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Abstract

Weighted model counting (WMC) on a propositional
knowledge base is an effective and general approach to
probabilistic inference in a variety of formalisms, includ-
ing Bayesian and Markov Networks. However, an in-
herent limitation of WMC is that it only admits the in-
ference of discrete probability distributions. In this pa-
per, we introduce a strict generalization of WMC called
weighted model integration that is based on annotating
Boolean and arithmetic constraints, and combinations
thereof. This methodology is shown to capture discrete,
continuous and hybrid Markov networks. We then con-
sider the task of parameter learning for a fragment of the
language. An empirical evaluation demonstrates the ap-
plicability and promise of the proposal.

1 Introduction

Weighted model counting (WMC) is a basic reasoning task on
propositional knowledge bases. It extends the model count-
ing task, or #SAT, which is to count the number of satis-
fying assignments (that is, models) to a given logical sen-
tence [Gomes et al., 2009]. In WMC, one accords a weight to
every model, and computes the sum of the weights of all mod-
els. The weight of a model is often factorized into weights of
assignments to individual variables.

The WMC formulation has recently emerged as an assem-
bly language for probabilistic reasoning, offering a basic for-
malism for encoding various inference problems. State-of-
the-art reasoning algorithms for Bayesian networks [Chavira
and Darwiche, 2008], their relational extensions [Chavira et
al., 2006], factor graphs [Choi et al., 2013], probabilistic pro-
grams [Fierens e al., 2013], and probabilistic databases [Su-
ciu er al., 2011] reduce their inference problem to a WMC
computation. Exact WMC solvers are based on knowledge
compilation [Darwiche, 2004; Muise et al., 2012] or exhaus-
tive DPLL search [Sang et al., 2005]. Approximate WMC
algorithms use local search [Wei and Selman, 2005] or sam-
pling [Chakraborty et al., 2014]. More recently, the task has
also been generalized to first-order knowledge bases [Van den
Broeck et al., 2011; Gogate and Domingos, 2011].

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic rep-
resentation from the statistical or numeric representation,
which is encapsulated in the weight function. When building
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solvers, this allows us to reason about logical equivalence and
reuse SAT solving technology (such as constraint propagation
and clause learning). WMC also makes it more natural to
reason about deterministic, hard constraints in a probabilistic
context. Nevertheless, WMC has a fundamental limitation: it
is purely Boolean. This means that the advantages mentioned
above only apply to discrete probability distributions.

A similar observation can be made for the classical satisfi-
ability (SAT) problem and related tasks, which for the longest
time could only be applied in discrete domains. This changed
with the increasing popularity of satisfiability modulo theo-
ries (SMT), which enable us to, for example, reason about
the satisfiability of linear constraints over the rationals.

This paper generalizes the weighted model counting task
to hybrid domains. The resulting weighted model integra-
tion task (WMI) is defined on the models of an SMT the-
ory A, containing mixtures of Boolean and continuous vari-
ables. For every assignment to the Boolean and contin-
uous variables, the WMI problem defines a density. The
WMI for A is computed by integrating these densities over
the domain of solutions to A, which is a mixed discrete-
continuous space. Consider, for example, the special case
when A has no Boolean variables, and the weight of every
model is 1. Then, WMI simplifies to computing the volume
of the polytope encoded in A [Ma ef al., 2009]. When we
additionally allow for Boolean variables in A, this special
case becomes a hybrid version of #SAT [Luu et al., 2014;
Chistikov et al., 2015].!

