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Abstract. Activity recognition can be seen as a local task aimed at
identifying an on-going activity performed at a certain time, or a global
one identifying time segments in which a certain activity is being per-
formed. We combine these tasks by a hierarchical approach which locally
predicts on-going activities by a Support Vector Machine and globally
refines them by a Conditional Random Field focused on time segments in-
volving related activities. By varying temporal scales in order to account
for widely different activity durations, we achieve substantial improve-
ments in on-going activity recognition on a realistic dataset from the
PlaceLab sensing environment. When focusing on periods within which
related activities are known to be performed, the refinement stage man-
ages to exploit these relationships in order to correct inaccurate local
predictions.

1 Introduction

Automatic monitoring of Activities of Daily Living (ADLs, such as eating,
drinking, cleaning, and so on) is an important component for the implementa-
tion of advanced services in the fields of Ambient Assisted Living and Assisted
Cognition. In assessing the level of self-sufficiency of patients, clinicians consider
the capabilities of performing basic ADLs such as cooking and eating [1]. The
automatic recognition and tracking of these activities may allow for a more re-
liable and cheaper automatic reporting to clinicians or relatives. At the same
time, it allows for the provision of advanced services that can contribute to older
people’s independent life: services like reminders, help in activity execution, etc.

As defined in [2], the activity classification task can take at least two guises
which differ according to the kind of perspective taken on the activities. The first
type is the “complete activity” (CA) recognition task and considers finished ac-
tivities and asks about their type. This task involves an external perspective on
the activity and humans talk about these activities using the perfective tenses
as in the following example: A-“What did Mark do yesterday afternoon?”, B-
“He played basketball”. For automatic systems, the task is to assign the right
activity label to the unknown segmented and complete one. Different works in
activity recognition field dealt with CA task; in particular it has been often used
by researchers adopting the object-use approach whereby activities are modeled



as sequences of used objects [3,4]. The second kind of classification task, called
“on-going activity” recognition task (OGA) takes an internal perspective on
activities. The human subject or the automatic system are temporally located
inside the activity. In this case, humans would use imperfective tenses or progres-
sive forms: A-“What is Mark doing now?”, B-“Mark is playing basketball”. So,
the task is anchored to a given time and the goal of the human or of the machine
is finding signs of the on-going activity and define their type. We can cite some
previous works adopting the OGA paradigm; for example, [5,6]. In this paper
we are going to deal with both of these tasks (OGA and CA): more precisely, we
deal with OGA task using Support Vector Machines (SVM) in order to predict
what is happening inside a given small time interval. These local predictions are
fed as input to a sequential model, namely a Conditional Random Field (CRF),
aimed at performing CA recognition on larger segments of the day. In the real
world, people often perform multiple activities concurrently in their daily living;
e.g. a person might have the habit of watching TV while ironing. Furthermore,
related activities can have quite different recognition complexity. We build on
this observation by focusing on time segments involving highly related activi-
ties, and exploiting a well-predicted activity to improve recognition of a difficult
one. Finally, our evaluation highlights the importance of calibrating the tempo-
ral scale at which an activity should be searched for depending on its average
duration.

This paper is organized as follows. In Section 2 we discuss some related works
on activity recognition. Section 3 describes the sensing environment and the
learning algorithms we employed. Experimental results are reported in Section 4,
and conclusions are drawn in Section 5.

2 Previous works

The problem of human activity recognition has received increasing interest
in recent years in the pattern recognition and machine learning communities.
In particular, good results were achieved both on low-level activities (e.g. ADLs
such as sitting, standing, walking, and lying [7,8]), and high-level activities (e.g.
eating, watching TV, dishwashing, and cooking [9,10], and office activities [11]).
Different sensors were used for activity recognition tasks: several works have
explored the use of switches and motion detectors (similar to those used in com-
mon alarm systems) to collect data regarding the performance of ADLs [12].
Recently, Logan et al. [5] compared different modalities on data approaching
real-world conditions: they collected 104 hours of annotated data of a person
living in a house, instrumented with over 900 sensors, including power and wa-
ter flow inputs, objects and person motion detectors, and RFID tags. They found
that 10 infra-red motion detectors outperformed the other sensors on many of
the studied activities, especially those that were usually performed in the same
location. From a machine learning point of view, most of the work in the activ-
ity recognition area is based on supervised algorithms such as Naive Bayes [9],
Decision Trees [5, 7], Hidden Markov Models [3, 8,13, 14], Support Vector Ma-



chines [2,13], and Conditional Random Fields [14]. In particular, Conditional
Random Fields were found to offer higher overall accuracy than Hidden Markov
Models (HMM) for multi-label activity classification, even if HMMs can better
discriminate between multiple activities when the training dataset contains un-
balanced class labels [14]. A limited number of works used relational learning
techniques to deal with activity recognition tasks: [15] used Relational Markov
Networks (RMNs) for recognizing activities from location data. Landwher et
al [16] introduced a relational transformation based tagging system in order to
integrate various principles of inductive logic programming (e.g., search, oper-
ators, representations, and background knowledge) with transformation-based
tagging (e.g., error-driven search, branch and bound idea).

