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Abstract
Learning on sets is increasingly gaining attention
in the machine learning community, due to its
widespread applicability. Typically, representa-
tions over sets are computed by using fixed aggre-
gation functions such as sum or maximum. How-
ever, recent results showed that universal function
representation by sum- (or max-) decomposition re-
quires either highly discontinuous (and thus poorly
learnable) mappings, or a latent dimension equal
to the maximum number of elements in the set.
To mitigate this problem, we introduce a learn-
able aggregation function (LAF) for sets of arbi-
trary cardinality. LAF can approximate several ex-
tensively used aggregators (such as average, sum,
maximum) as well as more complex functions (e.g.,
variance and skewness). We report experiments
on semi-synthetic and real data showing that LAF
outperforms state-of-the-art sum- (max-) decompo-
sition architectures such as DeepSets and library-
based architectures like Principal Neighborhood
Aggregation, and can be effectively combined with
attention-based architectures.

1 Introduction
The need to aggregate representations is ubiquitous in deep
learning. Some recent examples include max-over-time pool-
ing used in convolutional networks for sequence classifica-
tion [Kim, 2014], average pooling of neighbors in graph
convolutional networks [Kipf and Welling, 2017], max-
pooling in Deep Sets [Zaheer et al., 2017], in (generalized)
multi-instance learning [Tibo et al., 2020] and in Graph-
SAGE [Hamilton et al., 2017]. In all the above cases (with
the exception of LSTM-pooling in GraphSAGE) the aggre-
gation function is predefined, i.e., not tunable, which may
be in general a disadvantage [Ilse et al., 2018]. Sum-based
aggregation has been advocated based on theoretical find-
ings showing the permutation invariant functions can be sum-
decomposed [Zaheer et al., 2017; Xu et al., 2019]. However,
recent results [Wagstaff et al., 2019] showed that this univer-
sal function representation guarantee requires either highly
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discontinuous (and thus poorly learnable) mappings, or a la-
tent dimension equal to the maximum number of elements
in the set. This suggests that learning set functions that are
accurate on sets of large cardinality is difficult.

Inspired by previous work on learning uninorms [Melnikov
and Hüllermeier, 2016], we propose a new parametric fam-
ily of aggregation functions that we call LAF, for learnable
aggregation functions. A single LAF unit can approximate
standard aggregators like sum, max or mean as well as model
intermediate behaviours (possibly different in different areas
of the space). In addition, LAF layers with multiple aggre-
gation units can approximate higher order moments of distri-
butions like variance, skewness or kurtosis. In contrast, other
authors [Corso et al., 2020] suggest to employ a predefined li-
brary of elementary aggregators to be combined. Since LAF
can represent sums, it can be seen as a smooth version of the
class of functions that are shown in [Zaheer et al., 2017] to
enjoy universality results in representing set functions. The
hope is that being smoother, LAF is more easily learnable.
Our empirical findings show that this can be actually the case,
especially when asking the model to generalize over large
sets. In particular, we find that:

• LAF layers can learn a wide range of aggregators (in-
cluding higher-order moments) on sets of scalars with-
out background knowledge on the nature of the aggrega-
tion task.

• LAF layers on the top of traditional layers can learn the
same wide range of aggregators on sets of high dimen-
sional vectors (MNIST images).

• LAF outperforms state-of-the-art set learning methods
such as DeepSets and PNA on real-world problems in-
volving point clouds and text concept set retrieval.

• LAF performs comparably to PNA on random graph
generation tasks, outperforming several graph neural
networks architectures including GAT [Veličković et al.,
2018] and GIN [Xu et al., 2019].

2 The LAF Framework
We use x = {x1, . . . , xN} to denote finite multisets of real
numbers xi ∈ R. Note that directly taking x to be a multiset,
not a vector, means that there is no need to define properties
like exchangeability or permutation equivariance for opera-
tions on x. An aggregation function agg is any function that
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NAME DEFINITION a b c d e f g h α β γ δ LIMITS

CONSTANT κ ∈ R 0 1 - - 0 1 - - κ 0 1 0
MAX maxi xi 1/r r - - 0 1 - - 1 0 1 0 r →∞
MIN mini xi 0 1 1/r r 0 1 - - 1 -1 1 0 r →∞
SUM

∑
i xi 1 1 - - 0 1 - - 1 0 1 0

NONZERO COUNT |{i : xi 6= 0}| 1 0 - - 0 1 - - 1 0 1 0
MEAN 1/N

∑
i xi 1 1 - - 1 0 - - 1 0 1 0

kTH MOMENT 1/N
∑

i x
k
i 1 k - - 1 0 - - 1 0 1 0

lTH POWER OF kTH MOMENT (1/N
∑

i x
k
i )

l l k - - l 0 - - 1 0 1 0
MIN/MAX mini xi/maxi xi 0 1 1/r r 1/s s - - 1 1 1 0 r, s→∞
MAX/MIN maxi xi/mini xi 1/r r - - 0 1 1/s s 1 0 1 1 r, s→∞

Table 1: Different functions achievable by varying the parameters in the formulation in Equation 2.

returns for any multiset x of arbitrary cardinality N ∈ N a
value agg(x) ∈ R.