To illustrate WMI, we explore its application to inference
and learning in hybrid Markov networks. Existing inference
algorithms for hybrid graphical models are either approxi-
mate (e.g., Murphy [1999] or Lunn er al. [2000]), or they
make strong assumptions on the form of the potentials, such
as Gaussian distributions [Lauritzen and Jensen, 2001]. The
need for novel approaches to hybrid graphical models is also
noted by two approaches that use piecewise-polynomial po-
tentials: Shenoy and West [2011] generalize the join-tree al-
gorithm and Sanner and Abbasnejad [2012] generalize sym-
bolic variable elimination. We also consider the piecewise-
polynomial setting in this paper, but in a very general frame-

'In an independent effort, Chistikov et al. [2015] introduce a re-
lated definition for the unweighted model counting of SMT theories,
which they refer to as #SMT. Moreover, their focus is on approxi-
mate counting and they do not consider parameter learning.



work where constraints can be defined over arbitrary Boolean
connectives. This setting is expressive enough to effectively
approximate any continuous distribution, while still permit-
ting exact and efficient computations [De Loera e al., 2012].
In sum, the WMI formulation admits a general and powerful
methodology for exact inference in hybrid domains, and is
efficient for piecewise-polynomial specifications.

We structure the work as follows. We begin by considering
some preliminaries, including the logical language and the
standard notion of WMC. We then provide a definition for
WMLI, consider important classes of specifications and finally
turn to parameter learning and empirical evaluations.

2 Preliminaries

We introduce the preliminaries for this work in three steps,
beginning with probabilistic models, and then turning to the
necessary logical background and WMC.

Probabilistic Models

Let B8 and X denote sets of Boolean and real-valued ran-
dom variables, that is, » € B is assumed to take values
from {0, 1} and x € X takes values from R. We let (b,x) =
b1,y by, x1, ..., x,) be an element of the probability space
{0, 1} xR", which denotes a particular assignment to the ran-
dom variables from their respective domains. We let the joint
probability density function be denoted by Pr. Then, Pr(b, x)
determines the probability of the assignment vector.

When these random variables are defined by a set of de-
pendencies, as can be represented using a graphical model,
the density function can be compactly factorized [Koller and
Friedman, 2009]. In this work, we are concerned with undi-
rected graphical models (that is, Markov networks), where
the joint density function can be expressed in terms of the
cliques of the graph:

1
Pr(b,x) = 7 1_[ or(by, Xi)
k

where by and x; are those random variables participating in
kth clique, and ¢(-,-) is non-negative, real-valued potential
function. It is not necessary that ¢ denote probabilities, and
so Z is a normalization constant, also referred to as the parti-
tion function, defined as:

Z:;;f;f [Uqﬁk(bk,xk)} dX.

mxy

Logical Background

Propositional satisfiability (SAT) is the problem of deciding
whether a logical formula over Boolean variables and logical
connectives can be satisfied by some truth value assignment
of the Boolean variables. Given a formula ¢ and assignment
(or model or world) M, we write M = ¢ to denote satisfac-
tion. We write [ € M to denote the literals (that is, proposi-
tions or their negations) that are satisfied at M.

A generalization to this decision problem is that of Satisfi-
ability Modulo Theories (SMT). In SMT, we are interested in
deciding the satisfiability of a (typically quantifier-free) first-
order formula with respect to some decidable background
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theory, such as linear arithmetic over the rationals LRA.
Standard first-order models can be used to formulate SMT.
For example, LRA is the fragment of first-order logic over
the signature (0, 1, +, <) restricting the interpretation of these
symbols to standard arithmetic. See Barrett et al. [2009] for
a comprehensive treatment.

In this paper, the logical language is assumed to be a com-
bination of LRA and propositional logic, for which satisfac-
tion is defined in an obvious way. We use p, ¢ and r to range
over propositional letters, and x, y, z and ¢ to range over con-
stants of the language [Barrett et al., 2009]. So, ground atoms
are of the form ¢, -p and x+ 1 < y. For convenience, we also
use a ternary version of < written y < x < z to capture inter-
vals. (This is easily seen to not affect the expressive power.)

