training sets when computing weighted information gain: the compu-
tational cost is then linear in the dimension of such target tables, and hence there are no
fundamental complexity differences between FOIL and WRIG-FOIL.
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6 Experiments

6.1 TILDE experiments

6.1.1 Synthetic data

We use synthetic slotchain data (Frasconi et al. 2008) to test RIG’s ability to identify po-
tentially informative literals. This data set is a larger and more elaborate version of the kind
of structure shown in Fig. 1. In this data, an example X is positive, if and only if an entity
Z with att(Z) = true can be reached via the chain of relations r0,0, r1,0, r2,0, r3,0. Thus, the
target clause to find in this data is

positive(X) ← r0,0(X,Y1), r1,0(Y1, Y2), r2,0(Y2, Y3), r3,0(Y3,Z), att (Z). (13)

The ri,0-literals are neither directly informative nor determinate. The data set consists of
approximately 5,400 true ground facts and also includes “noise relations” ri,j (i = 0, . . . ,3,
j = 1, . . . ,2) that have no predictive value. Standard TILDE is able to recover the target
clause (13) only using an exhaustive lookahead of 4, otherwise the gain ratio scoring mea-
sure used by TILDE is not able to capture the potential informativeness of the literals com-
posing the slotchain. Being limited to depth-1 lookahead, the FBE algorithm (Struyf et al.
2006), described in Sect. 4, also is unable to retrieve the target slotchain clause. The total
number of Prolog queries required by Tilde-L4 to recover the slotchain is 31, 125. RIG-
TILDE is instead able to recover the target clause from data, without the use of lookahead,
with only 43 queries.

6.1.2 Struyf et al.’s data sets

We report here about the applicability and the performance of RIG-TILDE in the data sets
employed in Struyf et al. (2006), i.e., Mutagenesis (Muta188 and Muta230), Financial, Sisy-
phus, Carcinogenesis, University of Washington (UWCSE), Yeast, and Bongard. For details
on the data sets see Struyf et al. (2006) and references therein. Results obtained by using
the same 10-fold cross validation as in Struyf et al. (2006) are shown in Table 5. We re-
port accuracy, area under the precision-recall curve, the number of Prolog queries which are
evaluated throughout the search and the number of literals in the final (pruned) tree, both
averaged per fold.

6.1.3 Activities of daily living

Activities of daily living (ADL) (Landwehr et al. 2008) is an activity recognition data set
which describes the activities of a user having breakfast at home. The data consists in ob-
servations of 4,597 tagged events divided in 20 time sequences, where the user performs
activities such as reading the newspaper or toasting bread (19 total activities, including nil)
and interacts with several objects, such as kettle, teabag, butter (23 total objects). For each
time sequence, interactions between user and objects are observed (data have been obtained
using RFID readers), and the duration of each activity is known as well. No additional back-
ground knowledge is used. We extracted three different binary classification tasks: ADL1

(any activity vs. no activity), ADL2 (readNewspaper vs. rest), and ADL3 (makeCereals_eat
vs. rest). As in Landwehr et al. (2008), a leave-one-sequence-out approach was used for the
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Table 5 Comparison between TILDE with lookahead L = 0,1,2, FBE and RIG-TILDE on Struyf et al.’s
data sets. Evaluated refinements, the number of literals in the final tree, and computational time are aver-
aged per fold. Significant wins/losses of Tilde-Lx and FBE with respect to RIG are indicated by ⊕ and �,
respectively (p-value < 0.01, paired t-test)

Data set Method Accuracy AUPRC Evaluated Literals in Time

refinements final tree (s)