3 Activity Classification

3.1 The sensing environment

PlaceLab is an instrumented home environment operated as a shared research
facility. The complete description of the sensing environment can be found in [5].
Logan et al. [5] collected and analyzed data from a couple who lived at the home
for a period of 10 weeks. The home is a custom built condominium instrumented
with several hundred sensors, including an audiovisual recording system that
captures ground truth of the participants activities. The environment contains
several classes of sensors, including wired reed switches, power and water flow
inputs, objects and person motion detectors, and RFID tags. We focused on
infrared (IR) and object motion (OM) sensors, those found in Logan et al. [5]
to be the most discriminant.

Table 1. Activity duration statistics

Activity Instances|Avg. duration (min)
ActivelyWatching TV 15 53
DishWashing 21 1
Grooming 28 2
GroupedEating 101 4
Hygiene 20 3
MealPrep 40 2
Reading 29 17
UsingComputer 50 37
UsingPhone 68 3

3.2 Data Preparation

Following Logan et al. [5], we divided each day into 30s intervals overlapped
by 15s. We formulated the activity recognition problem as nine binary classi-
fication tasks at the interval level, one for each of the nine possible activities.



Each interval was labeled positively for a certain activity if it had occurred at
any time within it. Note that many activities are not mutually exclusive (i.e.
they can both be performed within the 30s timeframe) and the problem should
be addressed as multi-label rather than multi-class prediction.

We represented an interval as a vector of sensor features, indicating the num-
ber of times each sensor was activated during the interval.

Most activities have average durations on the order of a minute, with some
like ActivelyWatchingTV or UsingComputer having a far longer duration as
showed in Table 1.

In order to account for such temporal correlations we applied a sliding window
approach computing average feature vectors on intervals surrounding the one of
interest, either separately for past and future (asymmetric) or combining both
together (symmetric).

3.3 Local classification by Support Vector Machines

We addressed each binary classification task at the interval level with an
SVM classifier [17]. SVM are state-of-the-art discriminative classifiers capable
of efficiently handling thousands of features and learning complex non-linear
functions thanks to the kernel trick. Experimental results show substantial im-
provements over the decision tree classifiers employed in [5], as will be detailed
in the experimental section.
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Fig. 1. Graphical model representation of a linear-chain CRF, on the left, and a facto-
rial CRF with two chains, on the right, unrolled for three time intervals. The z(¢) nodes
represent the predicted OGAs over time, while the y;(t) variables are the detected CAs.



3.4 Global refinement by Conditional Random Fields

CRFs [18] are undirected graphical models conditioned on observation se-
quences. Linear-chain CRF allow to efficiently model sequential observations and
have been successfully applied to a variety of recognition tasks in text classifica-
tion, bioinformatics and activity recognition, to name a few application domain.
Here we employ them as a refinement stage, in order to combine sequences of
local OGA predictions from multiple related activities into a global CA predic-
tion. Figure 1 shows a graphical representation of the models we employed. The
inputs z(t) represent local OGA predictions for all or some of the activities at
time interval ¢. The outputs y(¢) represent CA predictions for the activity being
globally refined. The model to the left is a plain linear-chain CRF, where a sin-
gle activity is predicted in output. Connections are provided between outputs at
consecutive time instants, with the effect of propagating predictions along the
time range. The model to the right is a more complex factorial CRF [19], where
multiple activities (two in this example) are jointly predicted. Linear-chain mod-
els for each activity are combined by adding co-temporal connections between
activities. Note that the higher complexity of the factorial model implies more
parameters to be estimated and approximate inference. In conjunction with the
scarcity of positive examples for most activities, this often resulted in a perfor-
mance worsening with respect to the simpler linear-chain case, as will be detailed
in the experimental section.

4 Experimental results

We conducted a leave-one-day-out cross validation procedure as in [5]. The
aims of the experimental evaluation are: 1) identifying the most discriminative
sensors and time frames (i.e. sizes of the sliding windows) for the different activ-
ities; 2) comparing to previous activity recognition approaches on this dataset;
3) verifying the usefulness of sequential models to refine local predictions. In
the following we will report experimental results for each of these points. For
comparability to [5], we employed area under the ROC curve (AUC) as a figure
of merit in all experiments.

