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Abstract

Real world decision making problems often in-
volve both discrete and continuous variables and
require a combination of probabilistic and deter-
ministic knowledge. Stimulated by recent ad-
vances in automated reasoning technology, hy-
brid (discrete+continuous) probabilistic reasoning
with constraints has emerged as a lively and fast
growing research field. In this paper we provide
a survey of existing techniques for hybrid prob-
abilistic inference with logic and algebraic con-
straints. We leverage weighted model integration
as a unifying formalism and discuss the differ-
ent paradigms that have been used as well as the
expressivity-efficiency trade-offs that have been in-
vestigated. We conclude the survey with a compar-
ative overview of existing implementations and a
critical discussion of open challenges and promis-
ing research directions.

1 Introduction
Achieving general-purpose machine reasoning requires both
the ability to jointly model discrete and continuous vari-
ables as well as the ability to integrate both probabilistic
and deterministic knowledge. In real-world scenarios, hy-
brid domains are extremely common, from transport mod-
elling and traffic forecasting [Hensher and Button, 2007]
to probabilistic robotics [Thrun et al., 2005] and cyber-
physical systems [Lee, 2008]. Probabilistic graphical mod-
els (PGMs) [Koller and Friedman, 2009] offer a principled
way for modeling uncertainty and have been extensively stud-
ied over the last three decades. Although initially restricted
to purely discrete or purely continuous settings, they have
been progressively extended to increasingly general hybrid
settings, i.e., settings with discrete and continuous variables.

Early approaches to hybrid probabilistic modeling re-
lied on discretization of the continuous variables [Friedman
and Goldszmidt, 1996; Kozlov and Koller, 1997] or made
strong distributional assumptions, such as conditional Gaus-
sian (CG) models [Lauritzen, 1992], which do not allow to
condition a discrete variable on continuous ones. These as-
sumptions severely impact the expressiveness of the models.

For instance, it is not possible to model whether a thermo-
stat will trigger given the measured temperature. More re-
cent approaches to hybrid probabilistic models include hybrid
Markov random fields [Yang et al., 2014] and hybrid sum-
product networks [Molina et al., 2018; Bueff et al., 2018].
The former assumes that conditional distributions can be
specified using heterogeneous univariate distributions from
the exponential family, while the latter extends SPNs by al-
lowing for piecewise polynomials over continuous variables.

A drawback of the approaches considered above is that
they do not support deterministic relations, i.e., hard con-
straints, between variables. These constraints can either arise
from the problem itself, such as laws of physics, or they
could be instrumental in characterizing the desired behavior
of the system, such as safety or fairness constraints. Consider,
for example, planning a robust supply system for a chain of
stores [Belle et al., 2015b]. Probabilistic estimates of travel
times between pairs of stores should be combined with hard
constraints involving stores to be supplied, number of vehi-
cles available and total travel time for a vehicle being the sum
of the travel times for the different stores it supplies. Recent
years have witnessed a growing research interest in model-
ing and solving problems with such deterministic relations,
by developing inference algorithms for hybrid probabilistic
models that support algebraic and logical constraints. This
survey aims at characterizing the most prominent techniques
and identifying open challenges in this field.

First, we introduce a canonical formulation for hybrid
probabilistic inference tasks based on Weighted Model Inte-
gration (WMI) [Belle et al., 2015b] (Section 2). Second, we
characterize the different expressiveness-efficiency trade-offs
that have been investigated to mitigate the computational cost
associated with probabilistic inference (Section 3). Third, we
present the different paradigms that have been used to address
the two main components of hybrid probabilistic inference,
combinatorial enumeration and the integration, and how they
are used by solver implementations (Section 4). In Section 5
we discuss approaches to probabilistic inference with con-
strains in the probabilistic programming literature Finally, we
discuss the most relevant open challenges as well as promis-
ing research directions that address them (Section 6).
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2 A Canonical Formulation
For probabilistic graphical models, weighted model counting
(WMC) has emerged as a canonical formulation of the proba-
bilistic inference task [Chavira and Darwiche, 2008]. Instead
of describing and implementing inference algorithms directly
on the level of PGMs, WMC abstracts a query in a PGM to
a computation on a propositional formula. Each literal in the
propositional formula is given a weight and the answer to the
query in the PGM is the weight of the propositional formula,
also called the weighted model count.1

