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Abstract. In many practical applications, machine learning models are embedded
into a pipeline involving a human actor that decides whether to trust the machine
prediction or take a default route (e.g., classify the example herself). Selective clas-
sifiers have the option to abstain from making a prediction on an example they do
not feel confident about. Recently, the notion of the value of a machine learning
model has been introduced as a way to jointly consider the benefit of a correct pre-
diction, the cost of an error, and that of abstaining. In this paper, we study how ac-
tive learning of selective classifiers is affected by the focus on value. We show that
the performance of the state-of-the-art active learning strategies drops significantly
when we evaluate them based on value rather than accuracy. Finally, we propose a
novel value-aware active learning strategy that outperforms the state-of-the-art ones
when the cost of incorrect predictions substantially outweighs that of abstaining.
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classifier

1. Introduction

In most real-world applications, machine learning (ML) models are not used as stan-
dalone systems, but rather they are incorporated into processing pipelines that involve
some kind of human contribution. In these systems, ML models are typically employed
as selective classifiers [1,2], that can abstain from providing predictions when they do
not feel confident enough (or when somebody else decides that this is the case) and a
default route is chosen instead, which most often involves asking humans. In our recent
papers [3.4,5], we showed that what follows from these simple observations is that stan-
dard evaluation metrics, like accuracy or F1-score, are inadequate to capture the value an
ML model brings to a use case. This is because they fail to account for the presence of an
“I do not know” option, and its implication in terms of the relative costs of different alter-
natives and their potential errors. To overcome this limitation, we proposed an alternative
evaluation metric that measures the value of an ML model in a processing pipeline [4,5].
In the simplest and most popular approach to selective classification, namely rejecting
instances with prediction confidence below a given threshold, we showed how to com-
pute a threshold maximizing value as a function of the cost factor of errors, assuming that
predictions come from a calibrated classifier. Results showed that evaluating threshold-
based selective classifiers in terms of value rather than standard metrics leads to substan-
tial changes in deciding which model is the most appropriate for a given scenario.
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In this paper, we study whether these findings have an impact on active learning
(AL) scenarios. In particular, we investigate whether uncertainty sampling [6], the de-
facto standard in AL, is still a reasonable strategy when evaluating models in terms of
value. The intuition that drives our work is as follows: the rationale of uncertainty sam-
pling is to focus on examples on which the model is most uncertain, so as to improve
the separation boundary between classes. However, a threshold-based selective classifier
works by rejecting all examples with confidence below the rejection threshold. If the cost
of errors is high, this threshold can be quite far from the boundary separating classes.
This implies that uncertainty sampling concentrates learning on areas of the space that
could be irrelevant to the final decision because instances located there are always re-
jected for being predicted with insufficient confidence. To overcome this potential limita-
tion, we proposed threshold-oriented sampling as a simple value-aware AL strategy that
focuses on the most uncertain examples around the rejection threshold. An experimental
evaluation on various multiclass classification tasks from the NLP domain confirms our
intuition, showing that:

* uncertainty sampling performs well in terms of model value in standard settings
where the classifier never abstains, but it is often worse than simple random sam-
pling in selective classification settings, even for fairly small cost ratios,

* threshold-oriented sampling strikes the best balance between uncertainty and con-
fidence, consistently outperforming all alternatives across datasets and AL set-
tings.

Our source code is freely available on Github? to support reproducibility .

2. Model value

Assume that our model operates on items and returns either a predicted class or rejects
predicting. Following our papers [4,5], we define the value V of this model as follows:

V:er+(1_p)(aVc+(1_a)Vw) (1)

where V,, V., and V,, are the value of rejecting an item, classifying it correctly, and clas-
sifying it wrongly, respectively, p is the proportion of predictions that are rejected and
o is the accuracy for predictions above the threshold. Reality can be more complex and
account for different costs associated with different types of errors (see the original pa-
pers for the details [4,5]), but this simplified model is both good enough for our purposes
and simple enough to be easily grasped by business process owners when thinking of the
benefit of ML in production. If we set the value of not having Al (before we put our ML
model into production) to 0, and we consider that not having ML is equivalent to having
a model that rejects all predictions, then we have V.. = 0. We can then define V|, in terms
of V. without loss of generality:

Vi = —kV, 2)

