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1 Introduction

A multi-objective optimization problem (MOP) is formulated as the joint minimizatiomafonflicting
objective functionsf; (x), ..., fm(x) W.r.t a vectorx of n decision variables. Typicallk € 2, where

Q c R™is thefeasibleregion, defined by a set of constraints on the decision variables. Objectitersec
are images of decision vectors and can be writtenad(x) = (f1(x),. .., fm(X)), with z € ®, where

® is the image of), i.e.,f : Q@ — ® C R™. An objective vector is said todominate Z/, denoted as
z > Zif z;, < z; for all k£ and there exists at least ohesuch that:;, < z;. A pointx is Pareto-optimal

if there is no othex’ € Q) such thaf(x’) dominates(x). The set of Pareto-optimal solutions is called
Pareto set (PS). The corresponding set of Pareto-optimal objective vectordési €areto front (PF).

The Active Learning of Pareto fronts (ALP) algorithm [1] learnsamalytical model of the Pareto
front from a training set of approximated Pareto-optimal vectors. TharigaPareto-optimal vectors are
obtained by solving different scalarized instances of the original M@&rder to minimize the compu-
tational effort (measured as number of evaluations of the MOP objectinaions), informative training
objective vectors are selected by applying active learning principles.eXperimental results reported
in [1] show that ALP outperforms the state-of-the-art MMEA and NSGAalgorithms over widely-
used continuous-optimization benchmarks, including a set of four welkkMdOPS with disconnected
Pareto front. However, the benchmarks considered in the experimentakcison haveonnected fea-
sible decision and objective spaces.

This paper highlights a possible generalization of ALP to tackle continuouBdM@erehe feasible
decision and objective spaces are disconnected. To validate the ALP extension, the formulation of a well-
known continuous MOP is modified to obtain disconnected feasible decistbolgeactive spaces. We
are not aware of established benchmark problems in the literature with thissfe®ur contribution can
also be considered a first attempt to fulfill this lack, in the spirit of simulatingweald optimization
tasks.

2 TheALP algorithm

Under mild smoothness conditions on the objective functions, the PF exhibitaiaretructure. In
particular, the PF of a problem with objectives is gm — 1)-dimensional piecewise-continuous man-
ifold [2]. Furthermore, the dominance relation enables a functional fotionlaf the PF. As matter of
fact, the PF can be characterized by expressing an arbitrary objasti@dunctiory of the remaining
objectives.

The current version for the ALP algorithm focuses on bi-objectivdlemms, where the Pareto front
is a piecewise-continuous curge = g(z1). An equivalent formulation consists of expressingas a
function of z5. Without losing generality, we adopt the former formulation. Possible géimations of
ALP with an arbitrary number of objectives are under investigation. Utideabove regularity assump-
tions, ALP casts the identification of the Pareto front into a superviseeéssign task. The target of
the regression task is an approximatipof the unknown functiory, with the input and the output of
the regression problem being the independent objectiand the dependent objective, respectively.
The approximatiorg is learnt from a set of approximated Pareto-optimal vectors, each on&ling a
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training examplé€ z1, z2). The training set is generated iteratively by applying the uncertainty sampling
principle (active learning). At each iteration, a new informative trainingnegle is generated first by
selecting the inpuf; where the prediction of the current PF mogé$ most uncertain and then by com-
puting the supervised information fér. The supervised information consists of the output g(21),
obtained by solving the single-objective optimization task formulated by the maticahy@ogram (1),
whereQ) C R" identifies the decision region of the MOP. Letbe theexact solution of program (1).
Then, 2z, = f2(x). The objective vectog = {2, 22} is Pareto-optimal, i.e32 = g(21). The slack
variablee in program (1) relaxes the equality constraifitéx) = ;. When arapproximated solution of

the above problem is obtainednaisy training example is generated.

min f2(x)
subject to min - 21— fi(x)
fi(x) =21 +¢ subject to
el <1072 A <A <a
x € Q x € ()
Program 1: Generation of the supervised information for Program 2: Identification of the infeasible-interval lower
a selected input; . bound.