Definition 1 (Weighted Model Count). Given a set b of M
Boolean variables, a weight function w : BM→R≥0, and a
propositional formula φ (called support) over b, the weighted
model count is

WMC(φ,w|b) =
∑

bI∈Ib(φ)

w(bI) (1)

Ib(φ) is the set of interpretations that satisfy φ.
Traditionally, WMC is used when the weight function w

factorizes as a product of weights of literals:

WMC(φ,w|b)=
∑

bI∈Ib(φ)

∏
bi∈bI

w(bi) (2)

This has the algorithmic advantage that dynamic program-
ming techniques can be deployed [Bellman, 1957], which
mitigates the computational hardness of computing the
weighted model count (#P-hard), i.e., of performing prob-
abilistic inference.

One obvious shortcoming of propositional logic formulas
is their inability to express continuous random variables (un-
countable sets). Consequently, WMC is unable to fully ex-
press inference over continuous variables, as well. In a sem-
inal paper, Belle et al. [2015a] extended WMC to include
continuous variables. They dubbed their canonical formu-
lation weighted model integration (WMI). A key innovation
was to replace propositional logical formulas with so-called
(quantifier-free) satisfiability modulo theory (SMT) formu-
las [Barrett and Tinelli, 2018], a unifying language for ex-
pressing combinations of logical and algebraic constraints.
Definition 2 (SMT(LRA) formula). Let b be a set of M
Boolean and x a set of N real variables. An atomic for-
mula is an expression of the form

∑
i ci·xi./c, where the

xi∈x, ci, c∈Q, and ./∈{=, 6=,≥,≤, >,<}. We then define
SMT(LRA) theories as Boolean combinations (by means of
the standard Boolean operators {¬,∧,∨,→,↔}) of Boolean
variables in b and of atomic formulas over x.

The acronym LRA in SMT(LRA) stands for linear real
arithmetics, which already implies that the algebraic con-
straints on the real variables can only be of a linear form.
While WMI has mostly been studied on SMT(LRA) formu-
las, variations have been proposed to handle non-linear con-
straints [Zuidberg Dos Martires et al., 2019; Fuxjaeger and
Belle, 2020; Afshar et al., 2016] or integers instead of re-
als [Kolb et al., 2018a].

1We refer the interested reader to [Chavira and Darwiche, 2008]
on how to encode discrete PGMs as Boolean formulas.

In this survey we focus on SMT(LRA) and from now on
omit the LRA specification.
Definition 3 (Weighted Model Integral). Given a set b of
M Boolean variables, x of N real variables, a measurable
weight function w : BM×RN→R≥0, and a support φ in the
form of an SMT formula over b∪x, the weighted model inte-
gral is

WMI(φ,w|x,b)=
∑

bI∈I(φ)

∫
I(φbI )

w(xI ,bI)dxI (3)

The symbol I(φbI ) denotes the set of satisfying interpreta-
tions where Boolean variables have been substituted by the
values in the interpretation bI . In the absence of continuous
variables (x=∅) WMI reduces naturally to WMC2.

Formulations of WMI such as in Definition 3 usually allow
for combinatorics in the weight function by using indicator
functions, for instance, w(x) = Jx > 0Kx + Jx ≤ 0Kx2
(for this weight function to be measurable we assume x to be
bounded, for instance on the [−10, 10] interval).

Following observations made by Kolb et al. [2019a], we
reformulate weighted model integration using a weight func-
tion with no (hidden) combinatorics.3

Example 1. Let us consider again the weight function
w(x) = Jx > 0Kx+Jx ≤ 0Kx2. We can pull out the combina-
torics of the weight function by introducing a fresh Boolean
variable bx>0 ↔ (x > 0). Now we conjoin the support φ
with (bx>0 ↔ (x > 0)) and add a dependence on bx>0 in the
weight function: w(x, bx>0) = x and w(x,¬bx>0) = x2.

Pulling out the combinatorics of the weight function fore-
shadows the separation of the WMI problem into a combi-
natorics problem and an integration problem (cf. Section 4).
While the combinatorics problem is also present in WMC, the
integration problem is unique to WMI.

