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Abstract. In this paper, we argue that the way we have been training and evaluating
ML models has largely forgotten the fact that they are applied in an organization or
societal context as they provide value to people. We show that with this perspective
we fundamentally change how we evaluate and select machine learning models.
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1. Introduction

Recently, Hybrid Intelligence (HI) [1,2] has become a compelling paradigm that com-
bines human and machine intelligence to perform better than human-only or machine-
only decisions [3], especially on complex tasks. It is a breakthrough for solving real-
world tasks because HI can make more reliable decisions on complex functions. That is
why designing and deploying HI systems becomes critical for many domains, such as
medical diagnosis, speech recognition, and autonomous driving. Although the HI com-
munity paid attention to designing better HI systems, how to measure and assess the
value that HI adds to real-world systems and society is still an open question.

HI is widely adopted in enterprise scenarios as selective classifiers [4,5], where ma-
chine learning (ML) models can abstain from making a prediction and resort to human
judgment or a default path (as in Figure 1). We argue that current metrics to evaluate such
systems (e.g. accuracy, F1, etc) do not measure the real “value” of HI systems and they
often lead to wrong decisions on which is the best model to use in a certain situation.

In this paper, we highlight the need for designing novel metrics to evaluate the value
of HI systems in real-world tasks. By saying value we mean the value HI systems add
to the real-world system deployed, and it consists of several components, such as trust,
complementarity, cost-sensitive learning, etc. This has been addressed in our recent pa-
pers [5,6,7,8] that propose a novel way of measuring the value of HI systems, and we
show that the existing accuracy-based metrics are not compatible with HI systems. We
further discuss open research questions to invite the HI community to pay enough atten-
tion to how and why HI models are used in practice, and to the aspects and metrics that
are relevant to enterprises when they adopt and deploy a model.
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Figure 1. Typical implementation of ML models into an ML solution workflow - edited from [6,7]. A typical
implementation of the rejection function is to filter based on a confidence threshold, assuming that the classifier
is trained independently of the rejection logic. It is less general to have a classifier that is aware of the cost.

2. Formalizing the “Value”

As seen in Figure 1, the majority of AI deployments in enterprise context pursue a hybrid
workflow: there is always some human in some “loop” when we apply a model, with
very few exceptions. That is why, ML models are deployed as selective classifiers [3] in
enterprise scenarios, as the cost of errors is often more than the cost of not predicting and
following a safe, default route. From this simple description, we can draw two observa-
tions [6]: (i) the way in which the system is deployed depends on the “cost” of machine
errors as compared to the cost of involving a human, and (ii) a well-calibrated model
with arbitrarily bad accuracy can still provide value. Based on these observations, we
formalize the value of an ML model as follows [7]. Given a classifier g that operates on
items x ∈ D and returns a predicted class y ∈ Y or a special label yr (“rejected”), the
average value per the prediction of applying a model g over D can be computed as:

V (g,D) = ρVr +(1−ρ)(αVc +Σi j[Ω�Vw]i j) (1)

where ρ is the proportion of items in D that are rejected by g (classified as yr), α is
the accuracy for predictions above the threshold, Vr and Vc are the value of rejecting an
item and classifying it correctly respectively, Ω is a matrix denoting the proportion of
predictions (above threshold) in each cell of the confusion matrix, and Vw is a matrix with
the cost for each type of error (set to zero on the main diagonal corresponding to correct
predictions), and � denotes the Hadamard (element-wise) product, of which we take the
summation across all elements i j. Notice that ρ,α,Ω all depend on D and g, and we omit
the indices to simplify notation. Also, if our classification problem has |Y | classes, then
Ω and Vw are |Y | × |Y | (yr is not included here). An alternative representation would
be to just say that V (g,D) = Ω′V ′, where the confusion and value matrices incorporate
the reject class. This would allow us to model the case where the value of rejections and
correct predictions is also class-dependent. Instead, if we only consider costs based on
what we misclassify then Ω and Vw become vectors, and in the most common case where
all wrong predictions are considered equally bad in a first approximation, then Ω and Vw
are scalar, and Ω = 1−α , so in this case, the formula becomes:

V (g,D) = ρVr +(1−ρ)(αVc +(1−α)Vw) (2)
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At this point, we simplify the notation to remove dimensionality and arrive at a formu-
lation that is digestible for process owners, for whom it may be hard to come up with
the three cost parameters/vectors. None of the above simplifications change the concepts
presented. We define as baseline the case where we do not have ML, or, equivalently,
where we reject any prediction. We set this baseline at 0 (Vr = 0); making it easier to
evaluate a model in terms of (i) whether it improves on the baseline or not, and (ii)
whether we should adopt AI for a given problem. We also express Vw in terms of Vc,
as in Vw = −kVc, where k is a constant telling us how bad is an error with respect to
getting the correct prediction. When reasoning about an AI-powered solution workflow,
Vc should be considered as a scaling factor in terms of value “per unit of Vc dollars”, or
equivalently the magnitude of Vc. From now on we, therefore, focus on “value per dollar
unit of rejection cost” V ′ =V/Vc. We avoid introducing a new symbol and, without loss
of generality with respect to the above equations, we set Vc = 1 and get Equation 3 which
captures the same concepts as Equation 1 but simplifies our presentation.

