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Abstract. We propose an activity discovery framework that aims at
identifying activities within data streams in the absence of data annota-
tion. The process starts with dividing the full sensor stream into segments
by identifying differences in sensor activations characterizing potential
activity changes. Then, extracted segments are clustered in order to find
groups of similar segments each representing a candidate activity. Lastly,
parameters of a sequential labeling algorithm are estimated using seg-
ment clusters found in the previous step and the learned model is used
to smooth the initial segmentation. We present experimental evaluation
for two real world datasets. The results obtained show that our segmen-
tation approaches perform almost as good as the true segmentation and
that activities are discovered with a high accuracy in most of the cases.
We demonstrate the effectiveness of our model by comparing it with a
technique using substantial domain knowledge.

Keywords: Activity discovery, sequence segmentation, sequential label-
ing

1 Introduction

Activity recognition has long been studied by the machine learning community.
Most of the work in the field has focused on supervised approaches in order
to train activity models. However, these require the availability of labelled se-
quences, an expensive and time consuming process. Furthermore, training data
are specific to the setting involving the activities to be recognized and the persons
involved, as the daily living habits change from an individual to another. Activity
discovery aims at identifying activities within data streams in the absence of data
annotation. Therefore, it can be used in any possible daily-life scenario. In health
monitoring applications, for instance, one of the task is continuously checking
the behaviour of a patient in order to determine whether his/her routines are
maintained, regardless of the type of activities being performed. Inconsistencies
in daily routines, i.e. changes in the structure of performed activities, can sug-
gest problems in patient’s health. As many unsupervised learning tasks, activity
discovery is a challenging problem: many activities tend to share a similar set of
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signals (e.g. kitchen sensors for food-related activities), short periods lacking any
signal at all can occur during an activity, to be distinguished from truly “idle”
periods where no activity is being performed. Finally the discovery needs to be
robust enough to account for variations in the way activities can be performed.

There are few works on activity discovery in the literature. Using sequen-
tial patterns in order to represent activities was proposed in [4] and [2]. Both
approaches are based on the idea that similar patterns can be used for repre-
senting the activities. Following this idea, patterns are first mined from data and
then clustered by k-means and LDA respectively. However, these techniques are
bound to the quality and coverage of the extracted patterns. Hamid et al. [5]
suggests clustering segments instead of patterns extracted from them. For this
purpose, segments are represented by histograms each of which then corresponds
to a node in an edge-weighted graph. Maximal cliques in the graph are identi-
fied as activity candidates. However, the method cannot be used for real activity
discovery as segments are assumed to be known in advance. Hong et al. [8] devel-
oped an activity discovery approach based on conceptual definitions of activities
in terms of Evidential Ontology Networks (EON). A candidate segment that fits
an EON best is recognized as the corresponding activity. Since the method works
on previously segmented data, the authors later introduced three segmentation
approaches [9]. Extracted segments are fed into the EON for determining activ-
ities. The method is based on a deep knowledge of the activities being searched,
needed to compile the set of rules which are used for the activity discovery phase.

In this paper, we present an activity discovery approach that addresses the
abovementioned limitations. The rationale behind the approach is that distinct
activities should correspond to separate sets of sensors, e.g. activations of pairs
or triplets of sensors, possibly repeated over time, jointly indicating a certain
activity. With this reasoning, we assume that transition from one set to another
indicates the possible time of an activity change. Following this rationale, we
propose two segmentation algorithms looking for the change points in a sen-
sor stream. Extracted segments are then clustered in order to find groups of
similar segments each representing a candidate activity. Finally we use seg-
ments labeled with cluster identifiers to train the parameters of a sequential
labeling algorithm which is then used for smoothing the initial segmentation.

We evaluate our technique in two freely available smart home datasets. The
results show that our segmentation approaches perform almost as good as the
true segmentation and that activities are discovered with a high accuracy in
most of the cases. Comparisons with [8] show that our clustering achieves better
results than an ontology network relying on expert-based activity descriptions.