For our purposes, we also need the notion of formula ab-
straction and refinement [Barrett et al., 2009]. Here, a bijec-
tion is established between ground atoms and a propositional
vocabulary in that propositions are mapped to themselves
and ground LRA atoms are mapped to fresh propositional
symbols. Abstraction proceeds by replacing the atoms by
propositions, and refinement replaces the propositions with
the atoms. We refer to the abstraction of a SMT formula ¢ as
¢~ and the refinement of a propositional formula ¢ as ¢*. Ab-
straction and refinement are extended to complex formulas in
a manner that is homomorphic with respect to the logical op-
erators: [pVy]™ =@~ VY, [-d]™ = —[¢]” and [true]™ = true,
and likewise for refinement. For example, [p V (x < 10)]™ is
pVag,and[pVqltispV(x<10).

Weighted Model Counting

Weighted model counting (WMC) [Chavira and Darwiche,
2008] is a generalization of model counting [Gomes et al.,
2009]. In model counting, also known as #SAT, one counts
the number of satisfying assignments of a propositional sen-
tence. In WMC, each assignment has an associated weight
and the task is to compute the sum of the weights of all sat-
isfying assignments. WMC has applications in probabilistic
inference in discrete graphical models.

Definition 1: Given a formula A in propositional logic over

literals £, and a weight function w : £ — RZ°, the weighted
model count (WMC) is defined as:

WMC(A, w) = Z WEIGHT(M, w)
MEA
where

WEIGHT(M, w) = l_[ w(l)

leM

Intuitively, the weight of a formula is given in terms of the
total weight of its models; the weight of a model is defined in
terms of the literals that are true in that model.

Example 2: Consider the following Markov network in fea-
ture representation [Della Pietra et al., 1997; Richardson and
Domingos, 2006] over Boolean variables {p, g, r}:

pV g
0.1 p

1.2 pvr
25 g=r



In English: the first feature is a hard constraint that p and ¢
are mutually exclusive, whereas the third feature increases the
weight of a world by a factor 1.2 if p or r is true. The weight
of a world is 0 if it does not satisfy the hard constraints, and is
otherwise equal to the product of the weights of the satisfied
features. The sum of the weights of all worlds is the partition
function Z. Note that Z equals the WMC of A:

A=(CpV-gA{fiepVrAf o qgVr)
with weights: w(p) = 0.1, w(f;) = 1.2, w(f>) = 2.5 and for all
other symbols, the weight is 1. O

We are often interested in computing the probability of a
query g given evidence e in a Boolean Markov network N,
for which we use:

WMC(g AeAA,w)

1
WMC(e A A, w) M)
where A encodes N and w encodes the potential. The follow-
ing correctness result is straightforward to establish:

Pry(qle) =

Theorem 3: Let N be a Markov network over Boolean ran-
dom variables B and potentials {¢1, ..., ¢y} . Let A and w be
the corresponding encodings over Boolean variables B. Then
for any q, e € B, the probability Pry(q | e) is given by (1).

Proof (Sketch): An assignment to the random variables
in N can be exactly mapped to a corresponding model of A.
In that regard, the probability of the assignment equals the
weight of the model, and so the partition function equals the
sum of weights of all models of A, and the case of the condi-
tional probability is a simple corollary. I

Finally, we remark that generalizing Boolean random vari-
ables to arbitrary discrete ones, that is, where these variables
take values from finite sets is also easily achieved [Sang et
al., 2005; Chavira and Darwiche, 2008], and so we restrict all
discussions to the Boolean setting without loss of generality.

3 Weighted Model Integration

We are interested in exact inference with a mix of discrete
and continuous random variables (under certain limitations).
However, an inherent limitation of WMC is that it only admits
the inference of discrete probability distributions. That is,
because it is based on annotating a propositional theory, it
encodes a finite sample space, as appropriate for Boolean or
discrete Markov networks.

A Definition

In this section, we introduce weighted model integration that
is a strict generalization of WMC. The main idea here is to
annotate a logical theory with rational and Boolean variables,
that is, from a combination of LRA and propositional logic.
Nonetheless, a simple semantic formulation is given based on
propositional logic, where, as before, propositional assign-
ments are denoted using M.