Standard aggregation functions like mean and max can be
understood as (normalized)Lp-norms. We therefore build our
parametric LAF aggregator around functions of a form that
generalizes Lp-norms:

La,b(x) :=

(∑
i

xbi

)a

(a, b ≥ 0). (1)

La,b is invariant under the addition of zeros: La,b(x) =
La,b(x ∪ 0) where 0 is a multiset of zeros of arbitrary cardi-
nality. In order to also enable aggregations that can represent
conjunctive behaviour such as min, we make symmetric use
of aggregators of the multisets 1−x := {1−xi|xi ∈ x}. For
La,b(1 − x) to be a well-behaved, dual version of La,b(x),
the values in x need to lie in the range [0, 1]. We therefore
restrict the following definition of our learnable aggregation
function to sets x whose elements are in [0, 1]:

LAF(x) :=
αLa,b(x) + βLc,d(1− x)

γLe,f (x) + δLg,h(1− x)
(2)

defined by tunable parameters a, . . . , h ≥ 0, and α, . . . , δ ∈
R. In cases where sets need to be aggregated whose elements
are not already bounded by 0, 1, we apply a sigmoid function
to the set elements prior to aggregation.

Table 1 shows how a number of important aggregation
functions are special cases of LAF (for values in [0, 1]). We
make repeated use of the fact that L0,1 returns the constant
1. For max and min LAF only provides an asymptotic ap-
proximation in the limit of specific function parameters (as
indicated in the last column of Table 1). In most cases, the pa-
rameterization of LAF for the functions in Table 1 will not be
unique. Being able to encode the powers of moments implies
that e.g. the variance of x can be expressed as the difference
1/N

∑
i x

2
i − (1/N

∑
i xi)

2 of two LAF aggregators.
Since LAF includes sum-aggregation, we can adapt the re-

sults of [Zaheer et al., 2017] and [Wagstaff et al., 2019] on
the theoretical universality of sum-aggregation as follows.
Proposition 1. Let X ⊂ R be countable, and f a func-
tion defined on finite multisets with elements from X . Then
there exist functions φ : X → [0, 1], ρ : R →
R, and a parameterization of LAF, such that f(x) =
ρ(LAF (φx);α, β, γ, δ, a, b, c, d), where φx is the multiset
{φ(x)|x ∈ x}.

A proof in [Wagstaff et al., 2019] for a very similar propo-
sition used a mapping from X into the reals. Our requirement
that LAF inputs must be in [0, 1] requires a modification of
the proof (contained in the supplementary material1), which
for the definition of φ relies on a randomized construction.
Proposition 1 shows that we retain the theoretical universal-
ity guarantees of [Zaheer et al., 2017], while enabling a wider
range of solutions based on continuous encoding and decod-
ing functions.

LAF enables a continuum of intermediate and hybrid ag-
gregators. In Figure 1 we plot 4 different randomly generated
LAF functions over [0, 1] × [0, 1], i.e., evaluated over sets of
size 2. Parameters α, . . . , γ were randomly sampled in [0, 1],
b, d, f, h in {0, . . . , 5}, and a, c, e, g obtained as 1/i with i
a random integer from {0, . . . , 5}. The figure illustrates the
rich repertoire of aggregation functions with different quali-
tative behaviours already for non-extreme parameter values.

Learning the functions depicted in Table 1 can in principle
be done by a single LAF unit. However, learning complex
aggregation functions might require a larger number of in-
dependent units, in that the final aggregation is the result of
the combination of simpler aggregations. Moreover, a LAF
layer should be able to approximate the behaviour of simpler
functions also when multiple units are used. Therefore, we
analyzed the application of multiple LAF units to some of
the known functions in Table 1. The details and the visual
representation of this analysis is shown in the supplementary
material. Although using only one function is sometimes suf-
ficient to greatly approximate the target function, the error
variance among different runs is quite high, indicating that
the optimization sometimes fails to converge to a good set of
parameters. Multiple units provide more stability while per-
forming better than a single unit aggregation in some cases.
We therefore construct the LAF architecture for the experi-
mental section by using multiple aggregators, computing the
final aggregation as a linear combination of the units aggre-
gations. Several LAF units can be combined as shown in
Figure 1, to capture different aspects of the input set, which
can be in general a multiset of vectors x = {x1, . . . , xN},
where now xi ∈ Rd. Note that multiple aggregators are also
used in related frameworks such as DeepSets [Zaheer et al.,
2017] or Graph Neural Networks [Veličković et al., 2018;

1See https://github.com/alessandro-t/laf for supplementary ma-
terial and code.

https://github.com/alessandro-t/laf


LAF1 LAF2 LAFr

x1 x2 xN
From previous layer

xi ∈ R
d

To next layer

x = {x1, x2, . . . , xN}

LAF (x) ∈ R
d×r

Figure 1: Left: End-to-end LAF architecture. Right: LAF functions with randomly generated parameters.

Corso et al., 2020]. A module with r LAF units takes as
input d-dimensional vectors and produces a vector of size
r × d as output. Each LAF unit performs an element-
wise aggregation of the vectors in the set such that Lk,j =
LAF({xi,j , . . . , xN,j};αk, βk, γk, δk, ak, bk, ck, dk) for k =
1, . . . , r and j = 1, . . . , d. The output vector can be then fed
into the next layer.