The paper is organized as follows. Section 2 introduces the data representa-
tion format and the notion of activity segment. We describe our activity discov-
ery framework in Section 3. An extensive experimental evaluation is reported in
Section 4. Finally, conclusions are drawn in Section 5.



A Fully Unsupervised Approach to Activity Discovery 3

2 Data Representation

A dataset D = {x(1), . . . ,x(d)} is a collection of input sequences for a number of
days d. An input example x = {x1, . . . ,xT } consists of a consecutive sequence
of observations, each covering a certain time instant t. An observation xt is
represented by the set of sensors which are active at that time instant (i.e.
within its time interval). When feeding input sequences to labeling algorithms
(see Section 3.3), observations will be represented as binary vectors rather than
sets. Given N sensors, an observation xt will thus be encoded as a binary feature
vector xt = (x1t , . . . , x

N
t ), each feature being 1 if the corresponding sensor is

active and 0 otherwise.
The labeling task consists of predicting a sequence of activity labels y =

{y1, . . . , yT }, one for each time instant. Each label yt ∈ [1, L] is one of L possible
activities, with one indicating no activity. We assume here that activities are
not simultaneous, i.e. only a single activity is performed at each time instant.
We define an activity segment as a sequence of consecutive time instants labeled
with the same activity. A segment su = (bu, eu, yu) is represented by its starting
and ending time instants bu, eu ∈ [1, T ], with eu ≥ bu, and the segment label
yu. A label sequence y can be split into a sequence s = {s1, . . . , sU} of activity
segments such that b1 = 1, eU = T , bu = eu−1 + 1 and yu 6= yu−1 for all u. We
define as xbu:eu the segment of x ranging from bu to eu included. A collection
of s over all the days forms S = {s(1), . . . , s(d)} with d being the number of
days. Note that in the activity discovery framework we assume no knowledge is
available concerning labels, including the number of activities L.

3 Activity Discovery Framework

Our activity discovery process consists of three steps:

1. Sequence segmentation: in this step, the full sensor stream is partitioned
into segments which represent candidate activities, i.e. each segment should
approximately span the whole time horizon in which an activity is contin-
uously conducted. The segmentation procedure scans the stream searching
for changepoints suggesting a change in the activity being performed.

2. Segment clustering: once segment have been identified, a clustering algo-
rithm is employed in order to group together similar segments, each group
representing a distinct candidate activity. Designing an appropriate segment
similarity measure is crucial here in order to boost performance.

3. Sequential labeling: the final step employs the segment clusters produced
by the previous step to train the parameters of a sequential labeling algo-
rithm. The learned model is then used to run inference on the full sensor
stream obtaining the final segmentation output. The rationale of this compo-
nent is that the learned probabilistic model should allow to smooth segment
borders with respect to the segmentation and clustering output, possibly
improving recognition accuracy.

In the following we detail each step of the process.
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3.1 Sequence Segmentation

The aim of the segmentation phase is to partition the sensor stream into frag-
ments so that each fragment characterizes the occurrence of an activity. As will
be seen in Section 4, activity datasets used for the evaluation differ from each
other by the number and the type of the sensors. The fact that the quality of
the segmentation is highly depend on the dataset properties necessities a specific
handling in algorithm design. For this purpose, we propose two novel approaches,
distance-based and context-based segmentation, for each experimental setting.

Distance-based segmentation is based on the idea that an activity is related
to the sensor events occurring within a specific range. More specifically, the con-
secutive activation of two sensors whose distance to each other is less than a
threshold (φ) is likely to indicate the persistence of the same activity. For exam-
ple, preparing dinner is typically characterized by activation of kitchen sensors.
Any sensor event occurring in the bedroom, however, is probably unrelated to
the dinner activity. Selection of the threshold can be done in a number of ways
depending on the dataset. One can assume that every activity is bounded with
a certain room in the apartment. In this case, the threshold is computed as
the distance between the two closest rooms. We used this type of distance in
Van Kasteren dataset (see Section 4) as activities are known to be performed in
separate rooms.