’https://github.com/burcusayin/value-aware-al
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where k is a cost ratio of how bad an error with respect to how good is a correct predic-
tion. By further setting V. = 1, i.e., rescaling costs in terms of “units of V. dollars”, the
value formula simplifies as follows:

V=(1-p)(a-k(l-a)) €)

and ML is helpful (i.e., it brings positive value) only if (o« —k(1 — )) is positive. In the
following, we assume that rejection of predictions is performed by having the classifier
emit a prediction score or confidence, and by having the ML solution workflow filter
predictions with a confidence lower than a threshold 7. In this setting, if the model is
well calibrated [7] so that its confidence corresponds to the probability of being correct,
we have that @ = 7, and requiring (7 — k(1 — 7)) > 0 implies setting 7 as follows:

k

e @

If the model is not calibrated, we can either recalibrate it with standard techniques like
temperature scaling [8] and then apply the threshold in Eq. 4, or directly adjust the thresh-
old to maximize value as computed on a validation set. Note that Eq. 4 implies that the
greater the cost of errors k, the more selective we should be in accepting predictions. k
is a parameter of the business problem, not of the model, and in general, given an ML
model, the value will decrease linearly as k increases if T remains constant. If we adjust
7T as k increases, then value can decrease sub-linearly.

3. Value-aware active learning

In this section, we propose a simple solution to make existing AL strategies value-aware.
The rationale is that examples to be labeled should be selected having in mind the fact
that the classifier will be deployed as a selective classifier, and that learning should aim
at maximizing value rather than standard classification metrics.

Let f: 2" — A° be a probabilistic multiclass classifier producing a probability dis-
tribution f(x) over the set of candidate classes %, with ¢ = |#/|. Let the confidence score
s(x) of f on x be the score of the highest scoring class according to f(x), i.e.:

$(2) = max £,

Let’s assume that after training, the classifier f will be employed as a threshold-based
selective classifier with threshold 7, i.e., instances with a confidence score lower than T
will be rejected. This implies that instances with a confidence score close to T are the
most promising candidates to try increasing the value of such a classifier, by learning
to increase the confidence score of correctly classified instances with a lower score, and
decrease one of the classification errors. This is the same rationale that uncertainty sam-
pling applies (in multiclass classification) to the margin score, i.e., the difference be-
tween the confidence score and the score of the second best. We thus adapt uncertainty
sampling to become value-aware by sampling examples with confidence margin closest
to the rejection threshold:
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X" = argmingc 9|7 — s(x)| ®)
where & is the pool of unlabelled examples to choose from. Batch AL can be imple-
mented by repeating the process in Eq. 5 for the desired number of examples, as cus-
tomary in AL practice. We name this strategy threshold-oriented sampling (TOS). Note
that despite their similarity, the two strategies tend to select rather different examples.
Indeed, the confidence score of the most uncertain example is usually far away from the
rejection threshold, especially for non-negligible values of the cost factor k. This implies
that employing uncertainty sampling as an AL strategy to train a selective classifier tends
to focus on areas of the space that are irrelevant to the final decision. As discussed in Sec-
tion 4, our experimental evaluation confirms this intuition, showing that uncertainty sam-
pling performs worse than simple random sampling for positive values of k. TOS, on the
other hand, allows to focus the model on the area that is most critical to improve value,
and substantially outperforms existing alternatives, especially when few active learning
iterations are available.

Even in standard supervised classification settings, uncertainty sampling has some
problems when applied in a batch way, which is due to the lack of diversity in the
batch [9]. This problem can affect TOS too, especially for large values of k when the num-
ber of examples with confidence score over the threshold substantially shrinks. We thus
introduce a simple variant of 7OS, named below-threshold-oriented sampling (BTOS),
that selects only rejected samples with confidence closest to 7:

Xt = argminxe@,s(x)gr(f_s(x)) (6)
As our experimental evaluation will show, this simple strategy provides minor but con-
sistent improvements over 70OS. More advanced diversification strategies can further im-
prove these threshold-based value-aware methods.