In order to explicitly indicate that we are working with a
combinatorics-free weight function we will use the notation
wb(x) instead of w(x,b). The weighted model integral is
now expressed as:

WMI(φ,w|x,b) =
∑
b

∫
Jφ(x,b)Kwb(x)dx (4)

Note that we wrote the weighted model integral as a sum-
mation and integration over all values of the variables in b
and x, instead of the satisfying interpretations of φ. The
non-satisfying interpretations are filtered out by the indicator
function Jφ(x,b)K.

In Equation 4 we see the two sub-problems that make up
WMI: 1) finding all disjoint regions encoded in the support
φ(x,b) and 2) integrating out the continuous variables over
these regions. Kolb et al. [2019a] dubbed the region finding
problem λ-SMT. In the case of exclusively linear constraints,
the regions form convex polytopes.

2An other special case of WMI that has received some attention
in its own right is the unweighted case – also referred to as #SMT
(just as #SAT is the unweighted case of WMC) [Ma et al., 2009;
Phan and Malacaria, 2014; Chistikov et al., 2015; Zhou et al., 2015].

3Note that in practice many WMI solver do no pull out the com-
binatorics of the weight function as it might be detrimental to the run
time of the solver. We perform this step for the sake of exposition.
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Figure 1: Example of a piecewise distribution with three pieces de-
scribed by different weight functions f1, f2 and f3. The conditions
of the pieces and the feasible area are modeled by univariate and
multivariate constraints in the support, as is the query.

Probabilities. In general, a weighted model integral returns
a positive real number, which we can easily map to a proba-
bility by dividing the weighted model integral by a normal-
ization constant Z = WMI(σ,w|x,b), where σ denotes the
support of the (unnormalized) distribution.

pw,σ(φ) =
WMI(φ ∧ σ,w|x,b)

Z
(5)

Conditional Probabilities. Let us assume we would like
to query the probability of the SMT formula φ being satis-
fied given the SMT formula ψ (see Figure 1 for an example).
We can express this conditional probability in terms of two
weighted model integrals:

pw,σ(φ|ψ)=
pw,σ(φ ∧ ψ)
pw,σ(ψ)

=
WMI(φ ∧ ψ ∧ σ,w|x,b)
WMI(ψ ∧ σ,w|x,b)

(6)

3 Expressiveness
The generic formulation introduced in Section 2 allows a
wide range of problems to be modeled. However, performing
inference using such an expressive formulation can be costly.
Therefore, many existing approaches restrict the expressive-
ness of the problems they solve by imposing additional con-
straints on the formulation.

These simplifying assumptions commonly fall into one
of three categories: 1) imposing constraints upon the co-
occurrence of continuous variables within SMT literals; 2)
assuming the support to be in conjunctive normal form (CNF)
and imposing constraints upon the co-occurrence of variables
within clauses4; and 3) restricting the parametric families
used in the weight function.

3.1 Co-occurrence of Variables Within Literals
In propositional logic, literals consist of either a constant truth
value, a Boolean variable or its negation. Literals thus contain
at most one variable. In SMT, however, multiple continuous
variables may co-occur within a literal. For example, the vari-
ables x and y both occur in the literal x + 1.5y ≤ 3. These
co-occurrences introduce dependencies between literals that
complicate probabilistic inference.

Univariate Literals. To avoid any such complications, sev-
eral approaches [Belle et al., 2016; Molina et al., 2018; Zuid-
berg Dos Martires et al., 2019] disallow any co-occurrence of

4A clause is a disjunction of literals, e.g., (x ≤ y)∨ (x ≤ z)∨a,
and a formula in CNF consists of a conjunction of clauses.

variables within literals, restricting themselves to problems
with univariate inequalities of the form ±x ≤ c, where c is
a constant. Recall that probabilistic inference requires two
steps: solving the λ-SMT problem and integrating polytopes.
By using univariate literals, the integration of a polytope can
be simplified:

WMI(φ,w|x,b) =
∑
b

Jφ(b)K
∫ ∏

x∈x
Jφ(x)Kwb(x)dx (7)

By further restricting the weight function to be fully-
factorizable, i.e., w(x) =

∏
x∈x wx(x), the integration step

itself can, for many families of weight functions, be computed
in polynomial time:

WMI(φ,w|x,b) =
∑
b

Jφ(b)K
∏
x∈x

∫
Jφ(x)Kwb(x)dx (8)

Structured Multivariate Literals. Supporting only uni-
variate literals allows for more efficient inference, however, it
comes at a steep cost in expressiveness, as no multivariate de-
pendencies or queries can be supported. If the co-occurrence
of variables within literals fulfills certain properties, the in-
ference task can still be simplified. One tool to analyze such
properties is the Literal Interaction Graph (LIG) [Derkinderen
et al., 2020]. The nodes of the LIG are the continuous vari-
ables and there is an edge between any two variables that co-
occur in a literal. If a formula has an LIG that contains mul-
tiple components C, the integration over the formula can be
nested to integrate the variables of one component at a time.
The integral to be solved in a WMI problem becomes:∫ ∏

xc∈C
Jφc(xc)Kwb(x)dx (9)

=

∫
Jφc1(xc1)K...

