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Abstract
Building ontologies is a difficult task requiring
skills in logics and ontological analysis. Domain
experts usually reach as far as organizing a set of
concepts into a hierarchy in which the semantics of
the relations is under-specified. The categorization
of Wikipedia is a huge concept hierarchy of this
form, covering a broad range of areas. We propose
an automatic method for bootstrapping domain on-
tologies from the categories of Wikipedia. The
method first selects a subset of concepts that are
relevant for a given domain. The relevant concepts
are subsequently split into classes and individuals,
and, finally, the relations between the concepts are
classified into subclass of, instance of, part of, and
generic related to. We evaluate our method by gen-
erating ontology skeletons for the domains of Com-
puting and Music. The quality of the generated on-
tologies has been measured against manually built
ground truth datasets of several hundred nodes.

1 Introduction
Building ontologies is a difficult task that requires expertise in
the domain that is being modeled, as well as in logic and on-
tological analysis. Firstly, domain knowledge is necessary to
decide “the scope and the boundaries of the ontology” [Iqbal
et al., 2013], that is, to separate the entities relevant to the
modeled domain from the accessory elements that should not
be included into the ontology. In the subsequent phase, do-
main expertise is needed to express the relations between the
selected entities. The most important kind of relations are
hierarchical relations, such as meronomy, and the relation be-
tween an entity and its type. A clear distinction between rela-
tion types requires additional competences in logics and on-
tological analysis. Domain experts tend to merge these rela-
tions into a generic broader/narrower relation, which results
in the partially formalized knowledge resources such as clas-
sification schemes, lexicons, and thesauri.

These types of partially structured descriptions of the do-
main are widely used in the Semantic Web, spanning from
global categorizations, such as that of Wikipedia, to domain-
specific schemes, such as the ACM Computing Classification
System, and providing great support for structural access to

web resources. An example of a system that exploits such a
resource is ScienScan [Mirylenka and Passerini, 2013], which
provides structured access to computer science literature by
navigating the Wikipedia category network. A fully devel-
oped formal representation of this structure would enhance
these types of applications with the possibility of a more flex-
ible semantic search and navigation [Osborne et al., 2013].
For this purpose, we argue, it is worth facilitating the trans-
formation of the informally structured knowledge representa-
tions into fully formalized ontologies.

In this paper we propose an automatic method based on
the machine learning techniques for extracting domain ontol-
ogy skeletons from the Wikipedia category hierarchy. We use
the term ontology skeleton to indicate a basic version of an
ontology that contains all the primitive concepts, the essen-
tial hierarchical relations between them, and some track of
the remaining generic relations of unspecified type. An on-
tology skeleton is meant to be further refined in two ways:
first, by providing corrections to the solutions proposed by
the automatic algorithm, and second, by assigning more spe-
cific relation types to generic relations. The method first se-
lects a subset of the categories that are relevant for the given
domain. The relevant categories are then split into classes
and individuals, and, finally, the relations between the cate-
gories are classified as either subclass of, instance of, part of,
or generic related to.

We evaluate our method by generating ontology skeletons
for the domains of Computing and Music. The quality of the
generated ontologies has been measured against manually
built ground truth datasets. The results suggest high quality in
selecting the relevant nodes, discriminating classes from in-
dividuals, and identifying the subclass of relation. The accu-
racy of identifying the instance of relation is on par with the
state of the art. The more difficult part of relation between
Wikipedia categories was never addressed in the literature,
and our initial results need further improvement. The code,
data, and experiments are available1 online.

2 Problem statement
According to [Suárez-Figueroa et al., 2012], our problem
fits into the scenario of reusing non-ontological resources
for building ontologies. Our resource, the categorization of

1https://github.com/anonymous-ijcai/dsw-ont-ijcai
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Wikipedia2, is represented by a hierarchy of labels used for
organizing Wikipedia articles. With some exceptions, the cat-
egories follow the established naming conventions3, such as:
• the names of the topic categories should be singular, nor-

mally corresponding to the name of a Wikipedia article;
• the names of the set categories should be plural;
• the meaning of a name should be independent of the way

the category is connected to other categories.