V (g,D) = (1−ρ)(α− k(1−α)) (3)

Filtering the predictions with confidence threshold. Here we focus on the most com-
mon situation observed in practice; the model selectivity is applied by thresholding con-
fidence values and rejecting predictions that have confidence c less than a threshold τ .
If we assume perfect calibration (the expected accuracy for a prediction of confidence c
is c) [9], then we know that the threshold is at the point where the value of accepting a
prediction is greater than 0 and ατ = τ . To have V (g,D)> 0 we need τ− k+ kτ > 0:

τ > k/(k+1) (4)

This conforms to intuition: if k is large, it never makes sense to predict, better go with the
default. If k=0 (no cost for errors), we might always predict since there is no penalty for
wrong predictions. Perhaps paradoxically, this is the case where we want to use accuracy
because wrong predictions are harmless. If k=1 (errors are the mirror image of correct
predictions), then our threshold is 0.5. In deriving the threshold we assumed that all errors
have equal cost, but the derivation can be easily extended to cost-sensitive settings [7].

3. Experimental observations

We tested our hypothesis on a number of NLP benchmarks and evaluated leaderboard
models together with simple models like logistic regression or shallow multi-layer per-
ceptrons. Our experimental evaluation, described in detail in [7], highlights four relevant
issues with the current way in which ML models are evaluated and deployed:

Accuracy and F1-score are poor indicators of model value Models with very reason-
able accuracy/F1 (beyond 0.8) have a value that decreases substantially with the increase
of the cost factor k. Many models achieve negative value (i.e., it is better to simply ignore
them) for k = 4 or k = 8. These are definitely realistic cost factors in high-stake applica-
tions (k = 4 means that “being wrong is 4 times as bad as it is good to be right”). Another
major finding is that accuracy or F1 are quite poor proxies of value even in relative terms.
The best-performing model is largely dependent on the cost factor, and accuracy (or F1)
quickly becomes unreliable as a metric to identify the most appropriate model to employ.
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Cost-sensitive error is a poor indicator of model value in cost-sensitive settings In
cost-sensitive settings (i.e. different types of errors have different costs), cost-sensitive
error [10], which computes a weighted sum of errors with the weights given by the corre-
sponding cost, is a popular alternative to standard cost-insensitive metrics. However, the
cost-sensitive error is still a poor indicator of model value for high costs and often detects
as best performing models that actually achieve negative value. The problem is not how
it treats the costs of different errors, but the fact that it does not assume a selective clas-
sifier and a corresponding cost-sensitive rejection threshold, which is the main practical
contribution of our “value” definition. This also implies that cost-sensitive learning [11]
(i.e. training classifiers to minimize cost-sensitive error) should be coupled with learning
to reject mechanisms [12] to be effective in optimizing the value of the learned models.

Lack of calibration substantially affects model value The threshold in Eq. 4 assumes
that models are perfectly calibrated, which is often not true for trained models, and deep
learning models in particular [13]. Applying a simple but effective recalibration tech-
nique (e.g. temperature scaling [13]) substantially improves the value of models, and al-
most completely eliminates the degenerate behavior of models with negative value (“use-
less” models receive 0 value, as expected). These results suggest that learning models
should always be recalibrated before being incorporated into practical workflows. On the
other hand, accuracy and F1 are still poor indicators of value, with the best-performing
model being still largely dependent on the cost factor. In domain adaptation scenarios,
simple logistic regression (LogReg) consistently outperforms all other models for large
values of k, most likely because of its inherent calibration capabilities [14] as compared
to more complex (and hard to recalibrate) models. The lively research area of calibration
in ML and especially deep learning can provide useful solutions to this problem [9].

Operating in an out-of-distribution setting substantially affects model value The lack
of calibration in ML models is known to be particularly harmful when the model oper-
ates in an out-of-distribution (OOD) setting [15,16]. Indeed the most recent large pre-
trained language models (LLM) tend to perform well on domain adaptation tasks, better
than leaderboard models in those tasks, most likely because being trained on massive
datasets, few examples are out of distribution in terms of language. However, even for
these models, accuracy is a poor proxy of value when k is large, with frequent swaps
in the leaderboard and simple linear models occasionally outperforming these powerful
(and very expensive to employ) LLM.

4. Conclusions and Future Works

All in all, we see this work as providing evidence of a serious problem in how we eval-
uate machine learning models, and of its consequences on the utility of these models
in practical applications. We take this opportunity to invite the HI community to pay
attention to formalizing the value that hybrid intelligence adds to deployed real-world
systems, and how these systems can be adapted to maximize this value.
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