The ALP algorithm consists of an initialization phase followed by a refinemieasg. The former
stage provides an initial approximatigirom s approximated Pareto optimal vectors obtained by solving
s instances of the problem (1) felinputsz; selected uniformly at random in the regression domain. We
useds = 1 in the experiments reported below. The latter stage refjneg iteratively increasing the
training set with the example selected by the active learning principle, atrdingig the model for
the following refinement. ALP stops when the predictive uncertainty of theeipis negligible over
the whole regression domain (i.e., the information gain obtained &mnadditional training example is
negligible), or a limit on the number of training iterations or MOP function evalnatitas been reached.
A detailed description of ALP can be found in [1].

3 Extension to tackle disconnected feasible decision and objective spaces

The work in [1] also extends the basic framework of ALP, sketched in theigus section, to solve
continuous MOPs with a disconnected Pareto front, but eatinected feasible decision and objective
spaces. In this case, ALP algorithm learns an approximatiohthe whole lower boundarj of the
objective space. By definitior, entails the Pareto front of the MOP. An approximatipaf g can thus
be obtained fronk by applying the dominance relation.

However, real-world continuous-optimization tasks may exHdtsitonnected feasible decision and
objective spaces. When the feasible objective space is disconne&sgulptiem (1) may be infeasible.
In this case, the input; belongs to an interval whereis not defined (infeasible interval). Our extension
of ALP identifies the lower bound and the upper bound of the infeasiblevaitand updates the regres-
sion domain by removing the infeasible interval. From now on, the ALP extengibbe referred to by
the acronym ALPI, where the final letter “I” denotes the ability in handlingasible intervals.

The lower bound is obtained by solving the non-linear program (2). $ denote by$! = f;(x) <
%1 the training input closest to the infeasible query input Program (2) consists of searching for the
feasible decision vectat, with f1(x) € [£¢, 21], minimizing the distance between and f;(x). A
robust approach to solve the non-linear program (2) is provided byt start continuous local search
method introduced in [3] and implemented in the Matlab global optimization toolbog.c®htinuous
local search algorithm is initialized with the feasible starting peifit When there are no training
inputsz; < z;, ALPI first identifies one feasible point with f;(x) < 2; by maximizing the distance
z1 — f1(x) and then solves the non-linear program (2). An analogous procesdadopted to identify
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Figure 1. Selected iterations from a sample run of ALPI, showing the ideatiidin of the domain of: and the generation
of informative training examples. The solid black lines define the boyndfathe disconnected components of the feasible
objective space, while the disconnected PF is highlighted with the green cbher solid blue lines define the piecewise-
continuous approximatioh learnt by ALP from the training set represented by the square-maniieds. The gray-shaded
area denotes the predictive uncertainty of the learnt model.

the upper bound of the infeasible interval.

4 Experimental results

The formulation of the widely-used ZDT3 MOP from the benchmark suite & been modified to
obtain disconnected feasible decision and objective spaces. In Fig.dgltt black lines define the dis-
connected components of the feasible objective space, while the disted®d- is highlighted with the
green color. The solid blue lines define the piece-wise continuous d@pptian - learnt by ALP form
the training set represented by the square-marked points. The gadgesarea denotes the predictive un-
certainty of the PF model (a larger area corresponds to more uncemdictpyns). The different figures
refer to refinement iterations one (i.e., the initialization phase, with only one imaiaing example), six
and twenty of a selected ALPI run. Comparable results are observddfesent runs. When increasing
the number of iterations, the disconnected domaih isfcorrectly identified. At the sixth refinement it-
eration, the infeasible interval located between the values 0.5 is and 0.6vered. At iteration twenty
all the infeasible intervals are accurately identified, while the predictivertaiaty of the learn model
is sensibly reduced. Therefore, ALPI can learn an accurate ntodkthe lower boundary:, with the
exception of the leftmost feasible component of the disconnected feabieletive space, where noisy
training examples affect the quality of the approximation. Future work willdeted to increase the
robustness to noisy training examples and to reduce the computationafiefferms of the number of
evaluations of the original MOP objectives).
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