∫
Jφcn(xcn)Kwb(x)dxcn ...dxc1 (10)

If, additionally, the weight function factorizes into the same
components, all components can be integrated independently.

(10) =
∏

xc∈C

(∫
Jφc(xc)Kwb,c(xc)dxc

)
(11)

The complexity of integration will then depend on the maxi-
mal size of the components.

Exploiting additional properties such as the tree-width or
the cardinalities of edges in the tree decomposition of the
LIG is a topic of current research. In this line of work, re-
strictions are typically not imposed upfront, rather structure
in problems is dynamically recognized and exploited [Kolb
et al., 2019b; Derkinderen et al., 2020].

3.2 Co-occurrence of Variables Within Clauses
In addition to restricting the co-occurrence of variables within
literals, several approaches based on message-passing [Zeng
and Van den Broeck, 2019; Zeng et al., 2020b; Zeng et
al., 2020a] assume the support to be in CNF and restrict
the co-occurrence of variables within clauses of the support.
Intuitively, dependencies between variables co-occurring in
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clauses arise because the truth values of literals in a clause
affect each other. By allowing at most two variables to co-
occur within a clause, message-passing algorithms can ag-
gregate messages using partial symbolic integrations over a
single variable at a time. For these algorithms to converge,
they additionally require the dependencies between variables
to be acyclic, as is the case for discrete message passing al-
gorithms.

3.3 Parametric Families for the Weight Function
The parametric family used to express the continuous densi-
ties has a large impact on the ability to efficiently integrate
over it, especially for multivariate linear constraints. As a re-
sult, most approaches relying on exact integration use piece-
wise polynomial densities [Sanner and Abbasnejad, 2012;
Belle et al., 2015a; de Salvo Braz et al., 2016]. This class
of functions can approximate any density with arbitrary pre-
cision while being closed under integration over convex poly-
topes. Additionally, the integration problem has been exten-
sively studied in literature and addressed with a variety of
techniques (see Sec.4.2).

The adoption of piecewise densities was motivated by ear-
lier work on mixtures of truncated exponentials (MTE) [Cobb
and Shenoy, 2005; Cobb and Shenoy, 2017] and mixtures
of piecewise polynomials (MOP) [Shenoy and West, 2011].
While MTE and MOP are limited to hyper-rectangular de-
compositions of the joint density, most of the piecewise-
polynomial approaches considered here allow for arbitrary
linear decompositions. When allowing only univariate con-
ditions or using approximate integration, other types of func-
tions can be used as well. Several approaches have opted for
Gaussians or mixtures of Gaussians [Gutmann et al., 2010a;
Merrell et al., 2017; Zuidberg Dos Martires et al., 2019].

4 Paradigms and Solvers
Inference in this setting poses two main challenges: enumer-
ating 5 the solutions of a combinatorial space and integrating
the density function over convex regions. The first problem is
well studied in the literature. While solving it exactly is #P-
complete in general [Valiant, 1979], modern algorithms can
scale up to thousands of variables. As described later, some
successful ideas proposed in discrete inference were also ap-
plied in hybrid settings. The second problem has received
less attention in the probabilistic inference field. Algebraic
constraints among multiple variables pose considerable chal-
lenges. In this context, many known families are not closed
under marginalization and the integration problem is typically
computationally hard. In fact, even computing the volume of
a convex polytope is #P-hard [Dyer and Frieze, 1988].

4.1 Combinatorial Enumeration
We now review ideas that have been used to address the com-
binatorial enumeration problem (λ-SMT) in WMI.

5For lack of better words, we use ”enumeration” to describe the
process of eliciting, all possible (countable or uncountable) solu-
tions. Note that in practice, solvers never perform this elicitation
exhaustively.