4. Experimental Evaluation

We investigate the performance of different AL strategies in terms of the value of the
resulting classifier when used as a selective classifier with threshold 7. For the sake of

Algorithm 1 Value-aware experimental protocol
Input: M, O, N, I, Lies, k

1: Build the initial training set I, 4,

2 11 \ Lirain

3: while stopping criterion do
Train M on L4y
Make M a selective classifier with threshold 7 < k/(k+ 1)
Evaluate M on I,
Compute value V + (1 —p)(a —k(1 — a))
Ip < select N items from / via Q

9: 11 \ Ig, Iirain < Itrain U Ip
10: end while

e A A
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clarity, the learning and evaluation process is described in Algorithm 1. The algorithm
takes as input: (i) an ML model M to be trained via AL; (ii) an AL strategy Q; (iii) an
AL batch size N; (iv) a pool of unlabelled examples / from which to choose the AL
batches; (v) a test set I, to evaluate M in terms of value; (vi) a cost factor k to compute
model value according to Eq. 3. The model M is bootstrapped with an initial training
set made by randomly selecting one example per class. At each iteration, the model is
trained with standard supervised learning on the current training set but evaluated as a
threshold-based selective classifier with the threshold 7 maximizing value (Eq. 4). Its
value on the test set /.y is recorded as the value-aware performance metric. The next
batch of examples from the unlabelled pool is selected according to the AL strategy Q
and labeled by querying the oracle, and the procedure is iterated until 30% of the training
set I has been labeled.

As an ML model we use Logistic Regression (LogReg) on top of pre-trained text
encoders because (i) it is simple and can learn from small datasets (typical of AL sce-
narios), and (ii) it learns calibrated predictions [10] satisfying our assumption for using
the theoretical threshold in Equation 4. We use two different text encoders: (i) the default
tf-idf vectorizer from scikit-learn® with ngram (1, 3), and (ii) MPNet [11] from Hugging
Face*. We run experiments for increasing values of the cost factor k € {0,2,4,8}, and
varying the AL batch size N € {5,10,20,30}.

AL strategies. We compare TOS and BTOS with the following strategies:

* Random sampling: the simplest strategy that samples instances randomly from the
unlabelled pool.

* Uncertainty sampling: the most popular strategy in the AL literature, that samples
instances for which the model is most uncertain [6]. We use the margin-based
uncertainty sampling recommended for multi-class classification [12,13]: for each
instance in the unlabeled pool, we measure the margin between the confidence
score of the two most likely classes and then select instances with the minimum
margin.

* Certainty sampling: the opposite of uncertainty sampling: we pick instances for
which the margin between the confidence score of the two most likely classes is
maximized. As our experimental evaluation will show, certainty sampling ends up
being the best strategy in some degenerate cases.

Datasets. We consider four standard multi-class text classification tasks from the NLP
literature (see Table 1 for the statistics of the datasets we use):

» Twitter US Airline Sentiment dataset is a 3-class unbalanced dataset. The task is
to detect the sentiments of tweets about US Airlines into negative, neutral, and
positive, with negative being the dominant class.

* Clinc150is a 150-class balanced dataset. The task is to classify intents (e.g. chang-
ing the volume, finding the phone, suggesting a meal, etc.) from the text.

* DBPedia is a highly unbalanced 9-class dataset where we extract content (e.g.
agent, place, and species, corresponding to the dominant classes) from Wikipedia.

* Hate Speech is a 3-class unbalanced dataset of tweets. The task is to classify tweets
as hate speech, offensive, or neither.

3https://tinyurl.com/sklearn-tfidf-vectorizer
4huggingface.co/docs/transformers/model_doc/mpnet
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Table 1. Statistics of the datasets used in the experiments

Dataset Classes Class Distribution (%) Train/Val/Test size

Twitter US Airline 3 63%, 21%,16% 8784/2928/2928

Clinc150 150 Balanced 15000/5000/5000

DBPedia 9 3 dominant classes: 52.3%,8.49%,18.8 % 15000/5000/5000

Hate Speech 3 5.77%, 77.43%,16.8% 14869/4957/4957
4.1. Results

In this section, we present experimental results aimed at answering the following re-
search questions:

* Q1 Are the good performance of uncertainty sampling confirmed when the cost
ratio changes?

* Q2 Do our proposed threshold-oriented strategies outperform existing alterna-
tives?

Table 2 reports the results of our experiments using LogReg with a simple TF-IDF
encoding. Each “cell” reports results for a given dataset (column) and AL strategy (row).
Within each cell, model values are computed for increasing the value of the cost factor
k, and the size of the AL batch N. All results are computed on the test set of each dataset
using a value-aware selective classifier that rejects predictions according to the threshold
in Eq. 4. In the following, we discuss how these results answer our research questions.