Algorithm 1: Distance-based Segmentation

Input:

Sequence of observations (D)

Separation threshold (φ)
Sensor coordinates (C)

Output:

Candidate activity borders

begin

Initialize border candidates (B) to the empty set

Calculate Manhattan distance matrix (M) of sensor pairings with (C)
Find active time instants T = (t1, t2, . . . , tm) in D
for i from 1 to m-1

Initialize pairwise distances (P) to the empty set

for all sensor pairing (j,k) ∈ (D(ti), D(ti+1))
P ← P ∪ M(j, k)

if count(P > φ)/|P | > 0.5
B ← B ∪ ti
if ti+1 − 1 /∈ T

B ← B ∪ ti+1 − 1
B ← B ∪ length(D)
return B

Algorithm 1 shows the pseudocode of our distance-based segmentation tech-
nique. The algorithm takes as inputs a sequence of observations (D) as sensor
activations and the spatial coordinates of all sensors (C), plus a threshold φ
controlling when to introduce a breakpoint in the sequence. It first computes a
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matrix M of pairwise distances between sensors using the Manhattan metric,
as it provides a natural measure of walking path length. The algorithm then
identifies all time instants having at least one sensor activation and iteratively
processes each of them. In order to decide whether to introduce a breakpoint at
active time instant ti, the algorithm compares its active sensors with those of the
next active time instant ti+1, using the previously computed distance matrix. If
more than half of the comparisons have a distance greater than the threshold
φ, i.e. sensors from the two time instants tend to be far apart, a breakpoint is
added at time instant ti. Note that ti+1 is not necessarily the time instant im-
mediately following ti, as they can be separated by a sequence of time instants
lacking any sensor activation, likely indicating an idle “activity”. In this case the
algorithm introduces an additional breakpoint at time instant ti+1− 1, isolating
the segment with no activations. Note that conversely, null segments separating
two active time instants with spatially close active sensors are merged in the seg-
ment containing ti and ti+1. This can be reasonable as activities often include
short periods with no activations, but can miss longer null segments potentially
representing idle cases. At the end of this section we introduce a post-processing
procedure addressing this problem. Our algorithm resembles the one in [9], and
indeed the two produce a very similar segmentation, but the latter requires much
more information, concerning the location where specific activities are performed
and ad-hoc rules extracted via profound investigation of the sensor stream.

The distance-based segmentation approach is suitable for datasets in which
the location information is closely related to the activity being performed. In
many cases, on the other hand, information regarding the locations of the sensors
is not available, which makes the proposed method inapplicable. Therefore a
general approach that does not depend on any kind of knowledge is required. We
thus propose the context-based segmentation in which change points in sensor
activation patterns are extracted. The rationale behind the approach is that two
activities should be related to two distinct patterns of sensor activations, e.g.
pairs or triplets of sensors jointly activated in the same time instant. This is
implemented by representing each time instant by the set of its up to n-grams,
where an n-gram is a set of n sensors jointly active in the time instant. The
similarity between two time instants with sets A and B is then computed using
the Jaccard index:

J(A,B) =
|A ∩B|
|A ∪B|

We extend this similarity to include the context of a time instant by defining
a frame as a sequence of time instants of a certain length (τ) and considering
similarity between frames. The similarity between time instants ti and ti+1 is
then computed considering the frames [ti−τ+1 : ti] and [ti+1 : ti+1+τ ], represent-
ing each frame by the union of the sets of (up to) n-grams of its time instants,
and computing the Jaccard index between the two frames. Algorithm 2 outlines
the context-based segmentation approach, where frames exceeding the borders
of the sequence are appropriately trimmed.
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Algorithm 2: Context-based Segmentation

Input:

Sequence of observations (D)

Frame size (τ)
Gram size (n)

Output:

Candidate activity borders

begin

Initialize border candidates (B) to the empty set

L ← length(D)
for i from 1 to L-1

if Jaccard(n,D[ti−τ+1 : ti], D[ti+1 : ti+τ ]) = 0

B ← B ∪ i
B ← B ∪ L
return B

The border generation process may result with a number of segments larger
than the true one. In order to fix the most obvious cases, we applied a pruning
procedure based on a number of simple reasonings. (1) There are a few occasions
in which the distance-based algorithm extracts segments of size one when two
consecutive time instants have exactly the same active sensors, and these come
from two different locations. For instance, toilet activity is interleaved with sleep-
ing, and is characterized by sensor activations from both the bedroom (bedroom
door) and the toilet (e.g. toilet flush). If this occurs in a row for a small number
of time instants, we merge them together in a single segment. (2) Let a segment
without any sensor activation (zero segment) be preceded and followed by two
segments whose active sensors either occur in the same location or are similar.
These three consecutive segments should be merged into one to represent a sin-
gle activity or be kept separate as two distinct segments of the same activity
separated by an idle segment, depending on the length of the zero segment in
the middle. We choose the former option if the resulting segment is smaller than
a threshold representing the typical duration of activities, and the latter other-
wise. The threshold is computed as the average length of the segments obtained
by the segmentation algorithms, after excluding very long segments which likely
represent peculiar activities like sleeping or idle. As an example of the merge
operation, consider a dinner activity as taking food from the fridge followed by
heating food in the microwave and then eating. The time we waited for heating
is a zero segment, yet belongs to the same dinner activity. A three minute toilet
activity performed two hours after another occurrence of toilet activity, on the
other hand, should not be merged with the previous one since it is clear that they
are distinct activity occurrences separated by another activity (e.g. sleeping).

3.2 Segment Clustering

The purpose of the clustering step is to determine the intrinsic grouping of
the segments extracted in the previous phase so that each group represents an
activity. We represent segments in terms of histograms of time instant-based
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features collected over each segment. Time instant-based features are extracted
in the same manner as we did in the context-based segmentation, i.e. up to n-
grams of sensors are extracted for each time instant in the input sequence. Found
features are then collected over the segments and used for creating histograms
as the counts of each feature.

Segment representations are then fed to a clustering algorithm. This has to
deal with high-dimensional data, as coming from the up to n-gram feature repre-
sentation, and automatically identify the number of clusters, which is not known
in advance. We rely on the HDDC method [1] which satisfies both requirements.
It is based on a modified Gaussian Mixture Model with a dimensionality re-
duction technique which determines the specific subspace in which each class
is located by using eigenvectors of the covariance matrix. Models representing
the subspaces are used to choose the number of clusters. To this end, clustering
results are computed for different number of clusters and different models and
the one maximizing Bayesian Information Criterion is selected. Further details
can be found in the original paper [1].

3.3 Sequential labeling

In principle, our algorithm could end up with the groupings returned by the clus-
tering algorithm, each group representing a candidate activity. However, both
segmentation and clustering steps are prone to errors and only provide approx-
imations of actual segments and true groups. We use these approximations to
train a sequential labeling algorithm, which assigns a label to each time instant
in the sequence. The learned model is then used to run inference on the full
sensor stream, providing the final sequential labeling. Each cluster in our setting
corresponds to a different label in the sequential model.

We employ a Hidden Semi-Markov model (HSMM) [10] as sequential label-
ing approach, which is appropriate to label sequences where consecutive time
instants tend to share the same label. An HSMM is a variant of HMM which
allows for explicit duration distributions for different states, making it especially
useful for segmenting sequences into fragments, each characterized by the same
label. The joint probability modelled by the HSMM is represented as:

p(x, s) =

U∏
u=1

p(yu|yu−1)p(du|yu)p(xbu:eu |yu) (1)