Definition 4: Suppose A is a SMT theory over Boolean and
rational variables 8 and X, and literals £. Suppose w : £ —
EXPR(X), where EXPR(X) are expressions over X. Then the
weighted model integral (WMI) is defined as:

WMI(A, w) = Z voL(M, w)
MEA-

2772

where

voL(M,w) = f WEIGHT(M, w) dX
{I+:leM}

The intuition is this. The WMI of a SMT theory A is de-
fined in terms of the models of its propositional abstraction
A~. For each such model, we compute its volume, that is, we
integrate the w-values of the literals that are true at the model.
The interval of the integral is defined in terms of the refine-
ment of the literal. The w-function is to be seen as mapping
an expression e to its density function, which is usually an-
other expression mentioning the variables in e.

Let us remark that while the interval is defined in terms of
SMT literals, this is meant to denote standard integrals in an
obvious fashion; for example:

6 6
f odx = f odx; f odx = f ddx
x<6 —0oo 5<x<6 5

If the subscript is a propositional literal, then it is simply ig-
nored. In general, the standard integral for a LRA-formula 6
over variables xi, ..., x, can be obtained by:

f¢dxif--~f]lgx¢dx1-~dxn
s R R

where I, is the indicator function for the event e. So, for ex-
ample, we obtain the following equivalence:

f ¢dxdy = f f Iix<ony=5)X¢p dxdy = f f ¢dxdy.
X<6AY>5 R JR x<6 Jy>5

Conditional Probabilities

As usual, given a Markov network N over Boolean and real-

valued random variables, conditional probabilities are ob-

tained using:

WMIAAgAe,w)
WMI(A A e, w)

Pry(qle) = 2)

where A and w denote the network and potential encodings.
To see WMI in action, consider a simple example:

Example 5: Suppose A is the following formula:
pVv(0<x<10)

For weights, let w(p) = .1, w(=p) = 2x, w(g) = 1 and
w(—q) = 0, where g is the propositional abstraction of (0 <
x < 10). Roughly, this can be seen to say that x is uniformly
distributed when p holds and otherwise it is characterized by
a triangular distribution in the interval [0, 10]. There are 3
models of A™:

1. M = {p,—q}: since w(—~g) = 0, by definition we have
WwEIGHT(M, w) = 0 and so voL(M, w) = 0;

10
2. M = {—p,q}: vou(M,w) = f()sxle 2xdx = [x2]0 = 100.
3. M ={p,q}: voM,w) = fogslo.l dx=[1-x]"=1.
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Figure 1: Approximations (blue) to Gaussians (red).

Thus, WMI(A,w) = 100 + 1 = 101.

Suppose that we are interested in the probability of the
query x < 3 given that —p is observed. Suppose r is the
abstraction of x < 3. First, WMI(A A —p,w) corresponds to
the weight of a single interpretation, that of item 2, yielding
a value of 100. Next, WMI(A A =p A x < 3,w) also corre-
sponds to the weight of a single interpretation M = {-p, g, r},
an extension to that in item 2. In this case:

3
voL(M,w) = f 2xdx = [xz] =0.
(0<x<10)A(x<3) 0

Therefore, the conditional probability is 9/100 = .09. O

Generality

Recall that propositions as intervals to integrals are simply
ignored, and propositional logic is a fragment of the logical
language considered here. So, we get:

Proposition 6:  Suppose A is a formula in propositional
logic over literals £ and w : £ — R, Then WMI(A, w) =
WMC(A, w).