As suggested above, there are two main kinds of categories:
topic categories, named after a topic, and set categories,
which are named after a class. An example of a topic category
is France, which contains articles speaking about the whole
France; an example of a set category is Cities in France.

With the exception of occasional cycles, Wikipedia cate-
gories are organized into a lattice. There is a top-level cat-
egory, and all other categories have at least one parent. The
semantics of the hierarchical relation is not specified, and in-
dividual relations may be of different ontological nature. The
main types of relations are:

1. subset relation between the set categories, e.g.
Countries in Europe ← Baltic countries,

2. membership relation between a set category and a topic
category, e.g. Countries in Europe ← Albania,

3. part-of relation, usually, between two topic categories,
e.g. Scandinavia ← Sweden,

4. sub-topic relation between two topic categories, e.g.
European culture ← European folklore,

5. other relations, whose nature may be specified by the
category labels, e.g. Europe ← Languages of Europe.

Formalizing these relations in description logics requires:
The definition of the signature: For each set category, such
as Country in Europe, one should introduce a class. For each
topic category, such as Sweden, one should introduce an indi-
vidual. Then, the relations between the entities should be de-
clared, such as part of and subtopic of. New relational sym-
bols should be introduced to formalize the relations implied
by the category names, such as the relation spoken in implied
by the category Language of Europe.

The definition of the axioms: Finally, the sub-category re-
lations between Wikipedia categories should be transformed
into axioms of description logic, such as:
• Baltic countries v Country in Europe,
• part of(Sweden, Scandinavia), etc..
In the rest of the paper we propose an automatic method

for extracting domain ontology skeletons from the category
network of Wikipedia. At the high level, the method consists
of the following three steps: 1) selecting the relevant subset
of categories, 2) transforming each category into a class or an
individual, and 3) establishing the semantic relations between
the categories. Our solution relies on the following simpli-
fying assumptions: 1) relations subtopic of and part of are
merged into a unique relation part of, and 2) relations other
than part of, instance of, and subclass of are codified as a sin-
gle generic relation related to.

2http://en.wikipedia.org/wiki/Wikipedia:Topic category
3http://en.wikipedia.org/wiki/Wikipedia:Category names

3 Solution
Each of the three steps of our method—selecting the relevant
categories, splitting them into classes and individuals, and
classifying the relations—is cast into a binary classification
problem. More precisely, the problem at the first step reduces
to discriminating between relevant and irrelevant nodes, the
next one—to discriminating between classes and individuals,
and that at the last step—to discriminating between a spe-
cific relation (such as subclass of) and the generic related to.
Solving the problem at each step requires providing manually
annotated examples: for instance, those of relevant and irrel-
evant categories. The rest of the work is done by a machine
learning algorithm. In the following sections we provide the
detailed description of the three steps of the method.

3.1 Selecting the subgraph of relevant categories
In order to identify the relevant categories, we first select
the most general category representing the domain of interest
(henceforth referred to as “the root”). For the computer sci-
ence domain, for instance, we choose the category Computing.
The category selection algorithm is based on the following
two observations. First, all relevant categories are descen-
dants of the root with respect to the sub-category relations.
Second, the categories further from the root are more likely
to be irrelevant (following sub-category links, one can arrive
from Computing to Buddhism in China in just 9 hops).

The algorithm (Algorithm 1) performs a breadth-first
traversal of the category graph, starting from the root. For
each category being visited, the decision is made (line 7),
whether the category is relevant, and should be scheduled for
recursive traversal. The decision is made by a trained classi-
fier, based on the features of the category (discussed further).
To ensure the termination of the algorithm, we set a limit
max depth on the maximum allowed traversal depth. Based on
our experience, we claim that using max depth=20 is safe, in
the sense that any category that is further than 20 hops from
the root is irrelevant. In practice much smaller value can be
chosen, depending on the domain. For Computing we empiri-
cally discovered that max depth=7 with high confidence.