where du = eu− bu + 1 is the duration of segment su. The transition probability
p(yu|yu−1) models the probability that activity yu directly follows yu−1. The
duration probability p(du|yu) can be modelled as a histogram distribution (see
e.g. [7]), where candidate activity durations are grouped into a certain number of
bins (5 in our experiments). The probability of a certain segment of sensor acti-
vations given its label is commonly computed as the product of the probabilities
of its time instants:
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p(xbu:eu |yu) =

eu∏
t=bu

p(xt|yu) (2)

where p(xt|yu) is further decomposed as a product of Bernoulli probabilities
(active vs inactive) over sensors:

p(xt|yu) =

N∏
i=1

p(xit|yu) (3)

where N is the number of sensors. Given that each label is associated with a
cluster from the previous step, parameters of all probabilities can be readily esti-
mated from counts over the cluster segments. The transition probability between
labels yu and yv, for instance, can be computed as the fraction of times in which
a segment from cluster yv follows one from cluster yu in the original sequence,
with respect to the overall number of segments in cluster yu.

Once parameters are learned from the clustering results, inference is run on
the whole sequence providing the labelled segmentation with maximal probabil-
ity:

s∗ = argmaxs p(x, s) (4)

which can be efficiently computed by the well-known Viterbi algorithm [10].

4 Experiments

In this section we first present the experimental setup used for evaluating the
proposed approach and then provide results of the experiments.

4.1 Setting

The performance of the proposed framework was evaluated on a collection of
freely available12 benchmark datasets. Van Kasteren’s dataset was collected over
28 days in a three room apartment occupied by a single resident [6]. The dataset
consists of 14 state-change sensors, e.g reed switches and passive infrared. Ac-
tivities were annotated by recording the start and end time of the corresponding
activity either via handwritten diary or bluetooth headset. CASAS dataset dif-
fers from the previous one as two residents are simultaneously monitored in an
apartment for 46 days, with a sensor network (of 71 nodes) mainly composed
of motion and utility usage sensors [3]. Annotators labeled the data using a 3D
visualization tool and residents’ diaries.

We used the Changepoint feature representation that considers a sensor ac-
tive (value 1) only in the time instants in which it alters its state [6]. It is robust

1 https://sites.google.com/site/tim0306/kasterenDataset.zip
2 http://ailab.wsu.edu/casas/datasets/twor.2009.zip
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against noises and is capable of tolerating the dataset specific sensor failures. For
example, a door that is left open after completion of an activity causes sensors to
be active for longer periods than the actual activity duration, which eventually
damages the segment information of other activities. Changepoint representa-
tion eliminates such activations by only considering activation and deactivation
times of the sensors.

The performance of the system was evaluated by using the class accuracy
metric proposed in [6]. The measure represents the average percentage of cor-
rectly classified timeslices per class and provides a proper model performance
when a dataset contains unbalanced classes in terms of appearance frequency.
The class accuracy is computed as follows:

Class:
1

C

C∑
c=1

∑Nc

n=1 [inferredc(n) = truec(n)]

Nc
(5)

where [a = b] is a binary indicator returning 1 when true and 0 otherwise. C
is the number of classes and Nc is the total number of time slices for class c.
Precision, recall, and F measure are omitted for space limitations.

4.2 Results

Tables 1, and 2 show confusion matrices computed from the class accuracies
for the van Kasteren and the CASAS dataset respectively. As discussed in Sec-
tion 3.1, we applied the distance-based segmentation to the former and the
context-based one to the latter. In all experiments the maximum gram size was
set to two as higher values provided similar results while increasing compu-
tational complexity. Clustering does not assign names to the detected groups.
However, it is clear that if a cluster contains mostly segments corresponding to a
certain activity, it can be considered as an approximation of that activity. In or-
der to identify the most likely activity for each cluster, we try all possible distinct
activity assignments to clusters and choose the one maximizing class accuracy.
If the algorithm identifies more clusters than the true number of activities, the
best assignment will assign the clusters in excess to a dummy wrong activity.
We do not explicitly report dummy clusters in the Tables, but include their as-
signments when computing the percentage of correct predictions (i.e. predicted
rows do not always sum to one). Note that this best assignment measure is a fair
evaluation procedure, as we simply identify for each cluster which is the activity
it is most likely representing, forcing each cluster to represent a distinct activity.

