Handling concept drift in preference learning for
interactive decision making

Paolo Campigotto, Andrea Passerini, and Roberto Battiti

DISI - Dipartimento di Ingegneria e Scienza dell’Informazione,
Universita di Trento, Italy
{campigotto, passerini, battiti}@disi.unitn.it

Abstract. Interactive decision making methods use preference informa-
tion from the decision maker during the optimization task to guide the
search towards favourite solutions. In real-life applications, unforeseen
changes in the preferences of the decision maker have to be considered. To
the best of our knowledge, no interactive decision making technique has
been explicitly designed to recognize and handle preference drift. This
paper aims at covering this gap, by extending the Brain-Computer Evo-
lutionary Multi-Objective Optimization (BC-EMO) algorithm to handle
preference drift. BC-EMO is a recent multi-objective genetic algorithm.
It exploits user judgments of couples of solutions to build incremental
models of the user value function. The learnt model is used to refine
the genetic population, generating the new individuals in the region
of the Pareto front surrounding the favourite solution of the decision
maker. The proposed extension of BC-EMO detects the changes of the
user preferences by observing the decrease of prediction accuracy of the
learnt model. The preference drift is jointly tackled by the BC-EMO
learning phase, by a discounting policy for outdated training examples,
and by the BC-EMO search phase, by encouraging diversification in the
genetic population. Experimental results for a representative preference
drift scenario are presented.

1 Introduction

Modeling real-world problems often generates optimization tasks involving mul-
tiple and conflicting objectives. Because the objectives are in conflict, a solution
simultaneously optimizing all of them does not exist. The typical approach to
multi-objective optimization problems (MOOPs) consists of searching for a set
of trade-off solutions, called Pareto-optimal set, for which any single objective
cannot be improved without compromising at least one of the other objectives.

Usually, the size of the Pareto-optimal set is large or infinite and the decision
maker (DM) cannot tackle the overflow of information generated when analyzing
it entirely. In this scenario, interactive decision making (IDM) techniques come
to the rescue. They assume that the optimization expert (or the optimization
software) cooperates with the DM. Through the interaction, the search process
can be directed towards the DM preferred Pareto-optimal solutions and only a
fraction of the Pareto-optimal set needs to be generated.

To the best of our knowledge, current IDM techniques consider a static pref-
erence model for the DM. This is rather unrealistic in many applications, where
the DM has limited initial knowledge of the problem at hand. Only when the
DM see the actual tentative solutions, she becomes aware of “what is possible”.
Confronted with this new knowledge, her preferences may evolve. Typical sce-
narios involve a DM introducing new objectives in her preference model during
the search, changing the relations between the different objectives or adjusting
her preference model according to the observed limitations of the feasible set.
Furthermore, the DM may not be aware of her preference changes and may
not explicitly alert the optimization component. From a learning perspective,
interactive multi-objective optimization should thus be seen as a joint learning
process involving the model and the DM herself [2].

In the machine learning (ML) community, the problem of learning in these
changing conditions is known as learning under concept drift [13]. The problem
has received increasing attention in last years, and a number of solutions have
been proposed to tackle it. For a review of the recent approaches in this area,
see [16]. In this work we consider concept drift in the specific setting of interactive
optimization. We call preference drift the tendency of the decision maker to
change her preferences during the interactive optimization stage.

To the best of our knowledge, no IDM technique has been explicitly designed
to handle preference drift. Among the plethora of IDM algorithms, reference
point methods [10,12], which iteratively minimize the distance to ideal refer-
ence points provided by the DM, could in principle naturally handle preference
drifts. However, the cognitive demands required to the DM can easily become
prohibitive, especially when dealing with non-linear preference models and an
increasing number of objective.

Machine learning techniques [14, 15, 8] have been employed in IDM by learn-
ing the user preferences in an interactive fashion, and can be easily adapted to
deal with preference drifts. Most existing approaches are limited either by not
guaranteeing the generation of Pareto optimal solutions, or by assuming a linear
set of weights, one for each objective. We recently developed the Brain-Computer
Evolutionary Multi-Objective Optimization (BC-EMO) algorithm [1] in order to
overcome these limitations.

BC-EMO is a genetic algorithm that learns the preference information of the
decision maker (formalized as a value function) by the feedback received when
the DM evaluates tentative solutions. Based on this feedback, the predicted value
function is refined, and it is used to modify the fitness measure of the genetic
algorithm. The algorithm was shown [1] to early converge to the desired solution
on both combinatorial and continuous problems with linear and non-linear value
functions. The learning stage is based on a support vector ranking algorithm
which provides robustness to inaccurate and contradictory DM feedback [3]. We
thus selected BC-EMO as a natural candidate to be extended for managing
preference drift.