Classes of Weight Functions

The weight function in the WMI formulation does not com-
mit to any restrictions on EXPR(X), in which case arbitrary
continuous functions (including exponential families) can be
encoded. In practice, it will be useful to identify two spe-
cial cases. We are motivated by inference for two classes of
representations: piecewise-constant hybrid Markov networks
(CHMN) and piecewise-polynomial hybrid Markov networks
(PHMN). These are Markov networks in feature representa-
tion, as shown before, where now the features are SMT sen-
tences, and the weights are constants and polynomials respec-
tively. That is, inference for CHMNs can be reduced to WMI
where w : £ — R, and for PHMNSs, w maps £ to polyno-
mials over X.

Although CHMN subsume discrete Markov networks, they
are still very limited in the continuous distributions they can
represent. In Example 5, a uniform distribution was repre-
sented, but consider the case of a Gaussian:

Example 7: Suppose u is normally distributed with mean 0
and variance 1, conditioned to be in the three-deviation inter-
val [-3,3]. We can approximate? this distribution with the

2The weights were computed using the software MATLAB
(www .mathworks . com) to be the least-squares approximation.
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following CHMN:

3<u<3

0043 u<-15

0241 -15<u<-05

0383 -05<u<05

0241 05<u<15

0043 15<u
whose density is depicted in Figure 1a. The unweighted for-
mula is a hard constraint. O

PHMNS, of course, give us considerably more expressive
power in the weight function:

Example 8: Suppose u is as before, but approximated using
the following PHMN:

-3<u<3

Q+u?/6 -2<u<-1
@4-6u*>-3u’))6 —1<u<0
4-6u”+3u’))6 O<uc<l
Q-u’/6 1<u<?2

which appeals to polynomials of degree 3, and is plot-
ted in Figure lc. We might compare it to Figure 1b that
shows a coarser approximation than this one using polyno-
mial weights of degree 1. O

Correctness
Finally, we provide an appropriate companion to Theorem 3:

Theorem 9: Let N be a Markov network over Boolean
and real-valued random variables B and X and potentials
{1,....0r}. Let A and w be the corresponding encodings.
Then for any q,e € BU X, Pry(q | e) is given by (2).

Proof (Sketch): The argument is similar in spirit to the one
provided for Theorem 3. For any N, suppose p is the density
accorded to all assignments (b, x) of the random variables in
BUX, wherec; < x; <dj,...,c, < x, <d,. Then the subset
of the probability space obtained from b; X - - - X b, X [c1,d;]X
-+ X [cp, dy] can be exactly mapped to a model of A7, in the
sense of being accorded the same density. (The assumption
here, of course, is that A would encode these intervals as SMT
literals of the form ¢; < x; < d; with an appropriate w-value.)
The partition function Z is calculated by integrating over R”
for all such subsets. Using the definition:

f WEIGHT(M, w)dX = Lip+1emy X WEIGHT(M, w) dX
{I+:leM) R

together with the observation:

WMI(A, W) = Z I[{Z*:IEM} X WEIGHT(M, W) dX

n MEA-

we find that WMI(A, w) is also obtained by integrating over
R” for all corresponding models of A~. Thus, WMI(A, w) =
Z, and the case of the conditional probability is a simple
corollary. i



Inference Complexity

To conclude the section, let us discuss the complexity of the
volume computations that need to be performed for WMI.
One may be concerned about the degree of the polynomials
being integrated. Indeed, these degrees can become large.

Proposition 10:  Suppose A, B, X, L and w is as before,
where w encodes a PHMN. Let k be the maximum degree
of the polynomials in {w(l) |l € L}. Let n be the number of
propositions in A~. Then WMI(A, w) computes volumes of
polynomials of degree k - n.

Proof: Suppose M is a model of A™. By assumption
size({I* | I € M}) = n. Then weiGHT(M, w) would be a prod-
uct of n polynomials each of degree k, giving us (k - n).

However, Baldoni et al. [2011] show that for a fixed number
of variables, the integration is efficient, even for polynomials
of high degree.> Smoother function approximations therefore
come at a reasonable cost.