The first set of experiments aims at comparing our approach with the evi-
dential ontology network (EON) model proposed in [8] and evaluated on the Van
Kasteren dataset. Table 1 shows confusion matrices for the different activities,
where rows indicate true activities and column predicted ones. EON rows report
results for the EON model [8], while CLU shows results of our clustering step
applied to the true segmentation, the same setting used in [8]. Our approach
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Table 1: Detailed results of van Kastaren Dataset (values as percentages)
I. L. T. Sh. Sl. B. Din. Dr.

Idle
EON 72 4 13 3 5 0 3 0
CLU 100 0 0 0 0 0 0 0

SEG+CLU+HSMM 74(74) 12(1) 3(4) 0(2) 8(3) 2(2) 1(2) 0(0)

Leaving
EON 0 74 11 0 14 1 0 0
CLU 0 80 20 0 0 0 0 0

SEG+CLU+HSMM 4(41) 96(59) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Toileting
EON 0 56 27 5 1 11 0 0
CLU 9 0 76 6 9 0 0 0

SEG+CLU+HSMM 4(13) 1(1) 78(32) 5(4) 4(4) 0(1) 0(0) 0(10)

Showering
EON 0 0 0 100 0 0 0 0
CLU 0 0 0 100 0 0 0 0

SEG+CLU+HSMM 9(15) 8(0) 1(0) 76(85) 0(0) 0(0) 0(0) 0(0)

Sleeping
EON 0 0 0 0 100 0 0 0
CLU 62 0 3 7 28 0 0 0

SEG+CLU+HSMM 35(27) 21(0) 0(1) 0(0) 44(44) 0(0) 0(0) 0(24)

Breakfast
EON 0 21 14 0 4 44 14 3
CLU 0 0 0 0 0 100 0 0

SEG+CLU+HSMM 18(31) 0(0) 5(0) 0(0) 9(1) 68(68) 0(0) 0(0)

Dinner
EON 0 0 59 0 13 0 28 0
CLU 7 0 0 0 0 57 36 0

SEG+CLU+HSMM 23(12) 2(0) 0(0) 0(0) 0(0) 36(35) 38(53) 0(0)

Drink
EON 37 0 0 0 0 0 0 63
CLU 14 0 0 0 0 0 0 86

SEG+CLU+HSMM 9(16) 1(0) 1(5) 0(0) 0(0) 80(64) 8(15) 0(0)

outperforms the competitor3 in six out of eight activities and is on par on one.
The only case where we get worse results is on Sleeping, which is characterized
by a single sensor activation of bedroom door and a long period of no sensor
activation. Sleeping is divided into many parts as it is interleaved by the Toilet
activity. Segments separating two consecutive Toilet activities do not have any
sensor activation, and are thus wrongly clustered in the Idle group4.

SEG+CLU+HSMM rows report results of our complete approach, while results
in brackets show the performance of the segmentation and clustering steps only
(SEG+CLU). Clustering generates nine clusters for both true segmentation and
predicted one. Activities performed in the kitchen are clustered together in pre-
dicted segmentation as they share basically the same sensor activations, ex-
plaining the overprediction of Breakfast. Drink, however, is assigned to a dis-
tinct cluster in true segmentation which decreased the confusion in prediction
of kitchen-oriented activities. Incorporating sequential labeling (SEG+CLU+HSMM
rows) provides overall better results, by improving recognition of Leaving and
Toileting (while performance for Showering and Dinner are slightly degraded).

3 Note that by substantially extending the knowledge concerning activities being
searched it is possible to achieve much higher recognition accuracy [8]. However,
our aim here is to perform activity detection without any specific knowledge on the
activities being performed.