Q1: Uncertainty sampling performs poorly in a selective classification setting As ex-
pected, uncertainty sampling tends to outperform the alternatives in the standard active
learning setting, in which the model never abstains (k = 0). However, it is almost always
outperformed by simple random sampling for positive values of k, i.e., in a selective clas-
sification setting. Certainty sampling, again as expected, often performs rather poorly,
occasionally producing models with negative value (i.e., one should rather ignore them
altogether). There is however an exception, which is the Clinc150 dataset. Here both

Table 2. Performance of AL strategies with a value-aware selective LogReg classifier & TF-IDF encoding.

US AIRLINE CLINC150 DBPEDIA HATE SPEECH
AL STRATEGY | N VALUE VALUE VALUE VALUE
K=0 K=2 K=4 K=8§ K=0 K=2 K=4 K=8§ K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8

UNCERTAINTY 510719 0.14 0.03 0.002 0.173 0.0 0.0 0.0 0.835 0.125 0.014 0.002 | 0.796 0.456 0.366 0.064

10 | 0.732  0.243 0.066 0.01 0.451 0.0 0.0 0.0 0.898 0.271 0.058 0.011 | 0.869 0.537 0.249 0.073

20 | 0752 0.321 0.149 0.054 0.665 0.0 0.0 0.0 0.934  0.536 0.221 0.057 | 0.891 0.632 0.35 0.128

30 | 0.761 0.363 0.21 0.095 0.721  0.001 0.0 0.0 0.942  0.699 0.431 0.182 | 0.896 0.68 0.45 0.191
RANDOM 5] 0.694 0.276 0.081 0.003 0.405 0.0 0.0 0.0 0.753  0.36 0.147 0.018 | 0.795 0.51 0.493 0.198

10 | 0.72 0.304 0.165 0.054 0.541 0.0 0.0 0.0 0.834  0.506 0.289 0.117 | 0.83 0.565 0.521 0.332
20 | 0.738  0.353 0.24 0.119 0.658 0.006 0.0 0.0 0.883  0.639 0.448 0.246 | 0.85 0.632  0.551 0.385
30 | 0.748 0.367 0.254 0.135 0.704  0.023 0.005 0.0 0.905  0.706 0.53 0.33 0.865  0.66 0.574 0.408

CERTAINTY 5] 0.635 0.064 0.056 0.032 0.052  0.026 0.016 0.01 0.157 0.055 0.042 0.031 | 0.777 0.35 0.053 0.247
10 | 0.631 -0.063 -0.336 0.067 0.075  0.04 0.03 0.016 | 0.143 0.081 0.082 0.069 | 0.778 0.351 0.01 0.015
20 | 0.632 -0.027 -0.238 -0.016 | 0.14 0.055 0.036 0.022 | 0.625 0.142 0.119 0.095 | 0.777 0.338 -0.042 -0.479
30 | 0.635 0.101 0.036 0.126 0.207  0.073  0.047 0.021 | 0.436 0.193 0.172 0.144 | 0.777 0.335 -0.062 -0.734

TOS 51 0.689 0.237 0.14 0.049 0.141  0.004 0.006 0.005 | 0.794 0.337 0.28 0.023 | 0.787 0.578 0.454 0.226
10 | 0.732  0.31 0.193 0.102 0.387 0.011 0.016 0.014 | 0.869 0.437 0.381 0.197 | 0.856 0.628 0.549 0.41

20 | 0.746  0.346  0.212  0.15 0.643  0.034 0.032 0.015 | 0.93 0.596 0.416 0.376 | 0.893 0.683 0.574  0.484
30 | 0.762  0.367 0.244 0.176 0.669 0.059 0.045 0.02 0.94 0.72 0.438 0.392 | 0.896 0.708 0.585 0.502