Algorithm 1: Selection of the relevant categories.
input : root; max depth
output: relevant: the set of relevant categories

1 queue← empty FIFO queue
2 visited← {root}
3 relevant← ∅
4 queue.push(root)
5 while queue is not empty :
6 category← queue.pop()
7 if isRelevant(category) :
8 relevant← relevant ∪ {category }
9 if getDepth(category) < max depth :

10 for subcategory in subcat(category) :
11 if subcategory not in visited :
12 queue.push(subcategory)
13 visited← visited ∪ {subcategory }

1465



Classifying the categories into relevant and irrelevant. We
train a binary classifier to predict if a category is relevant
based on its features. In this and other tasks we use the stan-
dard L2-regularized linear SVM [Fan et al., 2008]. We chose
the SVM classifier because of its popularity, availability in
the machine learning toolkits, and reported performance in
various domains.

Training the classifier requires providing examples of both
relevant and irrelevant categories. In order to collect the train-
ing examples, we first run the simple breath-first traversal of
the category graph starting from the root, and limiting the
depth to max depth. This results in the initial set of categories
that are under the root category and within the distance of
max depth from it. From this initial set we randomly sample
paths going down from the root and add the categories along
these paths into the training set.
The features of a category that we use in this task are based
on the depth (the distance from the root), the title, and the par-
ent categories. The most important feature is the depth itself.
Another feature is the maximum similarity of the category’s
title to any of its parents’ titles, measured as the Jaccard index
between the sets of the words stems.

There is a dependency between the relevance status of a
category and those of its adjacent categories: relevant cat-
egories tend to have relevant children and parents and vice
versa. The relevance status of the parents is, however, not
known during classification. As a proxy for this information,
we compute the fraction of parents that have been visited by
the selection algorithm (and have thus already been identified
as descendants of the root category), as well as their mini-
mum, maximum and average depth.

3.2 Discriminating between classes and individuals
Having selected the set of relevant categories, we need to split
them into classes and individuals. Following our general ap-
proach, we view this task as a classification problem. We
collect a sample of relevant categories, annotate them man-
ually as either classes or individuals, and use the sample to
train a binary classifier. The categories can be classified inde-
pendently from each other, which makes this task easier than
the one described in the previous section.

We tried to minimize the effort and resources required
for computing the features in order to make our approach
lightweight and easily reusable. For this task we limited the
set of features to those describing the title of the category. The
property most indicative of the category type is the grammat-
ical number (singular or plural) of the head word of the ti-
tle. We encoded the grammatical number approximately with
the word suffixes of lengths 1, 2, and 3. Computing suf-
fices is simpler than deriving the grammatical number with
a part-of-speech tagger: it is not prone to tagging errors, and
can capture more subtle cases, such as learning that suffix
-are in words like “software” and “hardware” is indicative of
class. Despite simplicity, this feature alone proved sufficient
for achieving decent performance in this task.

3.3 Classifying the relations between the nodes
At this step we need to establish the semantic relations be-
tween the entities in the ontology. We introduce a relation

between two nodes of the ontology whenever there is a sub-
category relation between the corresponding Wikipedia cate-
gories. By default, the introduced relation has a generic type,
which we denote as related to. More specific relation types
can be defined for certain combinations of node types. Specif-
ically, two classes may be linked with subclass of relation,
two individuals with part of, and an individual and a class
with the instance of relation. In these settings, predicting the
type of relation between the given two nodes is equivalent to
predicting whether the relation is specific or generic, which is
a binary classification problem.