DPLL-based Inference. A popular approach for solving
WMC is based on exhaustive DPLL search [Birnbaum and
Lozinskii, 1999] and has been generalized to the hybrid
setting. The PRAiSE system implements the DPLL pro-
cedure using a custom search engine called Probabilistic
Inference Modulo Theories (PIMT) [de Salvo Braz et al.,
2016]. Alternatively, external oracles such as modern CDCL-
based lazy SMT solvers have been used [Belle et al., 2015a;
Morettin et al., 2017]. The latter family of techniques is well
suited for problems with a heavy combinatorial component,
where it can fully leverage the latest developments in SMT
solving. For instance, WMI-PA [Morettin et al., 2017] uses
predicate abstraction [Lahiri et al., 2006] instead of a block
clause enumeration strategy, which lead to significant speed
ups in run time, especially when density functions contain
combinatorics themselves.

Under the simplifying assumption of univariate con-
straints, efficient DPLL-based techniques developed for solv-
ing WMC can be ported to WMI. For example, WMI-
CC [Belle et al., 2016] showed that component caching
(CC) [Sang et al., 2004] avoids redundant path enumerations
and, hence, recomputing integrals.

Knowledge Compilation. Many state-of-the-art ap-
proaches to probabilistic inference for WMC are based on
knowledge compilation [Darwiche and Marquis, 2002].
The idea is to split up inference in a computationally hard
off-line step that yields an evaluable data structure and a
tractable on-line step [Chavira and Darwiche, 2008]. Given
a compiled structure, called arithmetic circuit, probabilistic
inference can be performed cheaply and repeatedly for
different parameters (weight functions).

Using circuit representations for hybrid probabilistic prob-
lems was pioneered by Sanner and Abbasnejad [2012]. They
introduced the symbolic variable elimination (SVE) algo-
rithm, which performs symbolic integration on a so-called
extended algebraic decision diagram (XADD). Later on,
Kolb et al. [2018a] improved upon SVE by implement-
ing a caching scheme that reuses partial symbolic computa-
tions. An alternative circuit representation for WMI prob-
lems, based on sentential decision diagrams (SDDs) [Choi
et al., 2013] and called XSDDs, was introduced in a cou-
ple of recent papers [Zuidberg Dos Martires et al., 2019;
Kolb et al., 2019b], which lead to the development of a set
of inference algorithms: Symbo, Sampo, and F-XSDD. In
an independent effort, compilation to XSDDs was also intro-
duced by Fuxjaeger and Belle [2020] who also presented the
solver WMISDD for separable non-linear constraints.

A key issue in probabilistic inference is variable ordering,
i.e., determining the order in which one wants to marginalize
out variables. Finding the optimal variable ordering that min-
imizes the size of a compiled circuits is an NP-hard problem
in the context of hybrid inference. This issue has again been
studied by adopting and extending techniques from the WMC
setting [Derkinderen et al., 2020].

Note that current knowledge compilation approaches use
bottom-up compilation. A direction for future research
could be to investigate top-down compilation, which is based
on DPLL search. In the discrete setting, top-down com-
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pilation has been shown to outperform bottom-up compi-
lation [Huang and Darwiche, 2004]. This would require
the unification of ideas from extended decision diagram ap-
proaches [Sanner and Abbasnejad, 2012] and modern DPLL
approaches [Morettin et al., 2017].

AND/OR Search-Based Inference. Zeng et al. [2019] pro-
posed a unique approach to WMI, based on the observation
that a volume computation can be reduced to univariate in-
tegration of a specific polynomial. The algorithm, dubbed
search-based model integration (SMI), first reduces WMI to
a volume computation by introducing additional continuous
variables, in order to incorporate both the discrete combina-
torics and the weight function into a possibly non-convex vol-
ume. Then, it uses a variant of AND/OR search, which makes
it closely related to DPLL based approaches, to find the tar-
get piecewise polynomial whose integral is equivalent to the
resulting volume. Notably, the AND/OR search assumes a
tree-shaped dependency graph, but the reduction to MI pre-
serves the treewidth of the problem only if the weights are
monomials, thus limiting its use to restricted settings.