Muta188 L0 69.1 ± 7.5 70 ± 8 � 168 1 0.0

L1 74.5 ± 4.7 84 ± 7 50,880 26 28.5

L2 73.9 ± 6.7 79 ± 6 517,383 39 689.9

FBE 74.3 ± 8.6 85 ± 8 5,253 28 2.9

RIG 72.8 ± 8.3 84 ± 10 15,388 13 41.7

Muta230 L0 63.9 ± 3.3 65 ± 4 179 2 0.0

L1 74.8 ± 5.8 84 ± 3 178,867 38 5.0

L2 73.5 ± 3.4 81 ± 7 1,046,051 46 167.4

FBE 75.4 ± 7.6 86 ± 4 9,734 37 1.5

RIG 68.9 ± 8.8 68 ± 17 11,309 14 43.0

Financial L0 86.8 ± 0.7 � 13 ± 1 � 28 0 0.0

L1 96.6 ± 1.5 84 ± 9 5,565 3 1.7

L2 96.2 ± 1.8 81 ± 9 71,417 8 461.9

FBE 96.6 ± 2.5 84 ± 9 510 3 1.7

RIG 95.8 ± 1.2 90 ± 12 1,195 16 22.9

Carcinog L0 62.1 ± 4.5 66 ± 4 14,283 15 1.4

L1 60.3 ± 4.1 67 ± 4 359,920 79 184.2

L2 60.0 ± 3.4 64 ± 4 2,596,396 165 35,841.2

FBE 60.0 ± 7.6 67 ± 5 29,155 63 34.1

RIG 61.8 ± 1.8 64 ± 7 11,710 18 13.3

UWCSE L0 93.6 ± 2.3 39 ± 17 6,192 25 2.4

L1 94.0 ± 2.3 29 ± 14 253,425 113 71.9

L2 94.3 ± 2.3 33 ± 13 2,041,260 101 3,586.0

FBE 94.8 ± 1.0 34 ± 19 14,604 68 11.9

RIG 95.2 ± 0.8 41 ± 26 5,873 18 75.1

Yeast L0 87.7 ± 0.4 68 ± 2 399,203 91 50.7

L1 88.0 ± 0.6 63 ± 2 2,909,296 168 401.5

L2 88.0 ± 0.5 62 ± 2 92,638,421 154 16,708.5

FBE 88.7 ± 0.7 71 ± 1 527,758 154 106.6

RIG 87.6 ± 0.8 67 ± 4 240,516 91 366.6

Bongard L0 98.1 ± 0.4 98 ± 1 � 2,404 11 6.1

L1 99.6 ± 0.3 ⊕ 100 ± 0 ⊕ 10,399 19 15.2

L2 100.0 ± 0.0 ⊕ 100 ± 0 ⊕ 86,072 13 1,595.7

FBE 99.5 ± 0.8 100 ± 0 589 17 3.3

RIG 97.6 ± 0.8 99 ± 1 696 18 19.1
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Table 5 (Continued)

Data set Method Accuracy AUPRC Evaluated Literals in Time

refinements final tree (s)

Sisyphus A L0 62.1 ± 0.0 � 62 ± 0 � 40 0 0.4

L1 94.9 ± 0.5 97 ± 1 652,634 36 297.1

L2 96.6 ± 0.2 ⊕ 98 ± 0 1,621,575 66 14,140.2

FBE 94.8 ± 0.3 97 ± 1 16,651 34 54.8

RIG 95.5 ± 0.4 97 ± 1 13,850 42 1,598.1

Sisyphus B L0 71.4 ± 0.0 � 29 ± 0 � 2 0 0.2

L1 75.9 ± 0.7 � 59 ± 1 � 1,458,210 115 286.9

L2 92.0 ± 0.3 ⊕ 86 ± 1 1,886,339 32 18,255.0

FBE 76.1 ± 0.7 � 59 ± 2 � 36,192 68 12.0

RIG 81.7 ± 1.6 75 ± 4 55,947 127 1,852.6

Table 6 Results on activities of daily living data. F1 is the micro-average on the 20 sequences. Evaluated
refinements, the number of literals in the final tree and computational time are averaged per sequence

Data set Method F1 AUPRC Evaluated Literals in Time

refinements final tree (s)

ADL1 L1 83.5 45.8 ± 36.0 288,036 30 24.4

L2 82.6 47.0 ± 33.1 1,449,520 39 220.1

FBE 84.4 39.7 ± 31.6 18,848 110 3.9

RIG 84.6 66.2 ± 26.2 3,180 22 5.4

ADL2 L1 88.2 90.8 ± 10.0 50,791 36 4.5

L2 87.4 89.3 ± 13.0 401,738 52 151.7

FBE 88.5 91.0 ± 10.2 4,537 30 1.5

RIG 88.5 89.6 ± 9.6 878 27 2.3

ADL3 L1 80.4 86.1 ± 12.5 23,734 153 2.0

L2 74.4 76.7 ± 16.6 506,127 157 69.0

FBE 80.4 86.1 ± 12.5 3,754 35 1.4

RIG 80.6 81.4 ± 12.2 950 87 2.9

experiments. We show in Table 6 the F1 measure rather than accuracy, owing to the unbal-
anced nature of the data set. We also report the number of evaluated refinements, the number
of literals in the final tree and the computational time.