For each specific relation type we train a separate classi-
fier on a dedicated training set. The training sets are col-
lected by sampling pairs of relevant categories linked with
sub-category relations. The node types predicted at the pre-
vious step are used to filter out the category pairs that are
inconsistent with relation types.

As previously, we only use features that describe the titles,
or, more precisely, the relation between the titles of the parent
and the child categories, namely:
• whether there is a verbatim match between the stems:

1) of the head words, 2) of the first words;
• the Jaccard similarity between the sets of stems,
• similarity between the head words (various measures),
• average pairwise similarity between the words,
• whether there is a hyponym relation between the words

in the titles, and whether it is between: 1) head words,
2) a head and a non-head word, 3) non-head words;
• whether the titles are related with a certain pattern, e.g

one is a substring of the other, or the titles end with the
same phrase, etc..

For similarity between the words we took the maximum sim-
ilarity between the possible senses of the words, according
to WordNet. We used a number of similarity measures based
on WordNet, as implemented in the NLTK [Bird et al., 2009]
package. These included the similarity measures due to Lea-
cock and Chodorow [1998], Wu and Palmer [1994], Resnik
[1995], Lin [1998], and Jiang and Conrath [1997].

4 Evaluation
First, we applied our approach to building an ontology skele-
ton for the domain of computing. We executed and evaluated
the 3 steps of our method: 1) selecting the subgraph of rele-
vant categories, 2) classifying categories into classes and in-
dividuals, 3) classifying relations (subclass of vs. related to;
instance of vs. related to; part of vs. related to). For
each of the tasks 1)–3) we manually annotated a sample of
“ground truth” data for both training and evaluation. The
performance of the tasks was evaluated in cross-validation,
and the parameters of the classifiers were tuned with a nested
cross-validation on the training parts of each fold. As per-
formance measures we used the accuracy of the prediction,
the F1 scores with respect to both classes (referred to as the
positive and the negative class), and the sum of the F1 scores
weighted according to the class sizes.

To put the results into perspective, we implemented two
standard baselines for each of the three tasks. The major-
ity rule baseline always predicts the most frequent class in
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the training set; it has zero recall and zero F1 measure on the
smaller (minority) class. The stratified random baseline pre-
dicts randomly, but respecting the distribution of the classes
in the training set. The standard baselines show their best
when the classes are imbalanced, with the accuracy approach-
ing 100% in the extreme case. The weighted F1 measure of
the random baseline is equal (in expectation) to the accuracy,
while for the majority rule it is always smaller than the accu-
racy. We use the weighted F1 score as our main performance
measure, as it allows for a more meaningful comparison to
the majority rule.

4.1 Evaluation of the relevant subgraph selection
We started from the Wikipedia category Computing as the root,
and executed the breadth-first selection procedure described
in Section 3.1. The 7-level deep selection produced 28 264
categories, from which a random sample of 1 000 categories
was selected for labeling. Two authors of this paper inde-
pendently annotated the categories in the set as ‘relevant’ or
‘irrelevant’, omitting the dubious cases. The 642 categories
for which the two annotators gave the same label were se-
lected as the ground truth, and contained 264 relevant and
378 irrelevant categories according to the labeling.

We evaluated the category selection using 5-fold cross-
validation. For each fold, the category classifier was trained
on the training part of the fold and plugged into Algorithm
1. The output of the algorithm was then evaluated on the test
part of the fold. Table 1 shows the performance on this task.
The learning curve (omitted for space reasons) shows that as
few as 30 categories suffice to train the selection procedure.

Table 1: Performance of category selection for Computing. The
scores (mean and standard deviation) are given in per cents.

method accuracy F1 pos. F1 neg. weighted F1

Ours 92 (0.6) 91 (0.8) 94 (0.5) 92 (0.6)
Depth(4) 91 (0.8) 89 (1.3) 92 (0.6) 91 (0.9)
Majority 59 (0.4) 0 (0) 74 (0.3) 44 (0.5)
Random 53 (7.6) 38 (8.4) 60 (4.8) 55 (6.0)

In addition to the standard baselines, we implemented
a more informed depth-based baseline. The depth-based
method marks all nodes within a certain distance from the
root as relevant, leaving out all the rest. Figure 1 shows the
accuracy of this baseline depending on the selection depth.
Table 1 includes the best performance (at depth 4), which al-
most reaches that of our method.