3 Related Work
Several studies address the problem of aggregating data over
sets. Sum-decomposition strategies have been used in [Za-
heer et al., 2017] for points cloud classification and set expan-
sion tasks and in [Santoro et al., 2017] for question answering
and dynamic physical systems computation. Max, sum and
average are standard aggregation functions for node neigh-
borhoods in graph neural networks [Hamilton et al., 2017;
Kipf and Welling, 2017; Xu et al., 2019; Veličković et al.,
2018]. [Zaheer et al., 2017] first proved universal represen-
tation results for these standard aggregators when combined
with learned mappings over inputs and results of the aggre-
gation. However, [Wagstaff et al., 2019] showed that these
universality results are of little practical use, as they either re-
quire highly discontinuous mappings that would be extremely
difficult to learn, or a latent dimension that is at least the size
of the maximum number of input elements.

Uninorms [Yager and Rybalov, 1996] are a class of aggre-
gation functions in fuzzy logic that can behave in a conjunc-
tive, disjunctive or averaging manner depending on a parame-
ter called neutral element. [Melnikov and Hüllermeier, 2016]
proposed to learn fuzzy aggregators by adjusting these learn-
able parameters, showing promising results on combining re-
viewers scores on papers into an overall decision of accep-
tance or reject. Despite the advantage of incorporating differ-
ent behaviours in one single function, uninorms present dis-
continuities in the regions between aggregators, making them
not amenable to be utilized in fully differentiable frameworks.
Furthermore the range of possible behaviours is restricted to
those commonly used in the context of fuzzy-logic.

The need for considering multiple candidate aggregators is
advocated in a very recent work that was developed in parallel
with our framework [Corso et al., 2020]. The resulting archi-
tecture, termed Principal Neighborhood Aggregation (PNA)
combines multiple standard aggregators, including most of
the ones we consider in the LAF framework, adjusting their
outputs with degree scalers. However, the underlying philos-
ophy is rather different. PNA aims at learning to select the
appropriate aggregator(s) from a pool of candidates, while
LAF explores a continuous space of aggregators that includes

standard ones as extreme cases. Our experimental evaluation
shows that PNA has troubles in learning aggregators that gen-
eralize over set sizes, despite having them in the pool of can-
didates, likely because of the quasi-combinatorial structure
of its search space. On the other hand, LAF can successfully
learn even the higher moment aggregators and consistently
outperforms PNA.

Closely connected, but somewhat complementary to aggre-
gation operators are attention mechanisms [Bahdanau et al.,
2015; Vaswani et al., 2017]. They have been explored to ma-
nipulate set data in [Lee et al., 2019] and in the context of
multi-instance learning [Ilse et al., 2018]. Attention oper-
ates at the level of set elements, and aims at a transformation
(weighting) of their representations such as to optimize a sub-
sequent weighted sum-aggregation. Although the objectives
of attention-based frameworks and LAF are different in prin-
ciple, our method can be used inside attention frameworks
as the aggregation layer of the learned representation. We
discuss the combination of LAF and attention in Section 5
showing the advantage of using LAF.

4 Experiments
In this section, we present and discuss experimental results
showing the potential of the LAF framework on both syn-
thetic and real-world tasks. Synthetic experiments are aimed
at showing the ability of LAF to learn a wide range of ag-
gregators and its ability to generalize over set sizes (i.e.,
having test-set sets whose cardinality exceeds the cardinal-
ity of the training-set sets), something that alternative archi-
tectures based on predefined aggregators fail to achieve. We
use DeepSets, PNA, and LSTM as representatives of these
architectures. The LSTM architecture corresponds to a ver-
sion of DeepSets where the aggregation function is replaced
by a LSTM layer. Experiments on diverse tasks including
point cloud classification, text concept set retrieval and graph
properties prediction are aimed at showing the potential of the
framework on real-world applications.

4.1 Scalars Aggregation
This section shows the learning capacity of the LAF frame-
work to learn simple and complex aggregation functions
where constituents of the sets are simple numerical values.
In this setting we consider sets made of scalar integer val-
ues. The training set is constructed as follows: for each set,
we initially sample its cardinality K from a uniform distri-
bution taking values in {2, . . . ,M}, and then we uniformly
sample K integers in {0, . . . , 9}. For the training set we use
M = 10. We construct several test sets for different values
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Figure 2: Test performances for the synthetic experiment with integer scalars on increasing test set size. The x axis represents the maximum
test set cardinality, the y axis depicts the MAE. The dot, star, diamond and triangle symbols denote LAF, DeepSets, PNA, and LSTM
respectively. Skewness: 1/N

∑
i((xi − µ̂)/σ̂)3, Kurtosis: 1/N

∑
i((xi − µ̂)/σ̂)4, where µ̂ and σ̂ are the sample mean and standard

deviation.