BTOS 510255 0277 0.159  0.077 | 0.361 0.002 0.003 0.011 | 0.283 0.396 0.315 0.1 0.388  0.602 0.463  0.375
10 | 0.255 0.313  0.204  0.11 0.361  0.014 0.006 0.017 | 0.283 0.442 0.393 0.302 | 0.388 0.658 0.558  0.455
20 | 0.255 0.361  0.217  0.125 | 0.361 0.027 0.023 0.022 | 0.283 0.617 0.423 0.378 | 0.388 0.696 0.582  0.487
30 | 0.255 0.377 0.254  0.155 | 0.361 0.058 0.04 0.03 | 0.283 0.726 0.479 0.381 | 0.388 0.717 0.587  0.497
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uncertainty sampling and random sampling fail, producing a model with zero value in
most cases. On the other hand, certainty sampling always manages to produce a model
with a positive value. This is because CLINC150 is the only balanced dataset, and cer-
tainty sampling manages to evenly pick (high-confidence) items from every class. Over-
all, these results seem to indicate that the best value-unaware strategy is the simplest one,
namely random sampling. We believe that the poor performance of uncertainty sampling
in a selective classification setting is due to the fact that it focuses on an area (the uncer-
tain one) that is not relevant to the final decision, as the prediction will most likely be
rejected because of its low confidence.

Q2: Threshold-oriented sampling strategies outperform value-unaware alternatives in
a selective classification setting The TOS strategies we introduced in this work have
been designed precisely to adapt the concept of uncertainty sampling to the selective
classification setting, by considering uncertainty around the rejection threshold. Indeed,
results in Table 2 show that 7OS and BTOS have a robust behavior across all datasets,
showing the overall best performance for all positive values of k. BTOS tends to slightly
outperform 70S in most cases, most likely because of the lack of diversity of TOS in
the area above the rejection threshold. Indeed, the average distance between sampled
items in each batch is lower for TOS than for BTOS. The lack of diversity in batch AL
is a well-known problem of uncertainty sampling too [9], and diversification strategies
developed in the AL community could prove useful to further improve the performance
of threshold-oriented sampling strategies. Note that in the CLINC150 dataset, where
certainty sampling is the best overall strategy, both threshold-oriented strategies are close
runners-up, especially for large values of kK when they are almost indistinguishable. This
is not by chance. In this balanced dataset, confidence scores are rather high regardless of
which is the most confident class, the confidence score becomes similar to the margin,
and threshold-oriented sampling with high values of k boils down to picking the most
certain prediction. It is indeed interesting to highlight that TOS strategies manage to
(approximately) recover the behavior of certainty sampling when this happens to be the
best strategy.

Figure 1 reports value curves as functions of the number of batches up to 30% of
the unlabelled pool, which corresponds to the results shown in Table 2, for the case of
k = 8 (highest cost factor) and N = 30. Results confirm how 7OS and BTOS consistently
outperform value-unaware alternatives. Furthermore, while each of the value-unaware
strategies shows extremely poor performance in some settings (Clinic 150 for uncertainty
and random sampling, Hate Speech for certainty sampling), 7OS and BTOS present stable
performance in all cases (apart from a single outlier in the first batch in US Airline).

Hate Speech

US Airline Clinc150

—— certainty
-02 — uncertainty 001 Vi
—— random /
Tos /
-4 — BTOS

5 5 10 15 20 25 3 5 5 10 15 20 25 3

Figure 1. Value curves (y-axes) as functions of the number of batches (x-axes) for different AL strategies
with a value-aware selective LogReg classifier & TF-IDF encoding (k = 8, N = 30). The legend is shown on
the leftmost plot only for the sake of readability.
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Table 3 reports results when replacing TF-IDF encoding with a richer encoding pro-
duced by MPNet [11]. While values are higher on average, the relative behavior of the
different AL strategies is the same as in Table 2, confirming the generality of the findings.

Table 3. Performance of AL strategies with a value-aware selective LogReg classifier & MPNet encoding.