After evaluating the category selection using cross-
validation, we trained the classifier on the whole ground truth
dataset, and executed Algorithm 1 from scratch with the re-
trained classifier. This final run of the algorithm produced a
set of 7159 categories, which we then used in the subsequent
stages of the overall procedure.

Evaluating the coverage of the selected categories. ACM
Computing Classification System4 (ACM CCS) is a standard
and widely-used categorization of computer science. Its cur-

4https://www.acm.org/about/class/2012

Figure 1: Accuracy of the depth-based baseline depending on
the depth. The horizontal line represents our method. The
green band and the vertical blue bars show the standard devi-
ation as per cross-validation.

rent version contains over two thousand concepts, and can be
seen as a gold standard for topics relevant to computing.

We evaluated the results of our selection procedure by esti-
mating how well they cover the concepts of ACM. For the
purpose of this experiment, we established a partial map-
ping between the concepts of ACM and the categories of
Wikipedia using an automatic ontology matching technique
[Jiménez-Ruiz et al., 2012], resulting in 398 pairs of the cor-
responding topics. Assuming that ACM CCS contains only
relevant topics, all mapped Wikipedia categories were con-
sidered relevant. Of the 398 categories relevant according to
the mapping, 327 were also marked as relevant by our algo-
rithm, corresponding to the coverage (or recall) of 0.82.

The question of which topics are relevant to a given do-
main is somewhat subjective. Consequently, there was some
disagreement between ACM CCS and the ground truth an-
notations on which our algorithm was trained. Some of the
ACM CCS concepts irrelevant according to our labeling in-
clude: Reference, Measurement, Cartography, Reference works,
and Documents. Thus, even our ground truth labeling had a
non-perfect recall, estimated at 0.90.

The precision could not be estimated in the same way,
firstly because ACM CCS does not cover all of the Wikipedia
categories relevant to Computing, and secondly because our
mapping between ACM CCS and Wikipedia was only partial.

4.2 Evaluation of the node type classification
Having selected the subgraph of categories relevant to
Computing, the next step was to group the nodes into classes
and individuals. From the 7 159 categories obtained in the
previous step, we randomly selected a sample of 270 cate-
gories for manual annotation, and used the sample for training
and evaluation. Table 2 summarizes the performance scores
of our method, as well as of the two standard classifiers.

Comparison with WikiTaxonomy.
WikiTaxonomy [Ponzetto and Strube, 2007] is a large-scale
taxonomy derived from the Wikipedia category network, and
containing over a hundred thousand categories. Similarly to
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Table 2: Performance of the category type classification for
Computing. The scores (mean and standard deviation) are
given in per cents.

method accuracy F1 pos. F1 neg. weighted F1

Ours 95 (4.1) 96 (3.3) 92 (5.4) 95 (4.0)
Majority 66 (1.0) 80 (0.7) 0 (0) 52 (1.2)
Random 54 (8.9) 65 (6.1) 40 (13.4) 61 (6.6)

our work, WikiTaxonomy discriminates between classes and
individuals, and establishes subclass of and instance of rela-
tions between them. We looked at WikiTaxonomy as an al-
ternative classification of categories, and measured its perfor-
mance on our ground truth dataset. As our dataset was col-
lected from a recent version of Wikipedia, it included some
new categories that were not present in WikiTaxonomy. For
the purpose of comparison, we limited the test set to the 75
categories that WikiTaxonomy did contain. The weighted F1
scores of our method and WikiTaxonomy on this dataset were
0.92 and 0.54 respectively.