ofM (M = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). This implies
that models need to generalize to larger set sizes. Contrarily
to the training set, each test set is constructed in order to diver-
sify the target labels it contains, so as to avoid degenerate be-
haviours for large set sizes (e.g., maximum constantly equal
to 9). Each synthetic dataset is composed of 100,000 sets
for training, 20,000 set for validating and 100,000 for test-
ing. The number of aggregation units is set as follows. The
model contains nine LAF (Equation 2) units, whose parame-
ters {ak, . . . , hk}, k = 1, . . . , 9 are initialized according to a
uniform sampling in [0, 1] as those parameters must be posi-
tive, whereas the coefficients {α, . . . , δ} are initialized with a
Gaussian distribution with zero mean and standard deviation
of 0.01 to cover also negative values. The positivity constraint
for parameters {a, b, . . . , h} is enforced by projection during
the optimization process. The remaining parameters can take
on negative values. DeepSets also uses nine units: three max
units, three sum units, and three mean units and PNA uses
seven units: mean, max, sum, standard deviation, variance,
skewness and kurtosis. Preliminary experiments showed that
expanding the set of aggregators for PNA with higher order
moments only leads to worse performance. Each set of inte-
gers is fed into an embedding layer (followed by a sigmoid)
before performing the aggregation function. DeepSets and
PNA do need an embedding layer (otherwise they would have
no parameters to be tuned). Although LAF does not need an
embedding layer, we used it in all models to make the com-
parison more uniform. The architecture details are reported in
the supplementary material. We use the Mean Absolute Error
(MAE) as a loss function to calculate the prediction error.

Figure 2 shows the trend of the MAE for the three methods
for increasing test set sizes, for different types of target ag-
gregators. As expected, DeepSets manages to learn the iden-
tity function and thus correctly models aggregators like sum,
max and mean. Even if LAF needs to adjust its parameters
in order to properly aggregate the data, its performance are
competitive with those of DeepSets. When moving to more

complex aggregators like inverse count, median or moments
of different orders, DeepSets fails to learn the latent represen-
tation. One the other hand, the performance of LAF is very
stable for growing set sizes. While having in principle at its
disposal most of the target aggregators (including higher or-
der moment) PNA badly overfits over the cardinality of sets
in the training set in all cases (remember that the training set
contains sets of cardinality at most 10). The reason why LAF
substantially outperforms PNA on large set sizes could be ex-
plained in terms of a greater flexibility to adapt to the learnt
representation. Indeed, LAF parameters can adjust the laf
function to be compliant with the latent representation even
if the input mapping fails to learn the identity. On the other
hand, having a bunch of fixed, hard-coded aggregators, PNA
needs to be able to both learn the identity mapping and select
the correct aggregator among the candidates. Finally, LSTM
results are generally poor when compared to the other meth-
ods, particularly in the case of the count and the sum.

4.2 MNIST Digits
We performed an additional set of experiments aiming to
demonstrate the ability of LAF to learn from more complex
representations of the data by plugging it into end-to-end
differentiable architectures. In these experiments, we thus
replaced numbers by visual representations obtained from
MNIST digits. Unlike the model proposed in the previous
section, here we use three dense layers for learning picture
representations before performing the aggregation function.
Results obtained in this way are very similar to those obtained
with numerical inputs and due to space limitations we report
them along with other architectural and experimental details
in the supplementary material.

4.3 Point Clouds
In order to evaluate LAF on real-world dataset, we consider
point cloud classification, a prototype task for set-wise pre-
diction. Therefore, we run experimental comparisons on



METHOD P100 P1000

DEEPSETS 82.0±2.0% 87.0±1.0%
PNA 82.9±0.7% 86.4±0.6%
LSTM 78.7±1.1% 82.2±1.7%
LAF 84.0±0.6% 87.0±0.5%

Table 2: Results on the Point Clouds classification task. Accuracies
with standard deviations (over 5 runs) for the ModelNet40 dataset.

the ModelNet40 [Wu et al., 2015] dataset, which consists
of 9,843 training and 2,468 test point clouds of objects dis-
tributed over 40 classes. The dataset is preprocessed follow-
ing the same procedure described by [Zaheer et al., 2017].
We create point clouds of 100 and 1,000 three-dimensional
points by adopting the point-cloud library’s sampling rou-
tine developed by [Rusu and Cousins, 2011] and normaliz-
ing each set of points to have zero mean (along each axis)
and unit (global) variance. We refer with P100 and P1000 to
the two datasets. For all the settings, we consider the same
architecture and hyper-parameters of the DeepSets permuta-
tion invariant model described by [Zaheer et al., 2017]. For
LAF, we replace the original aggregation function (max) used
in DeepSets with 10 LAF units, while for PNA we use the
concatenation of max, min, mean, and standard deviation, as
proposed by the authors. For PNA we do not consider any
scaler, as the cardinalities of the sets are fixed. Results in
Table 2 show that LAF produces an advantage in the lower
resolution dataset (i.e., on P100), while it obtains comparable
(and slightly more stable) performances in the higher resolu-
tion one (i.e., on P1000). These results suggest that having
predefined aggregators is not necessarily an optimal choice
in real world cases, and that the flexibility of LAF in model-
ing diverse aggregation functions can boost performance and
stability.

4.4 Set Expansion
Following the experimental setup of DeepSets, we also con-
sidered the Set Expansion task. In this task the aim is to aug-
ment a set of objects of the same class with other similar ob-
jects, as explained in [Zaheer et al., 2017]. The model learns
to predict a score for an object given a query set and decide

whether to add the object to the existing set. Specifically, [Za-
heer et al., 2017] consider the specific application of set ex-
pansion to text concept retrieval. The idea is to retrieve words
that belong to a particular concept, giving as input set a set of
words having the same concept. We employ the same model
and hyper-parameters of the original publication, where we
replace the sum-decomposition aggregation with LAF units
for our methods and the min, max, mean, and standard devi-
ation aggregators for PNA.