Message Passing. Building upon SMI, a recent approach
solves WMI by reducing it to message passing on a pairwise
factor graph with bivariate factors. This approach assumes
the support to be in CNF, allows for at most two variables
to co-occur within a clause and requires the weight function
to be factorizable into bivariate polynomials over variables
that co-occur in the support (see Section 3.2). Under this as-
sumption, message aggregations conveniently reduce to sym-
bolic products and partial integrations over one variable at the
time. This approach is implemented in MPWMI [Zeng et al.,
2020b], which is exact on acyclic factor graphs.

Inspired by the relax, compensate then recover
(RCR) [Darwiche, 2010] algorithm for discrete approx-
imate inference, ReCoIn (RElax, COmpensate then INte-
grate) [Zeng et al., 2020a], lifts the acyclicity assumption
by first removing some edges in the factor graph to obtain
an acyclic relaxation of the original problem. Pairwise
dependencies (x ./ y) are relaxed by first introducing a
copy variable (x = x′) ∧ (x′ ./ y) and relaxing (removing)
the equality constraint. The algorithm compensates for the
relaxed equalities by optimizing the parameters of newly
introduced potentials in order to match the marginals of
x and x′. Then, MPWMI can be used to compute exact
inference on the acyclic relaxation of the original problem.

Sampling. A variety of sampling-based approaches have
been proposed to deal with situations where an exact so-
lution is out of reach. It is well known that traditional
sampling techniques have poor performance in highly struc-
tured spaces. Several approaches that have been proposed
to mitigate this problem for discrete probabilistic inference
have extended to the hybrid case. Discrete approaches us-
ing hashing-based projections that rely on decision- [Meel
et al., 2016] or optimization oracles [Ermon et al., 2013]
have been extended to use SMT oracles to approximate the
volume of a an SMT formula [Chistikov et al., 2015] or its
weighted model integral [Belle et al., 2015b] for supports in
CNF (ApproxWMI-CNF). While approximating the discrete
WMC problem for supports in CNF is NP-hard, requiring

the support to be in disjunctive normal form (DNF) makes
WMC amenable to fully polynomial randomized approxima-
tion schemes (FPRAS). Abboud et al. [2020] have extended
this approach in their ApproxWMI-DNF solve, proving that
WMI for supports in DNF also admits FPRAS by building
on FPRAS for volume estimation of unions of convex bod-
ies [Dyer et al., 1991; Bringmann and Friedrich, 2010].

4.2 Integration
Decomposition into Simplices. Early approaches to WMI
used polynomial weight functions, which was driven by the
availability of LattE [Baldoni et al., 2011; De Loera et al.,
2013]. LattE is a high-performance integration library for
exact integration of polynomials on convex polytopes. The
algorithm works by decomposing the convex polytope into
(signed) simplices and computes integrals by summing up the
(signed) values of the integral in each simplex. The complex-
ity scales exponentially in the number of dimensions, and the
run-time for computing integrals starts slowing down consid-
erably for≈10-dimensional polytopes. VINCI [Büeler et al.,
2000] is a competitor of LattE, based on the same principle.
Even though LattE is technically a symbolic algorithm, we
consider it to be a numeric integration algorithm as it can only
produce definite integrals.

Fourier-Motzkin Elimination. A second exact integration
technique that has found use in probabilistic inference under
algebraic constraints is symbolic integration. Symbolic inte-
gration is one of the core functionalities of any computer al-
gebra system (e.g., SymPy [Meurer et al., 2017]). Contrarily
to the simplex decomposition approach, symbolic integration
algorithms integrate out variables one by one, always using
Fourier-Motzkin elimination [Imbert, 1990].6 The advantage
of symbolic integration is that it produces intermediate re-
sults after integrating out each variable in a functional form
(e.g. symbolic expression tree). These functional intermedi-
ate results can be cached and used in a dynamic programming
algorithm [Kolb et al., 2018a; Zuidberg Dos Martires et al.,
2019] or in a message passing scheme [Zeng et al., 2020b].
A disadvantage of symbolic integration with regards to the
simplex decomposition approach is its poor scaling behavior:
integrating polynomials in dimensions >3 over convex poly-
topes becomes practically infeasible.