We should point out the dramatic difference in the propor-
tion of classes in WikiTaxonomy (8% classes, 92% individu-
als) versus in our labeling (60% classes, 30% individuals).

This suggests that our notions of classes and individuals
and the criteria for assigning categories to these groups are
likely different from those used in WikiTaxonomy.

Most of the errors of our method in this task were re-
lated to difficulties in distinguishing between the plural and
the singular forms in the category titles. For instance,
Robotics, Bioinformatics, and Computer graphics were mistak-
enly labeled as classes. With few exception, the mistakes of
WikiTaxonomy, according to our ground truth labeling, were
related to predicting categories like Data management, Graph

coloring, and World Wide Web as classes.

4.3 Evaluation of the relation type classification
For each of the three specific relation types (subclass of,
instance of, and part of) we evaluated the corresponding bi-
nary classification task of discriminating between that spe-
cific relation and the generic related to. For each of the three
subtasks we collected and manually labeled a “ground truth”
dataset of parent-child category pairs.

For the subtasks of discovering subclass of and instance of

relations, we used WikiTaxonomy as a natural alternative
method to compare with. For the sake of comparison, we
measured the performance of our method on the fraction of
pairs from the test data, for which both parent and child cat-
egories were contained in WikiTaxonomy. In order to have
enough such pairs, we specifically sampled a number of them
and included into the dataset for manual annotation. The
performance of WikiTaxonomy on the subclass of relation
was measured in the following way: if for a certain parent-
child pair of categories from the test set either subclass of

or instance of relation was found in WikiTaxonomy, we con-
sidered that WikiTaxonomy predicted the subclass of relation
between these categories; if no relation was found, we con-
sidered that WikiTaxonomy predicted the generic related to

relation. The performance on the instance of task was mea-
sured in the same way.

Table 3: Performance of the relation type classification for
Computing. The scores (mean and standard deviation) are
given in per cents.

method accuracy F1 pos. F1 neg. weighted F1

subclass of

Ours 80 (9.0) 87 (6.0) 48 (29.4) 83 (7.6)
WikiTx 66 (10.8) 74 (10.9) 39 (24.5) 71 (9.4)
Majority 85 (9.8) 92 (6.0) 0 (0) 79 (13.6)
Random 79 (8.6) 87 (5.8) 15 (24.0) 78 (12.2)

instance of

Ours 67 (11.9) 71 (16.8) 55 (14.5) 67 (10.9)
WikiTx 68 (13.8) 66 (13.6) 66 (15.4) 68 (14.4)
Majority 59 (15.5) 73 (15.2) 0 (0) 45 (16.0)
Random 53 (13.2) 61 (15.4) 37 (14.6) 52 (13.2)

part of

Ours 59 (13.4) 63 (23.0) 32 (32.9) 62 (15.4)
Majority 69 (26.2) 79 (19.5) 0 (0) 59 (33.1)
Random 62 (17.0) 70 (12.9) 33 (34.8) 66 (17.0)

Table 3 summarizes the performance scores of both
WikiTaxonomy and our method, as well as the standard
baselines. The relatively high score of the baselines on the
subclass of relation is due to the class imbalance (about 85%
of subclass of vs. 15% of related to). On this relation our
method outperformed the baselines, though insignificantly.
On the instance of relation the performance of our method
is comparable to WikiTaxonomy. On the part of relation, due
to the difficulty of the task our method performs comparably
to the random baseline.

4.4 Evaluation on a different domain
In order to evaluate the generalization of the proposed
method, we executed it on the domain of Music. Table 4 sum-
marizes the results of the experiments. The best performance
was achieved when the classifiers were trained on the anno-
tated data from the new domain. Interestingly, the method
performed reasonably well on the first two tasks even with
the classifiers trained on Computing.