We trained our model on sets constructed from a vocab-
ulary of different size, namely LDA-1K, LDA-3K and LDA-
5K. Table 3 shows the results of LAF, DeepSets and PNA
on different evaluation metrics. We report the retrieval met-
rics recall@K, median rank and mean reciprocal rank. We
also report the results on other methods the authors com-
pared to in the original paper. More details on the other
methods in the table can be found in the original publication.
Briefly, Random samples a word uniformly from the vocab-
ulary; Bayes Set [Ghahramani and Heller, 2006]; w2v-Near
computes the nearest neighbors in the word2vec [Mikolov et
al., 2013] space; NN-max uses a similar architecture as our
DeepSets but uses max pooling to compute the set feature,
as opposed to sum pooling; NN-max-con uses max pooling
on set elements but concatenates this pooled representation
with that of query for a final set feature; NN-sum-con is sim-
ilar to NN-max-con but uses sum pooling followed by con-
catenation with query representation. For the sake of fair-
ness, we have rerun DeepSets using the current implemen-
tation from the authors (indicated as DeepSet∗ in Table 3),
exhibiting better results than the ones reported in the original
paper. Nonetheless, LAF outperforms all other methods in
most cases, especially on LDA-3K and LDA-5K.

4.5 Multi-task Graph Properties
[Corso et al., 2020] defines a benchmark consisting of 6
classical graph theory tasks on artificially generated graphs
from a wide range of popular graph types like Erdos-Renyi,
Barabasi-Albert or star-shaped graphs. Three of the tasks are
defined for nodes, while the other three for whole graphs. The
node tasks are the single-source shortest-path lengths (N1),
the eccentricity (N2) and the Laplacian features (N3). The

METHOD

LDA-1k (VOCAB = 17k) LDA-3k (VOCAB = 38k) LDA-5k (VOCAB = 61k)
RECALL(%)

MRR MED.
RECALL(%)

MRR MED.
RECALL(%)

MRR MED.@10 @100 @1K @10 @100 @1K @10 @100 @1K

RANDOM 0.06 0.6 5.9 0.001 8520 0.02 0.2 2.6 0.000 28635 0.01 0.2 1.6 0.000 30600
BAYES SET 1.69 11.9 37.2 0.007 2848 2.01 14.5 36.5 0.008 3234 1.75 12.5 34.5 0.007 3590
W2V NEAR 6.00 28.1 54.7 0.021 641 4.80 21.2 43.2 0.016 2054 4.03 16.7 35.2 0.013 6900
NN-MAX 4.78 22.5 53.1 0.023 779 5.30 24.9 54.8 0.025 672 4.72 21.4 47.0 0.022 1320
NN-SUM-CON 4.58 19.8 48.5 0.021 1110 5.81 27.2 60.0 0.027 453 4.87 23.5 53.9 0.022 731
NN-MAX-CON 3.36 16.9 46.6 0.018 1250 5.61 25.7 57.5 0.026 570 4.72 22.0 51.8 0.022 877
DEEPSETS 5.53 24.2 54.3 0.025 696 6.04 28.5 60.7 0.027 426 5.54 26.1 55.5 0.026 616

DEEPSETS∗ 5.89 26.0 55.3 0.026 619 7.56 28.5 64.0 0.035 349 6.49 27.9 56.9 0.030 536
PNA 5.56 24.7 53.2 0.027 753 7.04 27.2 58.7 0.028 502 5.47 23.8 52.4 0.025 807
LSTM 4.29 21.5 52.6 0.022 690 5.56 25.7 58.8 0.026 830 4.87 23.8 55.0 0.022 672
LAF 6.51 26.6 54.5 0.030 650 8.14 32.3 62.8 0.037 339 6.71 28.3 56.9 0.031 523

Table 3: Results on Text Concept Set Retrieval on LDA-1k, LDA-3k, and LDA-5k. Bold values denote the best performance for each metric.



METHOD N1 N2 N3 G1 G2 G3

BASELINE -1.87 -1.50 -1.60 -0.62 -1.30 -1.41
GIN -2.00 -1.90 -1.60 -1.61 -2.17 -2.66
GCN -2.16 -1.89 -1.60 -1.69 -2.14 -2.79
GAT -2.34 -2.09 -1.60 -2.44 -2.40 -2.70
MPNN (MAX) -2.33 -2.26 -2.37 -1.82 -2.69 -3.52
MPNN (SUM) -2.36 -2.16 -2.59 -2.54 -2.67 -2.87
PNA∗ -2.54 -2.42 -2.94 -2.61 -2.82 -3.29
PNA -2.89 -2.89 -3.77 -2.61 -3.04 -3.57

LAF -2.13 -2.20 -1.67 -2.35 -2.77 -3.63

Table 4: Results on the Multi-task graph properties prediction
benchmark, expressed in log 10 of mean squared error.

graph tasks are graph connectivity (G1), diameter (G2), and
the spectral radius (G3). We compare LAF against PNA by
simply replacing the original PNA aggregators and scalers
with 100 LAF units (see Equation 2). Table 4 shows that
albeit these datasets were designed to highlight the features
of the PNA architecture, that outperforms a wide range of
alternative graph neural network approaches LAF produces
competitive results, outperforming state-of-the-art GNN ap-
proaches like GIN [Xu et al., 2019], GCN [Kipf and Welling,
2017] and GAT [Veličković et al., 2018] and even improving
over PNA on spectral radius prediction. PNA∗ is the variant
without scalers of PNA still proposed by [Corso et al., 2020].