The extension of BC-EMO for preference drift recovery is based on the ap-
proach of instance weighting [9], a popular strategy in the concept drift literature.

The instance weighting technique consists of reweighting the examples according
to their predicted relevance for the current concept. We include this reweighting
scheme in the learning component of the BC-EMO algorithm. A change detec-
tion monitor is responsible for activating the mechanism. In order to deal with
concept drift in the specific setting of interactive optimization, we also introduce
a diversification strategy aimed at escaping from minima which could become
suboptimal for the changed preference of the DM.

The remainder of the paper is organized as follows. Section 2 introduces IDM
and discusses the limitations of current techniques in regard to preference drift
handling. Section 3 briefly reviews the BC-EMO algorithm, while Section 4 ex-
tends it to automatically handle preference drift. An experimental evaluation of
the proposed extension is reported in Section 5. Section 6 draws some conclusions
and proposes possible directions for future research.

2 Interactive decision making techniques

A MOOP can be stated as:

minimize f(x) = {f1(x),..., fm(x)} (1)
subject to x € {2

where x € R” is a vector of n decision variables; {2 C R"™ is the feasible region
and is typically specified as a set of constraints on the decision variables; f :
2 — R™ is made of m objective functions which need to be jointly minimized.
Objective vectors are images of decision vectors and can be written as z =
f(x) = {f1(x),..., fm(x)}. Problem 1 is ill-posed whenever objective functions
are conflicting, a situation which typically occurs in real-world applications. In
these cases, an objective vector is considered optimal if none of its components
can be improved without worsening at least one of the others. An objective vector
z is said to dominate z’, denoted as z = z',if 2, < 7, for all k and there exist at
least one h such that 2z, < z,. A point x is Pareto-optimal if there is no other
x € {2 such that f(x) dominates f(X). The set of Pareto-optimal points is called
Pareto set (PS). The corresponding set of Pareto-optimal objective vectors is
called Pareto front (PF).

Several IDM approaches have been developed to aid the DM in identifying
her preferred solution [11], including evolutionary multi-objective algorithms (see
for example [5] and contained references). IDM procedures exploit the preference
feedback from the DM to refine a preference model, usually expressed as a value
function.

In the popular family of reference point methods [10, 12] the value function is
interpreted as an achievement scalarizing function, which measures the distance
from a selected objective vector z, called reference point. The reference point
specifies the desirable values of the objectives and it is usually provided by
the DM. The distance from the reference point has a preferential meaning: the

tentative solution x* € (2 showed to the DM is the solution minimizing the
deviation from the reference point. In detail, the solution x* is obtained by
solving the following program:

x* = min max [wg(fu(x) —)] (2)

subject to x € {2

with weight wy > 0,k = 1...m. The achievement scalarizing function to mini-
mize in Eq. 2 is the weighted Tchebychev distance from the reference point. The
DM can express her bias for the k-th objective by assigning a value to weight wy,.
After the DM has specified her desirable solution as a reference point, she can
see what was feasible (the solution x*) and in case provide a new reference point.
Many refinements and extensions of this approach exist [12]. They consider dif-
ferent ways of interaction with the DM (e.g., by showing a set of solution in
the neighborhood of x*) and different refinements of the achievement scalarizing
function, designed to obtain Pareto-optimal solutions with particular properties.

In principle, reference points approaches could be considered a natural way
of accounting for preference drift: the DM is free to modify the reference point,
exploring new regions of the Pareto front in response to a change in her prefer-
ences. However, the effort of the decision maker to modify the reference point
when her preference model includes non-linear relations between the objectives
may be prohibitive. The cognitive demands become unrealistic when the dimen-
sionality of the problem increases, providing a large set of candidate directions
to shift the reference point.

In the past, a number of works [14, 15, 8] introduced ML-based approaches to
learn the user preferences in an interactive fashion. However, they have several
limitations [1]. The approach in [14] does not guarantee the generation of Pareto
optimal solutions, while the strategies developed in [15, 8] generate a linear local
approximation of the user preferences and do not use directly the learned pref-
erence model to drive the search. Furthermore, in all these works the feedback
from the DM is expressed in terms of quantitative scores.

The BC-EMO algorithm [1] overcomes these limitations, by learning the pref-
erence model with pairwise preference supervision, a much more affordable task
for the DM, and by directly using the preference model to drive the search over
the Pareto front. The algorithm does not make any assumption about the pref-
erence structure of the DM, possibly accounting for highly non-linear relations
between the different objectives. This work extends BC-EMO to handle prefer-
ence drift.