For each of the binary classification tasks, we conducted an extensive model
selection phase to identify 1) the best set of sensors, IR, OM or IR+OM; 2) the
best sliding window size; 3) the best SVM parameters, namely regularization
parameter C' and kernel type among linear, polynomial or Gaussian with varying
width size.

Model selection was conducted by an inner leave-one-day-out cross validation
on the training set of the first fold (i.e. the first 8 days), and obtained parameters
and feature sets were kept fixed for the outer cross validation.

4.1 Model selection results

The best kernel was a second degree polynomial for all activities. Concerning
sensor classes, IR sensors performed much better than OM ones. Furthermore,
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Fig. 2. AUC dependence on window size, comparison between IR and IR+OM for the
different activities.

we did not experience significant advantages in combining OM and IR sensors,
especially when increasing the size of the sliding window. These results are con-
sistent with those reported in [5] where IR sensors where found to be the most
discriminant.

Figure 2 reports AUC values for varying window sizes for the different activi-
ties. Both IR and IR4+OM results are shown. T'wo aspects are worth mentioning.
First, large differences can be observed in the optimal window size of different
activities. This size is actually highly correlated with the average duration of the
activity (see Table 1), with the three longest activities, namely ActivelyWatch-
ingTV, Reading (for which the maximum is outsize of the range shown) and
UsingComputer, having by far the largest optimal window sizes. Second, IR and
IR4+OM behave quite differently with respect to optimal window size, with the
latter early starting to show performance worsening. This seems to indicate the
need to separately optimize window sizes for the two classes of sensors. We plan
to investigate this issue in future experiments.

4.2 SVM results

Table 2 reports experimental comparisons between our local SVM classifiers
and the decision trees (DT) used by Logan et al. [5].

SVM substantially outperforms DT in all experiments. The largest improve-
ments can be observed for the three hardest recognition tasks, GroupedEating,



Table 2. Leave-one-day-out cross validated AUC (%) for DT and SVM. Optimal win-
dow size refers to SVM and was obtained by an inner cross-validation on the training
set of the first fold.

ACtivity Best win.|SVMauc|DT avce
ActivelyWatchingTV| s85 20 80
DishWashing 83 97 89
Grooming s45 95 87
GroupedEating s55 91 56
Hygiene al9 96 86
MealPreparation s11 97 87
Reading s135 81 54
UsingComputer 595 96 85
UsingPhone s9 85 64

Reading and UsingPhone. Note that an appropriate window size is also crucial
in achieving these results, especially for the first two activities which perform
drastically worse if only the activations in the target interval are considered (see
Figure 2). UsingComputer is by far the best predicted activity, as the other ac-
tivities with AUC > 0.95 have much less positive examples, and AUC is very
sensitive to the unbalancing in the data.

4.3 CRF results

We investigated the usefulness of relying on well-predicted activities in order
to improve recognition of more difficult ones. Figure 3 shows the cross-correlation
between UsingComputer and Reading, the two activities with highest cross-
correlation. Note that activities are frequently co-occurrent (Lag=0), but also
frequently follow one after the other within a short time frame.
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Fig. 3. Cross correlation between Reading and UsingComputer labels

We employed either the true labels or the local SVM predictions in order
to focus on time segments likely to contain one of these activities. We selected



segments of consecutive intervals where at least one of the two activities was
actually performed or locally predicted to be performed, allowing for a small
gap of inactivity (10 intervals) between consecutive positive intervals. We then
retained those segments in which each activity was performed for at least 3 inter-
vals. During test, we applied the same selection mechanism to identify candidate
time segments.

We experimented with two different models: a linear-chain CRF predicting a
single activity, and a factorial CRF jointly predicting Reading and UsingCom-
puter. Each model was input either the margins of the activity being predicted,
the margins of both activities, or the margins of all the nine activities.

Table 3. Results of CRF experiments. Both training and test data is segmented ac-
cording to the true labels. A ‘-’ indicates that there are no positive instances of the
given activity. L-CRF stands for linear-chain CRF, F-CRF for factorial CRF.