5 SetTransformer With LAF Aggregation
In this section we investigate the combination of LAF aggre-
gation with attention mechanisms on sets as proposed in the
SetTransformer framework [Lee et al., 2019]. Briefly, Set-
Transformer consists of an encoder and a decoder. The en-
coder maps a set of input vectors into a set of feature vectors
by leveraging attention blocks. The decoder employs a pool-
ing multihead attention (PMA) layer, which aggregates the
set of feature vectors produced by the encoder. In the follow-
ing experiment we replace PMA by a LAF layer. Inspired by
one of the tasks described in [Lee et al., 2019], we propose
here to approximate the average of the unique numbers in a
set of MNIST images. Solving the task requires to learn a
cascade of two processing steps, one that detects unique ele-
ments in a set (which can be done by the transformer encoder,
as shown in the experiment by [Lee et al., 2019]) and one that
aggregates the results by averaging (which LAF is supposed
to do well). The set cardinalities are uniformly sampled from
{2, 3, 4, 5} and each set label is calculated as the average of
the unique digits contained in the set. We trained two Set-
Transformer models: one with PMA (ST-PMA) and the other
with LAF (ST-LAF). The full implementation details are re-
ported in the supplementary material. Quantitative and qual-
itative results of the evaluation are shown in Figure 3, where
we report the MAE for both methods2. ST-LAF exhibits a
nice improvement over ST-PMA for this particular task. Note

2We run several experiments by changing the number of seeds k
of PMA. All of them exhibited the same behaviour. For this experi-
ment we used k = 1.

Figure 3: Distribution of the predicted values for ST-PMA and ST-
LAF by set cardinalities. On the x-axis the true labels of the sets,
on the y-axis the predicted ones. Different colors represent the sets’
cardinalities |x|.

that for ST-PMA only 25% of the sets (red points in the scat-
ter plot), corresponding to sets with maximum cardinality, ap-
proximates well the average, while for all other cardinalities
(the remaining 75% of the sets) ST-PMA predicts a constant
value equal to the average label in the training set. ST-LAF
instead clearly captures the distribution of the labels, general-
izing better with respect to the set sizes. A similar behaviour
was observed when learning to predict the sum rather than
the average of the unique digits in a set (see supplementary
material for the results).

6 Conclusions
The theoretical underpinnings for sum aggregation as a uni-
versal framework for defining set functions do not necessarily
provide a template for practical solutions. Therefore we in-
troduced a framework for learning aggregation functions that
makes use of a parametric aggregator to effectively explore
a rich space of possible aggregations. LAF defines a new
class of aggregation functions, which include as special cases
widely used aggregators, and also has the ability to learn com-
plex functions such as higher-order moments. We empirically
showed the generalization ability of our method on synthetic
settings as well as real-world datasets, providing comparisons
with state-of-the-art sum-decomposition approaches and re-
cently introduced techniques. The flexibility of our model
is a crucial aspect for potential practical use in many deep
learning architectures, due to its ability to be easily plugged
into larger architectures, as shown in our experiments with the
SetTransformer. The portability of LAF opens a new range
of possible applications for aggregation functions in machine
learning methods, and future research in this direction can en-
hance the expressivity of many architectures and models that
deal with unstructured data.
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A Proof of Proposition 1
Let X = {x0, x1, . . .}. For i ≥ 0 let ri be a random number
sampled uniformly from the interval [0, 1]. Define φ(xi) :=
ri. Let x = {ai : xi|i ∈ J},x′ = {a′h : xh|h ∈ J ′}
be two finite multisets with elements from X , where J, J ′ are
finite index sets, and ai, a′h denote the multiplicity with which
elements xi, xh appear in x, respectively x′. Now assume
that x 6= x′, but∑

i∈J
aiφ(xi) =

∑
h∈J′

a′hφ(xh), (A.1)

i.e., ∑
j∈J∪J′

(aj − a′j)rj = 0, (A.2)

where now aj , respectively a′j is defined as 0 if j ∈ J ′ \ J ,
respectively j ∈ J \ J ′. Since x 6= x′, the left side of this
equation is not identical zero. Without loss of generality, we
may actually assume that all coefficients aj−a′j are nonzero.
The event that the randomly sampled values {rj |j ∈ J ∪ J ′}
satisfy the linear constraint (A.2) has probability zero. Since
the set of pairs of finite multisets overX is countable, also the
probability that there exists any pair x 6= x′ for which (A.1)
holds is zero. Thus, with probability one, the mapping from
multisets x to their sum-aggregation

∑
x∈x φ(x) is injec-

tive. In particular, there exists a set of fixed values r0, r1, . . .,
such that the (deterministic) mapping xi 7→ ri has the de-
sired properties. The existence of the “decoding” function ρ
is now guaranteed as in the proofs of [Zaheer et al., 2017;
Wagstaff et al., 2019].