Monte Carlo Approximation. As integration is inevitably
a computationally hard problem, the only viable option to
scale to high dimensions is approximation. Monte Carlo
(MC) approximation is well-studied for unconstrained proba-
bilistic inference but has received less attention in the con-
strained probabilistic inference literature. The problem is
that Monte Carlo samplers that have been developed for
the unconstrained setting will fail in high-dimensional con-
strained spaces: the sample rejection rate will simply ex-
plode. This is also true for Sampo, the first MC-based
WMI algorithm presented in [Zuidberg Dos Martires et al.,
2019]. Investigating ad-hoc MC integration techniques is,
however, a promising future research direction, especially as

6Fourier-Motzkin elimination is to a system of inequalities what
Gaussian elimination is to a system of equalities.
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Combinatorial Enumeration Integration ExpressivenessAlgorithm Exact Method Exact Sym. Method Parametric form Assumptions
WMI-CC X DPLL-SMT X LattE + CC Mul. polynomial UC
WMI-PA * X DPLL-SMT X LattE Mul. polynomial -
PRAiSE X DPLL-PIMT X X PIMT Mul. polynomial -
SVE X KC-XADD X X XADD Mul. polynomial -
BR * X KC-XADD X X XADD Mul. polynomial -

F-XSDD * X KC-XSDD X X XADD / PSI Mul. polynomial -
WMISDD X KC-XSDD X SciPy/ LattE Mul. polynomial -
Symbo * X KC-XSDD X X PSI Mul. Gaussian UC
Sampo X KC-XSDD MC Mul. Gaussian -
SMI X MI + AND/OR search X X univ. integration Biv. monomials BC, CNF, A

MPWMI * X MP X X SymPy Biv. polynomial BC, CNF, A
ReCoIn MP X X SymPy Biv. polynomial BC, CNF

ApproxWMI-CNF hashing + SMT X LattE Mul. polynomial CNF
ApproxWMI-DNF FPRAS X LattE Mul. polynomial DNF

Table 1: Overview of the existing implementations: whether they solve the combinatorial enumeration exactly or approximately and what
method they use; whether they solve the integration exactly or approximately, symbolically or numerically and what method they use; their
expressiveness expressed in terms of 1) the parametric form of the weight function; 2) whether they restrict the support to contain only acyclic
(A), univariate (UC) or bivariate constraints (BC); and whether they require a certain form (CNF or DNF). Solvers marked with * are included
in the pywmi suite [Kolb et al., 2019a].

samples can be drawn in polytime from log-concave func-
tions constrained by convex polytopes [Lovász and Vempala,
2006] (an implementation can be found in the VolEsti li-
brary [Emiris and Fisikopoulos, 2014]). First attempts in
this direction have been presented in [Afshar et al., 2016;
Zuidberg Dos Martires and Kolb, 2020].

4.3 Solvers
We provide an overview of the existing implementations and
report the tools that they are based on. The inference algo-
rithms relying on an external SMT oracle either use Math-
SAT [Cimatti et al., 2013] or Z3 [de Moura and Bjørner,
2008]. Numerical integration is solved exactly using LattE
or approximately with MC estimates. Symbolic integration
is either based on external tools like PSI [Gehr et al., 2016],
SciPy [Virtanen et al., 2020] or SymPy [Meurer et al., 2017],
or it is performed via operations on XADDs. Compilation to
XSDDs is built upon pysdd7.

Table 1 illustrates how the available systems handle the
combinatorial enumeration and integration. We report the
parametric forms supported for the continuous distributions
and the assumption made: univariate or bivariate constraints
only, whether the constraints must be specified in CNF / DNF
and whether the algorithm assumes an acyclic structure.

5 WMI and Probabilistic Programming
From a software perspective, weighted model integration
solvers can be regarded as computer algebra systems (think
(Matlab or SymPy) that perform probabilistic inference via
symbol manipulations, e.g. simplifications of algebraic con-
straints or parametric functions. This is especially true for
WMI solvers that perform exact inference. It should, hence,
not come as a surprise that probabilistic programming lan-
guages that rely on exact symbolic inference have also started
to support algebraic constraints.

7https://github.com/wannesm/PySDD

An early attempt of including algebraic constraints in
probabilistic programming is the work of Gutmann et
al. [2010b], who extended the probabilistic programming lan-
guage ProbLog [Fierens et al., 2015] with continuous vari-
ables by allowing for univariate constraints on normally dis-
tributed variables. Univariate constraints are actually a com-
mon constraint imposed on random variables and supported
by many probabilistic programming languages. Stan [Car-
penter et al., 2017], for instance, supports univariately con-
strained variables by transforming them into unconstrained
variables and performing inference in the unconstrained
space.