Following the approach by Struyf et al. (2006), propositional attributes were encoded
using relations of the form Attributej (id,value): for this reason, TILDE with no lookahead
cannot properly retrieve informative literals (results not reported).

6.1.4 Gene essentiality

This is a crucial problem in cellular biology, which can help to understand the minimal
requirements of cellular life, as well as to develop new drugs. The goal is to predict whether a
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Table 7 Results on protein essentiality data. Positive predicted value at top n% predictions is reported.
Evaluated refinements, the number of literals in the final tree, and computational time are averaged per run

Data set Method Top Top Top Top Top Evaluated Literals in Time

1% 5% 10% 15% 20% refinements final tree (s)

s.cerev L1 62 72 64 59 54 370,431 30 119.7

RIG 79 74 64 58 53 2,275 38 48.4

Gustafson et al. (2006) 81 64 57 54 49 – – –

e.coli L1 89 72 60 50 43 572,530 57 70.1

RIG 80 73 61 53 45 7,835 66 114.8

Gustafson et al. (2006) 82 68 58 48 40 – – –

certain gene is essential for the life of the cell (a binary classification task). Machine learning
algorithms for solving it have been recently studied in the literature (Gustafson et al. 2006;
Allauzen et al. 2008).

We started from the two propositional data sets used in Gustafson et al. (2006). The
s.cerevisiae (yeast) data set contains 4,728 genes (967 essential and 3,762 nonessential) de-
scribed by 42 attributes. The first 16 attributes (that include e.g., phyletic retention, number
of paralagous genes, aromaticity score, amino acid composition) are obtainable from se-
quence data alone while the other 26 attributes (that include number of interacting proteins,
or subcellular localization) require extensive wet laboratory work. For our experiments, we
only considered the first set of attributes. The e.coli data set contains 3,570 genes (612 essen-
tial and 2,958 nonessential) each described by 28 attributes obtainable from sequence only.
Continuous attributes were discretized using the entropy minimization heuristic (Fayyad and
Irani 1992) as in Gustafson et al. (2006).

We then enriched both data sets with relational information consisting of protein-protein
interactions derived from the STRING data base (Jensen et al. 2009). Since the sources of
evidence for association between proteins can be very noisy, we retained only pairs with an
interaction score above 0.9.

For the sake of comparison, we replicated the bootstrapping evaluation procedure re-
ported in Gustafson et al. (2006): data was split maintaining 50% of the examples of each
class, both in the training and in the test set. The procedure was then repeated n times and fi-
nal gene essentiality probabilities were obtained as the averages of the probabilities assigned
in each trial. When reproducing results in Gustafson et al. (2006) we observed no significant
advantages in using more than 10 repetitions so we report results with n = 10 rather than
n = 100 as in Gustafson et al. (2006).

As in the ADL data sets, propositional attributes were represented by relations so TILDE
with no lookahead cannot properly retrieve informative literals (results not reported).

Following the approach in Gustafson et al. (2006), we show in Table 7 the precision ob-
tained when predicting as positives the top n% of the genes ordered by predicted probability,
with n = 1,5,10,15,20. Since TILDE-L2 ran for over 24 hours on a single train/test split
without terminating, we compare only to TILDE-L1 on this data set. FBE results are also
not reported, because the system crashed when run on this data set. Both RIG-TILDE and
Tilde-L1 achieve state-of-the-art results for this task.
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Table 8 Results on real world data sets using plain FOIL, WRIG-FOIL and WRIG-FOILnoLA . F1 is the
micro-average over the 10 folds. The accuracy, the number of learned clauses, the number of evaluated re-
finements, and the computational time are averaged per fold.