Clearly, due to the randomized construction, the theorem
and its proof have limited implications in practice. This how-
ever, already is true for previous results along these lines,
where at least for the decoding function ρ, not much more
than pure existence could be demonstrated.

B Learning
We study here the difficulty of solving the optimization prob-
lem when varying the number of LAF units, aiming to show
that the use of multiple units helps finding a better solution.
We formulate as learning tasks some of the target functions
described in Table 1. Additionally, we inspect the parame-
ters of the learned model. We construct a simple architec-
ture similar to the aggregation layer presented in Section 4, in
which the aggregation is performed using one or more LAF
units and, in the case of multiple aggregators, their outputs
are combined together using a linear layer. We also discard
any non-linear activation function prior to the aggregation be-
cause the input sets are composed of real numbers in the range
[0, 1], with a maximum of 10 elements for each set. We con-
sider 1,3,6,9,12,15,18 and 21 LAF units in this setting. For
each function and for each number of units we performed 500
random restarts. The results are shown in Figure B.1, where
we report the MAE distributions. Let’s initially consider the
cases when a single unit performs the aggregation. Note first
that the functions listed in Table 1 can be parametrized in an
infinite number of alternative ways. For instance, consider the
sum function. A possible solution is obtained if La,b learns

the sum, Le,f = 1 and α = γ. If instead La,b = sum and
Le,f = Lg,h = 1, it is sufficient that γ + δ = α to still obtain
the sum. This is indeed what we found when inspecting the
best performing models among the various restarts, as shown
in the following:

sum :
1.75(

∑
x1.00)1.00 + 0.00(

∑
(1− x)0.00)0.56

0.91(
∑
x0.24)0.00 + 0.84(

∑
(1− x)0.36)0.00

count :
1.01(

∑
x0.00)0.99 + 0.94(

∑
(1− x)0.00)1.01

1.08(
∑
x0.47)0.00 + 0.88(

∑
(1− x)1.02)0.00

mean :
1.51(

∑
x1.00)1.00 + 0.00(

∑
(1− x)0.62)0.00

0.00(
∑
x0.30)0.00 + 1.51(

∑
(1− x)0.00)1.00

A detailed overview of the parameters’ values learned using
one LAF unit is depicted in Table B.1. For each function in
Figure B.1, we report the values of the random restart that
obtained the lowest error. The evaluation clearly shows that
learning a function with just one LAF unit is not trivial. In
some cases LAF was able to almost perfectly match the target
function, but to be reasonably confident to learn a good rep-
resentation many random restarts are needed, since the vari-
ance among different runs is quite large. The error variance
reduces when more than one LAF unit is adopted, drastically
dropping when six units are used in parallel, still maintain-
ing a reasonable average error. Jointly learning multiple LAF
units and combining their outputs can lead to two possible
behaviours giving rise to an accurate approximation of the
underlying function: in the first case, it is possible that one
“lucky” unit learns a parametrization close to the target func-
tion, leaving the linear layer after the aggregation to learn to
choose that unit or to rescale its output. In the second case
the target function representation is “distributed” among the
different units, here the linear layer is responsible to obtain
the function by combining the LAF aggregation outputs. In
the following we show another example of a learnt model, for
a setting with three LAF units. Here the target function is the
count.

unit1 :
0.81(

∑
x0.87)0.37 + 0.80(

∑
(1− x)0.74)0.72

1.19(
∑
x0.19)0.72 + 1.18(

∑
(1− x)0.00)0.62

unit2 :
1.43(

∑
x0.00)1.10 + 1.31(

∑
(1− x)0.01)0.74

0.64(
∑
x0.85)0.00 + 0.62(

∑
(1− x)0.46)0.00

unit3 :
0.83(

∑
x0.87)0.37 + 0.77(

∑
(1− x)0.12)0.00

1.17(
∑
x0.69)0.86 + 1.22(

∑
(1− x)0.00)0.16

linear : 0.02 + (−0.13 ∗ unit1)+
+(0.50 ∗ unit2) + (−0.07 ∗ unit3)

In this case, the second unit learns a function that counts
twice the elements of the set. The output of this unit is then
halved by the linear layer, which gives very little weights to
the outputs of the other units.



1 3 6 9 12 15 18 21

10 1

M
AE

Max

1 3 6 9 12 15 18 21

10 1

Min

1 3 6 9 12 15 18 21

10 5

10 3

10 1

Sum

1 3 6 9 12 15 18 21

10 4

10 3

10 2

Count

1 3 6 9 12 15 18 21
LAF Units

10 6

10 4

10 2

M
AE

Mean

1 3 6 9 12 15 18 21
LAF Units

10 5

10 4

10 3

10 2

10 1

Kth Moment

1 3 6 9 12 15 18 21
LAF Units

10 2

10 1

Lth Power Kth Moment

1 3 6 9 12 15 18 21
LAF Units

10 1

6 × 10 2

2 × 10 1

Min/Max

Figure B.1: Trend of the MAE obtained with an increasing number of LAF units for most of the functions reported in Table 1. The error
distribution is obtained performing 500 runs with different random parameter initializations. A linear layer is stacked on top of the LAF layer
with more than 1 unit. The y axis is plot in logaritmic scale.