US AIRLINE CLINC150 DBPEDIA HATE SPEECH
AL STRATEGY | N VALUE VALUE VALUE VALUE
K=0 K=2 K=4 K=8§ K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8§
UNCERTAINTY 5108 0.391  0.219 0.082 0.608 0.0 0.0 0.0 0.933 0369 0.083 0.003 | 0.87 0.641  0.456 0.237
10 | 0.814 0.451 0.298 0.148 0.869 0.0 0.0 0.0 0.961 0.566 0.212 0.037 | 0.883 0.659 0.495 0.297
20 | 0.815 0.485 0.336 0.224 0.943 0.0 0.0 0.0 0.971  0.776 0.487 0.187 | 0.885 0.683 0.545 0.353
30 | 0.819 0.511 0.362 0.271 0.96 0.0 0.0 0.0 0.972  0.863 0.702 0.452 | 0.888 0.699 0.578 0.411
RANDOM 5| 0.784 0.405 0.273 0.153 0.519 0.0 0.0 0.0 0.852  0.502 0.324 0.191 | 0.853 0.616 0.502 0.348
10 | 0.795 0.455 0.314 0.22 0.716 0.0 0.0 0.0 0.899 0.643 0.468 0.304 | 0.868 0.642 0.532 0.401
20 | 0.802 0.488 0.362 0.256 0.882  0.002 0.0 0.0 0.927  0.74 0.605 0.434 | 0.873 0.663 0.556 0.432
30 | 0.805 0.502 0.365 0.278 0.919 0.015 0.0 0.0 0.942  0.79 0.672  0.513 | 0.877 0.676 0.571 0.453
CERTAINTY 50653 0.199 0.177 0.139 0.095 0.022 0.018 0.009 | 0.442 0.098 0.076 0.055 | 0.784 0.389 0.217 0.201
10 | 0.639 0.112  -0.036 -0.003 | 0.121 0.051 0.039 0.021 | 0.443 0.078 0.071 0.073 | 0.781 0.371 0.11 0.036

20 | 0.635 0.084 -0.079 -0.045 | 0.16 0.104  0.076 0.03 0.609 0.359 0.302 0.226 | 0.778 0.355 0.032 -0.193
30 | 0.644 0.206 0.161 0.178 0.219  0.153  0.11 0.048 | 0.609 0.336  0.329 0.297 | 0.778 0.354 0.04 -0.206

TOS 51079 0373 0.313  0.233 | 0.284 0.015 0.013 0.015 | 0.909 0.394 0.333 0.064 | 0.855 0.631 0.51 0.341
10 | 0.805 0.444 0.328 0.241 0.62 0.036  0.026 0.021 | 0.952 0.584 0.452 0.119 | 0.876 0.671 0.523 0.396
20 | 0.813 0.493 0.355 0.27 0.9 0.075 0.057 0.027 | 0.97 0.742  0.557 0.148 | 0.885 0.693 0.567 0.441
30 | 0.822 0.511 0.376 0.274 0.94 0.123  0.079 0.034 | 0.971 0.857 0.592 0.42 0.888 0.697 0.588 0.451

BTOS 500485 0.409 0307 0213 | 0.701 0.024 0.009 0.012 | 0.342 0.451 0.354 0.263
10 | 0.485 0.46  0.331 0.249 | 0.701 0.048 0.017 0.022 | 0.342 0.592 0.428 0.35
20 | 0.485 0.501 0.362 0.271 | 0.701 0.085 0.051 0.03 0.342 0.746  0.525 0.415
30 | 0.485 0.512 0.378 0.291 | 0.701 0.129 0.087 0.041 | 0.342 0.858 0.6 0.43

216 0.641  0.503  0.361
216 0.671  0.536  0.41
216 0.691  0.573  0.44
1216 0.699  0.586  0.461

5. Limitations and Conclusions

In this work-in-progress paper, we are just scratching the surface of value-aware AL. We
tested a limited number of NLP datasets, encoders, and algorithms. For this reason, even
if TOS seems superior we cannot claim this as a fact with any sort of generality. What
we can say however is that we believe we have provided enough evidence to reconsider
the superiority of uncertainty sampling, propose TOS as a valid contender, and lay down
the motivations for larger-scale investigation on both outcomes and reasons behind the
outcomes. This is important because 1) uncertainty sampling is very widely adopted, but
ii) model thresholding is also ubiquitous in practice, and from what we have seen even
random sampling is often preferable already at rather low cost ratios.

A related but somehow complementary research line in the AL literature is the one
focusing on cost-sensitive AL [14,15,16,17] where the model is charged a cost for every
query and it should learn how to improve the model by compensating the cost of asking
labels. This research line is complementary to our notion of value-aware AL as it still as-
sumes that the resulting classifier never abstains. As we showed for cost-sensitive errors
in static classification [4], failing to account for the reject option prevents cost-sensitive
learning strategies from maximizing value. Nonetheless, developing value-aware AL
strategies that are also cost-sensitive is a promising direction for further research.
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