Predictions for Reading

Prediction 1 ]2 3 4 5 16| 7 8 9

SVM 0.31]-|0.25|0.48 |0.85|—| 0.12|0.55 | 0.56
L-CRF, Reading 0.38/-] 0.5 {0.85| 0 |-|0.66|0.32|0.56
L-CRF, Reading+UsingComputer|0.38|—| 0.5 |{0.94| 0 |-|0.86| 0.5 [0.54
L-CRF, All Activities 0.45|—- 0.5 |0.71| O |-/0.67|0.68|0.65
F-CRF, Reading+UsingComputer|0.36 |—|0.04 | 0.61 | 0.24 |-| 0.33 | 0.49 [ 0.48
F-CRF, All Activities 0.421-10.93/0.55| 0 |-/0.69| 0.5 |0.72

Predictions for Using Computer

Prediction 1 12| 3 4 5 16| 7 8 9

SVM 0.481-10.95|0.68| 0.8 |- 0.79]0.83|0.77
L-CRF, UsingComputer 0.99|-/0.9810.94| 0.9 |-|0.91|0.76 |0.89
L-CRF, Reading+UsingComputer|0.98 |-[0.98|0.94| 0.9 |-|0.87|0.78 |0.89
L-CRF, All Activities 1 |-| 1 |0.85/0.97|-|0.91|0.87|0.87
F-CRF, Reading+UsingComputer|0.71|—-|0.95{0.86 |0.78 |-| 0.79 | 0.86 [ 0.79
F-CRF, All Activities 0.72]-|0.67|0.96/0.14 || 0.87|0.87|0.78

Table 3 summarizes the results for the prediction of Reading and Using-
Computer with the different CRF models. Each row contains the AUC of the
predictions for the given combination of CRF type and inputs, for each day of
the test data. The AUCs of the SVM predictor are included for reference. Num-
bers in bold highlight the best result for each test day. Using the true labels
to segment both train and test data is clearly infeasible in realistic conditions,
where the true labels are not available during the testing stage. However, these
experiments allow us to highlight the potential advantages of a sequential re-
finement stage for CA recognition, abstracting away the problem of identifying
candidate periods of the day to focus on.

The first observation is that the linear-chain CRF typically outperforms the
SVM, on all days and for both activities, with the sole exception of Reading
during day 5. In general the CRF manages to overcome the local predictions.



These can be very bad especially in the case of Reading, which is particularly
difficult to predict on a local basis. Interestingly, this behavior occurs even if
only one input is given. A particular instance of this behavior can be seen in
Figure 4, referring to day 7 of the one input case. Here the local predictions are
quite bad, but the CRF is able to approximately detect the second large segment
of activity.
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Fig. 4. Plot showing the predictions of the linear-chain CRF for Reading on cross-
validation day 7. On the bottom row we report the true labels for Reading. The middle
row represents the SVM predictions. The top represents the CRF predictions.

The factorial CRF does not show this consistent behavior, performing rather
worse on some of the test instances. This may be due to the higher complexity
of the model, requiring more parameters and approximate inference, and the
sparseness of the train data available for Reading. One exception is shown in
Figure 5, which refers to the predictions from all activities as inputs on day 4.

We also note that usually increasing the number of inputs improves the pre-
diction for both the linear-chain and factorial models. This fact hints at the
positive effect that combining multiple local predictions has on the accuracy of
the CRF. As an example, Figure 6 shows how the CRF combines the wrong
local prediction of Reading with the prediction of UsingComputer to accurately
locate both positives and negatives of Reading, even though its SVM prediction
is almost completely wrong.

Table 4 summarizes the results of the CRFs when the test and train data are
segmented according to the local predictions. In this case, the contributions of
the CRF are not as clear cut. For both activities, the best CRF model seems the
most complex one, namely a factorial CRF with all 9 activities in input. However,
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Fig. 5. Plot showing the predictions of the factorial CRF for both Reading and Using-
Computer, with all 9 activities as inputs. The predictions refer to day 4. For simplicity,
only the labels and local predictions for Reading and UsingComputer are shown.

the comparison with the local SVM predictions does not allow to draw clear
conclusions, with three wins vs three losses for3.4 Reading, and five wins vs three
losses for UsingComputer. Experiments in which training data were segmented
according to the true labels did not produce substantially different results. This
indicates that further work is needed in order to make CRF predictions more
robust to a noisy identification of candidate periods.

5 Conclusion

We addressed the problem of activity recognition from the two perspectives
of on-going and complete identification. We showed that by varying the temporal
scale at which sensor readings are aggregated, we can account for the different
average duration of activities, achieving substantial improvements on the on-
going recognition task. The combination of local predictions by CRF sequential
models allowed us to refine them into a complete activity recognition prediction.
Preliminary results indicate that when focusing on periods containing related
activities, this relationship helps to correct inaccurate local predictions, espe-
cially in exploiting information on easier activities to improve predictions of a
harder one. In order to successfully apply this strategy in a real setting, how-
ever, we need to improve its robustness to a noisy identification of these periods,
for instance by focusing on reliable predictions only and searching for the more
difficult activities in the surroundings of the simpler ones.
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