Allowing for more expressive (linear multivariate) con-
straints necessitates more powerful symbolic inference en-
gines to be included in the probabilistic inference engine.
Probabilistic languages in this direction are (PCLP) [Michels
et al., 2015], FairSquare [Albarghouthi et al., 2017], and PSI.

It is noteworthy that Michels et al. [2015] developed, inde-
pendently of the WMI literature, a generalization of weighted
model counting that enables them to perform probabilis-
tic inference in the PCLP language [Michels et al., 2013;
Michels et al., 2016]. Of interest to the WMI community
might be their approximate inference algorithm [Michels et
al., 2016] that iteratively splits up the feasible space into mu-
tually exclusive pieces and calculates bounds for each piece.
This translates to iteratively tighter and tighter error bounds
on the queried probabilities.

As noted by Zuidberg Dos Martires et al. [2019], proba-
bilistic languages that handle algebraic constraints (PSI and
PCLP) usually fail to handle well logical constraints, too.
To tackle this issue, an interesting avenue of future research
would therefore be the deployment of WMI solvers as the
inference backend of probabilistic programming languages.
First efforts in this direction have been presented in [Zuid-
berg Dos Martires et al., 2018] and [Zuidberg Dos Martires,
2020].
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6 Future Directions
Most of the research work on hybrid probabilistic infer-
ence with constraints has focused on the task of computing
marginals. While many of the proposed approaches can be
naively adapted to handle MAP inference by combining enu-
meration and maximization, support for this type of queries in
existing implementations is still lacking, and further research
is needed to make MAP inference with constraints efficient.

As mentioned in Section 2, first approaches that handle hy-
brid problems beyond SMT(LRA) have been proposed and
are interesting research directions in terms of expressivity.
However, given the complexity gap between linear and non-
linear arithmetic, the gain in expressivity comes at a cost. For
instance, non-linear arithmetic over integers is undecidable
in general [Matiyasevich, 1993]. A promising direction for
oracle-based approaches is the recently proposed incremental
linearization approach [Cimatti et al., 2018], that relies on an
abstraction-refinement loop on top of solvers for linear arith-
metic and uninterpreted functions.

Despite these forays into more expressive problems, effi-
ciently computing query probabilities remains an issue to date
and a large part of research efforts in this field remain dedi-
cated to improving inference algorithms. Approximate infer-
ence algorithms can handle expressive models, while exact
inference algorithms can deliver more accurate results. How-
ever, exact algorithms typically impose some restrictions on
the model expressiveness to become more efficient. One in-
teresting direction has been to eschew upfront restrictions on
the expressiveness in favor of recognizing structure in prob-
lems on the fly and exploiting it when present [Kolb et al.,
2019b]. The challenge then is to both efficiently recognize
structure and exploit it effectively. Another direction has
been to identify subsets that can be solved efficiently or even
in polynomial time and learn such representations from data
rather than modeling them by hand [Molina et al., 2018].

While this survey focuses on the probabilistic inference
task, learning hybrid probabilistic models from data is its nat-
ural counterpart. On the one hand, most unconstrained hybrid
models have been equipped with learning procedures [Mur-
phy, 1998; Yang et al., 2014; Molina et al., 2018]. Con-
straint learning, on the other hand, has traditionally mostly
focused on discrete domains [Beldiceanu and Simonis, 2012;
Bessiere et al., 2017] – for an overview see [De Raedt et al.,
2018]. Techniques for inducing SMT theories from data have
been developed in the area of program synthesis [Gulwani
et al., 2017], or by casting learning itself as an SMT prob-
lem [Kolb et al., 2018b]. Directly learning constrained hybrid
models has received less attention. A simple but effective so-
lution consists in separately learning the constraints and the
unconstrained hybrid distribution, and renormalizing the lat-
ter to account for the former [Morettin et al., 2020]. Nonethe-
less, much work is still to be done in order to develop generic,
effective and robust learning strategies.

The techniques developed in this line of research already
found application in maritime safety and security tasks [Ve-
likova et al., 2014], fairness verification of probabilistic pro-
grams [Albarghouthi et al., 2017] and logistics [Morettin et
al., 2019]. Despite these promising applications, research

mostly focused on theoretical aspects and the practical po-
tential of these techniques is still vastly unexplored.
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