4 Parameter Learning for CHMN

This section focuses on the weight learning task for CHMNSs.
Weight learning uses data D to automatically learn the den-
sity associated with each feature (that is, an SMT formula) by
optimizing a given objective function. This section explores
how the standard practice of parameter learning [Koller and
Friedman, 2009] can be understood for our framework.*

Let us recall some preliminaries. We appeal to the notion of
maximum likelihood estimation where given a set of param-
eters wy, ..., wy, and D, we seek to maximize the likelihood
(MLE) of these parameters given the data:

max L(w : D)
w

For technical reasons, given a Markov network N, a log-
linear model for the joint density function is often considered,
as follows:

1
Pry(b,x) = 7 €XP (Z wi - fi(bg, Xk)] ,
%

where clique potentials are replaced by an exponentiated
weighted sum of features. Then, the likelihood can be shown
to be maximum precisely when:

Eplfil = Ewlfi]

which says the empirical expectation of f; in D (for exam-
ple, the count) equals its expectation according to the current
parameterization.

In our setting, we first observe that for PHMN:S, taking a
logistic model would mean that the density function is the
Euler number e raised to a complex high degree polynomial,’

3See Baldoni et al. [2011] also for discussions on how this re-
lates to the more general problem of computing volumes of arbitrary
polytopes [Dyer and Frieze, 1988].

4While we consider maximum likelihood estimation here, max-
margin learning of weighted SMT theories has also been recently
proposed [Teso et al., 2015].

SNo approximations for Gaussians would then be needed.

2774

which would be prohibitive in practice.® We focus instead on
CHMNSs, which can be given a fully logistic formulation.

Given D and a SMT theory A, the empirical expectation of
a formula @ € A can be obtained by calculating:

Epla] = size({d | d E a and d € DY) / size(D)

That is, we simply count the items in 9 which are true for a.
For example, if (x = 3.5) € D and (p V x < 7) € A, then the
count of the feature (p V x < 7) increases.

Given a SMT theory A and a weight function w, the expec-
tation of @ € A wrt w is given by

E,la] = WMI(a,w) / Z

With this formulation, standard iterative methods from con-
vex optimization can be used [Koller and Friedman, 2009].
Building on Theorem 9, we prove:

Theorem 11: Suppose N is a Markov network provided as
a log-linear model (with numeric weights). Given its encod-
ing as an SMT theory A, the parameter estimates for « € A
maximizing the likelihood given D are those minimizing the
difference between Epla] and E,,[a].

S Experimental Evaluations

In this section, we discuss results on an implementation of
WMI inference and CHMN parameter learning. The WMI
implementation scheme is an exhaustive DPLL search mod-
ulo an SMT oracle.”

Our system is implemented using the Z3 SMT solver
v4.3.23 and the LaTTE software v1.6 for computing inte-
grals.’ All experiments were run using a system with 1.7
GHz Intel Core 17 and 8GB RAM.

Scaling Behavior

To test the scaling behavior, we are mainly concerned with
the volume computation aspect of the WMI task. Observe
that WMI for A can be seen to implicitly compute #SAT on
A~. Therefore, to evaluate our implementation, the system is
also made to compute #SAT(A™), which can be enabled by
simply letting voL(M, w) = 1 for any M and w.

For our tests, we randomly generated SMT theories and
weight functions, involving intricate dependencies and hard
constraints. These included weighted sentences of the form:

x fie[x+3y<3]
001y? —.1ly+25 fHe[pVx=0Ay>0)]
1 fepV-g)

with additional hard constraints of the sort:

(i N )= fs.

%The MLE formulation can be given for non-logistic models
under certain reasonable assumptions, which can be applied to
PHMNSs. We leave this to an extended version of the paper.

"We remark that our implementation does not yet consider the
full range of effective WMC techniques [Sang et al., 2005], such
as component caching [Bacchus et al., 2009]. This is an interesting
avenue for the future.

8http://z3.codeplex.com

“https://www.math.ucdavis.edu/~latte
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Figure 2: Empirical evaluations.