4 [9] Hong et al., Segmenting sensor data for activity monitoring in smart environments
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Table 2: Detailed results of CASAS Dataset (values as percentages)
I. B.to.T. B. G. S. W.at.C. W.at.D.R.

Idle
CLU 100 0 0 0 0 0 0

SEG+CLU+HSMM 100(83) 0(7) 0(6) 0(0) 0(0) 0(0) 0(0)

Bed to
Toilet

CLU 68 0 0 31 1 0 0
SEG+CLU+HSMM 28(9) 0(38) 0(1) 70(33) 1(9) 1(3) 0(0)

Breakfast
CLU 7 0 93 0 0 0 0

SEG+CLU+HSMM 6(29) 0(3) 92(35) 2(7) 0(0) 0(0) 0(0)

Grooming
CLU 12 0 0 88 0 0 0

SEG+CLU+HSMM 9(6) 0(30) 0(5) 91(41) 0(8) 0(1) 0(0)

Sleeping
CLU 2 0 0 40 58 0 0

SEG+CLU+HSMM 6(3) 0(3) 0(2) 0(1) 94(51) 0(4) 0(0)

Working at
computer

CLU 3 13 0 0 0 82 2
SEG+CLU+HSMM 12(10) 0(1) 0(6) 0(1) 0(2) 86(36) 2(3)

Working at
dining room

CLU 0 0 0 0 0 38 62
SEG+CLU+HSMM 7(34) 0(0) 0(0) 0(2) 0(0) 8(8) 45(23)

For Leaving, the improvement is achieved by recovering from incorrect segmenta-
tions introducing spurious segments predicted as Idle within a Leaving activity.
For Toilet, the clustering algorithm actually spreads segments containing Toilet
activities in two different clusters, together to some segments from other activ-
ities, while the HSMM manages to identify most of them as belonging to the
same class.

Table 2 reports results of CLU, SEG+CLU+HSMM and (in brackets) SEG+CLU for
resident one of the CASAS dataset. A similar behaviour is observed for resident
two (results omitted for space limitations). The clustering algorithm generates
10 clusters. The complete model provides significant improvements over SEG+CLU
in almost all cases. This is mostly due to recovering portions of segments which
were assigned to spurious clusters (clustering detects more clusters than the true
number of activities), thanks to the smoothing effect of HSMM and its capacity
of correctly modeling duration of activities. This allows the complete model to
even slightly improve over the clustering applied to the true segmentation, as
shown by comparing rows CLU and SEG+CLU+HSMM. As for the Van Kasteren
dataset, a current limitation of the approach is that similar activities tend to
be merged into the same cluster. Indeed, both CLU and SEG+CLU+HSMM fail to
identify the Bed to Toilet activity, as it is very similar to Grooming in terms of
sensor activations involved.

5 Conclusion

In this paper, we presented an activity discovery framework that identifies activi-
ties in sensor streams without requiring data annotation. The proposed approach
first extracts segments from sequences by identifying candidate activity change-
points, clusters extracted segments into groups representing candidate activities,
and trains a sequential labelling model with segment clusters, which is then used
to provide the final refined segmentation.
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The effectiveness and suitability of our approach was evaluated in two smart
home datasets. Initial results shows that proposed approach succeeds in discov-
ering activities in many situations. Although our technique does not depend on
any assumptions on dataset, e.g. type of activities, number of clusters, it outper-
formed a method using activity definitions as domain knowledge. We observed
that our segmentation algorithm produces segments which are quite close to
the true ones. The final sequential labeling model succeeds in further refining
the results, by smoothing segment borders and recovering part of the segments
assigned to spurious clusters.

The proposed framework, however, suffers from a number of limitations. Sim-
ilar activities tend to be clustered together and are hard to distinguish. In order
to prevent this, a better way to represent segments or additional features (e.g.
time of the day, duration of the activity etc.) can be defined. Interleaved activ-
ities also decrease performance, as when repeatedly going to toilet during the
night. Relationships between neighbouring segments could be included in the
clustering phase in order to address this problem.
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