Method Accuracy F1 Learned Evaluated Time

clauses refinements (s)

Carcinogenesis FOIL 51.5 ± 6.4 52.9 9.9 23,036 77.1

WRIG-FOIL 56.1 ± 8.3 56.2 10.3 73,206 1779.7

WRIG-FOILnoLA 50.9 ± 5.9 42.6 9.5 8,845 49.1

Muta188 FOIL 66.0 ± 10.4 74.4 8.4 53,709 200.2

WRIG-FOIL 74.0 ± 9.7 81.1 7.2 10,267 97.1

WRIG-FOILnoLA 78.8 ± 8.3 84.6 6.4 6,706 72.6

Muta230 FOIL 62.3 ± 7.0 68.1 7.2 80,835 680.5

WRIG-FOIL 68.3 ± 8.7 73.8 8.4 27,053 1165.5

WRIG-FOILnoLA 74.6 ± 5.7 80.1 5.8 7,273 101.3

UWCSE FOIL 95.3 ± 0.8 13.6 3.4 6,394 9.5

WRIG-FOIL 94.5 ± 2.0 18.7 2.8 3,005 5.0

WRIG-FOILnoLA 94.8 ± 1.4 19.1 2.8 2,363 1.3

6.2 FOIL experiments

6.2.1 Synthetic data

We performed also with WRIG-FOIL the same experiment on Slotchain data set described
for RIG-TILDE: the use of WRIG is again decisive in order to correctly retrieve the tar-
get clause (13), which plain FOIL is otherwise not able to find. WRIG-FOIL was also run
in a second setting, without performing the maximization over the B set (called WRIG-
FOILnoLA). This modified version of our algorithm does not take advantage of the “looka-
head” capacity of WRIG—but, differently from FOIL, employs the counting of examples
rather than substitutions—and it is therefore not able to retrieve the slotchain target clause.

6.2.2 Real data

For FOIL experiments we employed the Carcinogenesis, Mutagenesis and UWCSE data
sets, which were used also for RIG-TILDE. For all the tasks, FOIL’s threshold for the mini-
mum acceptable accuracy of a rule has been set to 50%, and negated literals were forbidden.
A 10-fold cross-validation was performed on each data set, except for UWCSE, where we
used the leave-one-area-out setting. Results obtained are shown in Table 8.

6.3 Discussion

The experiments performed with TILDE show that the use of RIG greatly lowers the number
of queries being evaluated throughout the search, with respect to lookahead: RIG-TILDE
evaluates a number of queries which is usually of the same order of magnitude of TILDE
without lookahead, and about 1% (from 0.6% for s.cerev to 20% for Financial) and 0.5%
(from 0.2% for ADL1 to 20% for Financial) of the ones evaluated by TILDE-L1 and -L2,
respectively. Note that our savings in the number of evaluated queries does not directly
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translate into faster learning, because of the difference between computing (10) and (11)
which is highly problem-dependent. Using the naive implementation reported in (12), we
obtained comparable computing times on average between RIG-TILDE and TILDE-L1,
whereas TILDE-L2 was generally one or two orders of magnitude slower.

RIG-TILDE achieves results which are on average comparable to the best ones obtained
by varying the amount of lookahead, while generating simpler models in terms of number
of literals in most cases.

The gene essentiality task shows that the use of RIG can be of great impact also in
real-world complex problems, in which the use of deep lookahead can be very expensive,
and sometimes prohibitive. The relational approach in this data set outperforms results in
Gustafson et al. (2006) that are based on a simple propositional Naive Bayes.

The additional FOIL experiments demonstrate the applicability of RIG scoring in dif-
ferent learning systems. However, since the new WRIG score differs from the native FOIL
scoring function also in other aspects than RIG’s implicit lookahead capabilities, it is not
directly clear to what extent the observed improvement of WRIG-FOIL over FOIL is due to
this main novel feature of WRIG. Experiments with the modified version WRIG-FOILnoLA

provide inconclusive results, with only the experiments on Carcinogenesis indicating a ma-
jor impact of the lookahead feature.

7 Conclusions

Relational information gain is a refinement scoring function that has a sound information-
theoretic justification. We have introduced an algorithm for calculating approximate RIG
scores and implemented it in conjunction with two popular ILP systems that use literal
scoring heuristics: TILDE and FOIL. RIG, however, is not specifically conceived for these
systems and its scope and applicability is more general. In conjunction with both learners,
our experiments on synthetic slotchain data clearly show the ability of RIG in discovering
potential informativeness of a literal, without requiring a lookahead. In the experiments
with real data RIG was competitive in terms of accuracy and speed with other state of the
art methods. However, no evidence was found that long slotchain like dependencies played
a major role for the prediction tasks in these datasets. We can therefore conclude that RIG
scoring is a widely applicable approach that is generally viable, with the potential of giving
superior results in domains that are characterized by probabilistic dependencies transmitted
over chains of several relations.
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