While iteratively increasing the number of variables and con-
straints in the SMT theories, we plot the WMI behavior and
use #SAT(A™) as the baseline against all instances of a certain
model count in Figure 2a. (The plots are smoothed for read-
ability.) This compares, for example, the effort for weight and
volume computations as the number of models of the input
theory increases. We see that the implementation scales well
relative to #SAT(A™). While our theories sparingly mention
high-degree polynomials, integration is still necessary for al-
most all real-valued variables and so this demonstrates that
WMI and its volume computation approach is both feasible
and can be made effective.

Real-World Dataset

Next, we demonstrate parameter learning, and the diversity
of applications that WMI can characterize, well beyond the
standard hybrid examples. We consider the following novel
application involving conditional queries over arithmetic con-
straints. It uses a data series released by the UK govern-
ment that provides average journey time, speed and traffic
flow information on all motorways, known as the Strategic
Road Network, in England.'® Motorways are split into junc-
tions, and each information record refers to a specific junc-
tion, day and time period. In the following we consider the
2012 dataset, with over 7 million entries, and focus on a set
of junctions surrounding Heathrow airport (J12-J16).

The task is as follows. Think of a commuter going to work.
She expresses assumptions about her journey in terms of the
time period of the journey, its duration, the average speed that
she can drive at through a junction using soft constraints:

fie [morn = ji + jo + j3 < 800]
he laft = avg(s1, 52, 53) = 80]
e [morn v eve = 700 < (j1 + jo + j3) <900]

which can be read as if her travel is during the morning, the
total journey time is (hopefully) less than 800 seconds, that
the average speed exceeds 80 kmh in the afternoon, and so
on. Together with hard constraints, such as:

0< ji + jo+ j3 < 1500

10http://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

she is interested in complex conditional queries about the
journey time given certain conditions such as the day of week
and the time of travel.

In our experiments, we applied the parameter learning for-
mulation to learn the weights of such assumptions against
the 2012 dataset, mapping terms in the theory to actual data
points as appropriate. The weights are initialized to 1, and
Figure 2b plots how the weights diverge for the formulas f;
and f> when likelihood estimation terminates. In essence,
mornings being peak traffic hours, it is unlikely that a morn-
ing journey lasts less than 800 seconds, and so f is accorded
a low probability. In contrast, the commuter’s afternoon as-
sumptions are reasonable relative to the data, leading to f>
have a high(er) probability.

Finally, Figure 2¢ shows how the conditional probability of
getting to work on time changes according to the increasing
amount of evidence. We observe that the query can be condi-
tioned wrt arbitrary Boolean combinations of arithmetic and
propositional constraints. Consider, for example, the second
query. After taking into account that at least 320 seconds has
been currently spent in the first junction on a Friday morning
(i.e., evidence M A F), the driver concludes that the probabil-
ity of getting to work on time (J < 1000) is now fairly low.
She then refers to a colleague who has passed through the last
junction to report that the current average speed in the junc-
tion j3 is over 95 kmh. With this evidence, the probability of
getting to work on time increases.

6 Conclusions

WMC is a prominent and general approach to probabilis-
tic inference in Boolean (and discrete) graphical models. In
the recent years, the performance of SAT solvers has greatly
improved, not only due to massive engineering efforts, but
also because of theoretical insights on SAT algorithms them-
selves. While WMC benefits from these developments, it re-
mains restricted to discrete probability distributions. In this
work, we proposed the generalization WMI, proved its cor-
rectness, expressiveness as well as its downward compatibil-
ity with WMC. It is based on SMT technology that has also
enjoyed tremendous progress together with SAT. The notion
allows us to address exact inference in mixtures of discrete
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and continuous probability distributions. We then demon-
strated parameter learning on a real-world dataset. The re-
sults are promising and the formulation is general. For the
future, we would like to generalize algorithmic insights from
WMC, such as component caching [Bacchus et al., 2009], for
the WMI task.
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