As we can see from the table, our methods performed well
on the tasks of selecting the relevant categories, classifying
the category types and classifying the subclass of relation,
and poorly on classifying the other two relation types. As
in the case of other domain, the baseline depth-based selec-
tion performed well, when the depth was selected appropri-
ately. In case of Music the optimal depth turned out to be
equal 6. Note that our machine learning–based method was
not informed about this optimal depth and selected the nodes
through the automatic procedure of Algorithm 1.

We can also see that in case of the Music domain, the per-
formance of our method on the instance of relation is signif-
icantly worse, and also worse than that of the baselines. The
main reason for this is that in this domain we could hardly find
negative examples for this type of relation (4 negative exam-
ples in a sample of 54). It is clear that in this case it is “safe”
to always predict the positive class (the majority rule). The re-
sults on this relation could be improved by selecting a larger
sample containing more negative examples. The part of re-
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Table 4: Performance of the various tasks on the domain
Music. The scores (mean and standard deviation) are given
in per cents.

method accuracy F1 pos. F1 neg. weighted F1

category selection
Ours 89 (0.9) 92 (0.7) 79 (1.4) 88 (0.9)
Ours∗ 86 90 78 89
Depth(6) 89 (2.9) 92 (2.0) 79 (5.8) 88 (3.1)

category type classification
Ours 98 (2.0) 99 (1.2) 92 (6.6) 98 (2.0)
Ours∗ 98 (2.0) 99 (1.2) 92 (6.6) 98 (2.0)
Majority 85 (0.6) 92 (0.3) 0 (0) 79 (0.8)
Random 76 (4.7) 83 (0.3) 17 (8.3) 73 (2.9)

relation subclass of

Ours 95 (5.5) 97 (3.3) 71 (83.0) 96 (4.6)
WikiTx 60 (10.8) 71 (11.0) 31 (14.5) 68 (10.8)
Majority 90 (5.5) 95 (3.1) 0 (0) 86 (8.0)
Random 84 (6.3) 91 (3.9) 4 (12.0) 82 (7.9)

relation instance of

Ours 71 (29.7) 73 (37.1) 12 (21.3) 72 (35.1)
WikiTx 41 (23.2) 50 (29.0) 13 (20.4) 49 (28.1)
Majority 93 (8.6) 96 (4.7) 0 (0) 90 (12.5)
Random 84 (15.8) 91 (10.2) 0 (0) 85 (14.0)

relation part of

Ours 45 (21.0) 47 (33.9) 17 (22.3) 44 (25.9)
Majority 80 (12.3) 88 (7.9) 0 (0) 71 (16.7)
Random 67 (16.1) 77 (15.1) 12 (18.4) 66 (15.8)

∗ Trained on Computing

lation, on the other hand, is intrinsically more difficult, and
likely requires more sophisticated features based on seman-
tics and background knowledge.

5 Related Work
5.1 WikiTaxonomy
WikiTaxonomy is a large-scale taxonomy derived from the
categories of Wikipedia. In [Ponzetto and Strube, 2007]
the authors described a method for identifying the is a re-
lation between categories (a union of our subclass of and
instance of). A successive work [Zirn et al., 2008] con-
cerned discriminating between the individuals and classes.
The methods described in these works consisted of multi-
ple steps, each of which refined the result based on a num-
ber heuristic rules. The rules examined the titles of the cate-
gories, the connections between categories, and the relations
between the categories and the articles.

Similarly to these works, our method uses the information
in the category titles to classify both categories and relations
between them. The syntactic features of the titles imple-
mented in our method are largely inspired by the rules used
in WikiTaxonomy. A major distinction of our work is that
we aim to provide domain-specific ontologies, and thus need
to extract a portion of categories relevant for a given domain.
Secondly, we rely on machine learning to combine various
pieces of evidence, avoiding ad-hoc rule-based pipelines and

rule combination schemes. Another distinction of our work
is that we target more relation types.