NAME a b c d e f g h α β γ δ

MAX 0.28 4.74 0.00 0.57 0.33 1.74 0.00 0.48 1.68 0.00 0.90 0.75
MIN 0.28 0.28 0.27 1.13 0.30 0.35 0.87 3.69 0.51 0.00 0.45 1.91
SUM 1.00 1.00 0.56 0.00 0.00 0.24 0.00 0.36 1.75 0.00 0.91 0.84
COUNT 0.99 0.00 1.01 0.00 0.00 0.47 0.00 1.02 1.01 0.94 1.08 0.88
MEAN 1.00 1.00 0.00 0.62 0.00 0.30 1.00 0.00 1.51 0.00 0.00 1.51
kTH MOMENT 1.00 2.00 0.00 0.13 1.00 0.00 1.00 0.00 1.67 0.00 0.83 0.84
lTH POWER OF kTH MOMENT 2.87 2.15 0.00 0.91 2.94 0.00 1.71 0.00 1.65 0.01 1.44 0.24
MIN/MAX 0.06 0.00 1.52 2.36 0.18 4.40 0.64 7.25 0.23 0.10 0.27 2.26

Table B.1: Parameters’ values learned with one LAF unit.

C Details of Sections 4.1 - Experiments on
Scalars

We used mini-batches of 64 sets and trained the models for
100 epochs. We use Adam as parameter optimizer, setting the
initial learning rate to 1e−3 and apply adaptive decay based
on the validation loss.

Each element in the dataset is a set of scalars x =
{x1, . . . , xN}, xi ∈ R.

Network architecture:

x→ EMBEDDING(10,10) → SIGMOID

→ LAF(9) → DENSE(10 × 9, 1)

D Details of Sections 4.2 - MNIST Digits
In this section, we modify the experimental setting in Sec-
tion 4.1 for the integers scalars to process MNIST images of
digits. The dataset is the same as in the experiment on scalars,

but integers are replaced by randomly sampling MNIST im-
ages for the same digits. Instances for the training and test
sets are drawn from the MNIST training and test sets, respec-
tively. We used mini-batches of 64 sets and trained the mod-
els for 100 epochs. We use Adam as parameter optimizer,
setting the initial learning rate to 1e−3 and apply adaptive de-
cay based on the validation loss. Each element in the dataset
is a set of vectors x = {x1, . . . , xN}, xi ∈ R784. Network
architecture:

x→ DENSE(784,300) → TANH

→ DENSE(300,100) → TANH

→ DENSE(100,30) → SIGMOD

→ LAF(9) → DENSE(30 × 9, 1000) → TANH

→ DENSE(1000,100) → TANH → DENSE(100,1)
Figure D.1 shows the comparison of LAF, DeepSets, PNA,

and LSTM in this setting. Results are quite similar to those
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Figure D.1: Test performances for the synthetic experiment on MNIST digits on increasing test set size. The x axis of the figures represents
the maximum test set cardinality, whereas the y axis depicts the MAE. The dot, star, diamond and traingle symbols denote LAF, DeepSets,
PNA and LSTM respectively.

Figure D.2: Scatter plots of the MNIST experiment comparing true (x axis) and predicted (y axis) values with 50 as maximum test set size.
The target aggregations are max (up-left), inverse count (up-right), median (bottom-left) and kurtosis (bottom-right).

achieved in the scalar setting, indicating that LAF is capa-
ble of effectively backpropagating information so as to drive
the learning of an appropriate latent representation, while
DeepSets, PNA, and LSTM suffer from the same problems
seen in aggregating scalars.

Furthermore, Figure D.2 provides a qualitative evaluation
of the predictions of the LAF, DeepSets, and PNA methods
on a representative subset of the target aggregators. The im-
ages illustrate the correlation between the true labels and the
predictions. LAF predictions are distributed over the diago-
nal line, with no clear bias. On the other hand, DeepSets and
PNA perform generally worse than LAF, exhibiting higher
variances. In particular, for inverse count and kurtosis,

DeepSets and PNA predictions are condensed in a specific
area, suggesting an overfitting on the training set.

E Details of Sections SetTransformer with
LAF aggregation

We used mini-batches of 64 sets and trained the models for
1,000 epochs. We use Adam as parameter optimizer, setting
the initial learning rate to 5e−4. Each element in the dataset
is a set of vectors x = {x1, . . . , xN}, xi ∈ R784. Network



Figure E.1: Distribution of the predicted values for ST-PMA and
ST-LAF by set cardinalities. On the x-axis the true labels of the sets,
on the y-axis the predicted ones. Different colors represent the sets’
cardinalities |x|.

architecture:

x→ DENSE(784,300) → RELU
→ DENSE(300,100) → RELU
→ DENSE(100,30) → SIGMOD

→ SAB(64,4) → SAB(64,4)
→ PMAk(64,4) OR LAF(10)
→ DENSE(64 × k OR 9, 100) → RELU
→ DENSE(100,1)

Please refer to [Lee et al., 2019] for the SAB and PMA de-
tails. Figure E.1 shows the comparison of ST-PMA and ST-
LAF for unique sum of MNIST images.
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