5.2 Wikipedia-based ontologies
The following works present large-scale ontologies extracted
from the various kinds of knowledge contained in Wikipedia.
DBpedia [Lehmann et al., 2014] extracts knowledge avail-
able in Wikipedia in semi-structured format, such as in-
foboxes, between-language links and redirects. The central
entities in DBpedia correspond to Wikipedia articles. The
Wikipedia categories are not used as classes to group the enti-
ties. Instead, DBpedia relies on a manually curated ontology
that was created from the most commonly used infoboxes,
and contains (as of February 2015) several hundred classes
and over two thousand properties. The category network is
exported in SKOS format, preserving the hierarchical struc-
ture, but not enriched semantically in any way.
YAGO [Suchanek et al., 2008; Hoffart et al., 2013] similarly
extracts structured information from Wikipedia in the form of
facts about entities that represent Wikipedia articles. In con-
trast to DBpedia, it integrates WordNet [Miller, 1995], and
relies on its taxonomical structure to form the class subsump-
tion hierarchy. From Wikipedia categories, only the leaf ones
are taken into consideration, and a simple heuristic is used to
identify the leaf categories that represent classes. In addition
to the relations extracted from infoboxes, some relations are
derived from the so-called relational categories.
Catriple [Liu et al., 2008] also uses Wikipedia category
names to generate facts about the articles, with new prop-
erty types being extracted automatically. In contrast to other
systems, Catriple observed the patterns in the titles of the
parent-child category pairs. For instance, the two categories,
Songs by artist and The Beatles songs, suggest that “artist” is
a property, and “The Beatles” is a value.

The main distinction of the described works is that they fo-
cus on Wikipedia articles as entities and mainly derive non-
taxonomical relations describing the articles. For the taxo-
nomical organization of knowledge these sources use exter-
nal high-level hierarchies, such as WordNet, or the manually
created DBpedia ontology. Our work is specifically focused
on the fine-grained and hierarchical structure of the domains,
which we derive from the Wikipedia categories. The infor-
mation about the fine-grained structure 1) is not available
in general-purpose ontologies and classification schemes, 2)
cannot be reasonably provided manually due to the large scale
(thousands of nodes and relations).

6 Discussion and future work
We proposed an automated method for bootstrapping domain
ontologies from the category network of Wikipedia. In all
the three steps of the process—extracting the relevant con-
cepts, identifying classes and individuals, and classifying
relations—the method relies on supervised classification to
combine various pieces of evidence. This uniform approach
is flexible, and can easily incorporate new features. The
flexibility comes at the cost of annotating training examples,
which can be facilitated with interactive tools. Furthermore,
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the annotation has to be performed at most once for a given
domain. Our experiments suggested that the method performs
reasonably well on the first two tasks even without retraining
on a new domain. We plan to further investigate the questions
of domain dependence in the future work.

One property of our method is that it relies only on
the information present in the categories, namely the ti-
tles and (only in the first of the three tasks) the sub-
category relations. Despite the limited information, the
method has performed well in selecting the relevant cate-
gories, identifying the classes and individuals, and identify-
ing the subclass of relation. The performance on the other
two relations (instance of and part of) suggests that these
types are more difficult to capture. In particular, it is clear
that the category titles often contain insufficient informa-
tion, even for a human, to determine the part of relation:
consider, for instance, part of(Social media, World Wide Web) or
part of(Data warehousing, Business intelligence). Improving
the accuracy on these relations requires additional knowl-
edge provided to the classifier. Potential sources of addi-
tional knowledge include the texts of categories and articles
of Wikipedia, and the structure of the extended category-
article network. We also plan to investigate into the learning
algorithms for joint (rather than independent) classification
of categories and relations, which would allow incorporating
more powerful relational features [Getoor and Taskar, 2007].
Finally, the utility of our method for facilitating the construc-
tion of domain ontologies should be more comprehensively
assessed in a user study with ontology engineers.
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Gangemi, MariCarmen Suárez-Figueroa, and Mariano
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