3 The BC-EMO algorithm

The goal of the BC-EMO algorithm consists of identifying the non-dominated
solution preferred by the decision maker. To fulfill this scope, BC-EMO learns a
value function from the preference information provided by the DM by using the
support vector ranking [4], a supervised machine learning technique that learns

Algorithm 1 Training procedure at the generic i-th EMO iteration

1: procedure TRAIN(P;, U;_1, exa)

2: P, «— PREFORDER(F;,U;—1,exa)
obtain pairwise preferences for P;,- from the DM
sort P according to user preferences and add it to training instances
Choose best kernel K and regularization C by k-fold cross validation
U; + function trained on full training set with K and C'
res; < k-fold cv estimate of function performance
return U;, res;

end procedure

to rank the input data. Training examples consist of pairwise comparisons of non-
dominated solutions which are turned into ranking constraints for the learning
algorithm. No specific assumptions are made about the form of the DM value
function: BC-EMO has a tuning phase selecting the most appropriate kernel (i.e.,
similarity measure) in order to best approximate the targets, allowing it to learn
an arbitrary value function provided enough data are available. Furthermore,
support vector ranking allows to effectively deal with noisy training observations
thanks to a regularization parameter C trading-off data fitting with complexity
of the learned model.

The learned value function is used to rank the current population during the
selection phase of the BC-EMO algorithm, where a sub-population is selected for
reproduction on the basis of fitness (i.e., quality of the solutions). In particular,
the BC-EMO selection procedure, which we will refer to as PREFORDER, consists
of:

1. collecting the subset of non-dominated individuals in the population;

2. sorting them according to the learned value function;

3. appending to the sorted set the result of repeating the procedure on the
remaining dominated individuals, until the desired number of individuals is
reached.

The procedure is guaranteed to retain Pareto-optimality regardless of the form of
the learned value function. Any evolutionary multi-objective algorithm (EMOA)
that needs comparisons between candidate individuals can be equipped with
the BC-EMO selection procedure (replacing or integrating the original selection
procedure). Algorithm 1 describes the procedure of the generic i-th training
iteration, in which: 1) the exa best individuals from the current population P,
are selected according to PREFORDER with current value function U;_1; 2) DM
feedback is collected for these examples; 3) parameter selection, training and
evaluation are conducted on the training data enriched with P;,.. This procedure
will be modified in the next section in order to account for preference drifts.
The overall BC-EMO approach consists of three steps:

1. initial search phase: the plain EMOA selected is run for a given number of
generations and produces a final population Pj;

2. training phase: using P; as initial population, a specific number of training
iterations are executed to learn the value function V' by interacting with the
DM. The final population obtained (Pz) is collected;

3. final search phase: the selected EMOA equipped with the BC-EMO selec-
tion procedure is run for a given number of generations, using P, as initial
population and producing the final ordered population.

Each training iteration alternates a refinement phase, where the DM is queried
for feedback on candidate solutions and the value function is updated according
to such feedback, with a search phase, where the EMOA equipped with the BC-
EMO selection procedure is run for a given number of iterations. The training
phase is executed until the maximum number of training iterations or the desired
accuracy level are reached.

The parameters of the BC-EMO algorithm are: the number of allowed train-
ing iterations (maxit), the number of training individuals for iteration (exa),
the number of generations before the first training iteration (gen;) and between
two successive training iterations (gens). Algorithm 2 contains the pseudocode
of the BC-EMO approach applied on top of a generic EMO algorithm. Further
details on the algorithm can be found in [1].

Algorithm 2 The BC-EMO algorithm

1: procedure BC-EMO (maxit, exa, geni, gens)
2: res <« 0, it — 0, U «+— RAND
run the EMOA for geni generations
collect last population P
while it < mazit do
U,res «— TRAIN(P, U, exa)
run the EMOA for gens generations guided PREFORDER with U
collect last population P
9: end while
10: run the EMOA for the remaining generations guided PREFORDER with U
11: return the final population P
12: end procedure

4 Handling preference drift with BC-EMO

The effect of preference drift is a decrease of the accuracy of the learnt model over
time. In the original version of BC-EMO, training data arrives in batches over
time and the model is re-trained every gens generations, when a new batch of
training examples is available. The extension to handle preference drift consists
of a mechanism for drift detection and of a reweighting of the past training
examples inversely proportional to the observed decrease in the performance
accuracy.

First, a cost in the range [0,1] is associated with each training example,
initialized to the value one and defining the relevance of the example for the
concept to predict. The detection of a drift in the preferences of the decision
maker is based on the prediction accuracy of the learnt model. Let b; and U;_; the
new batch of observable data and the current model at the generic i-th training
iteration, respectively. The performance of the current model is the prediction
accuracy 0 < res;_1 < 1 over batch b;_;. Furthermore, let 0 < res;_l < 1 the
prediction accuracy of the current model over batch b;. If the difference between
res;—1 and res,_, is bigger than a fixed threshold ¢4, with ¢4 > 0, a drift in the
preferences of the decision maker is assumed. In this case, the cost of the training
examples collected so far (i.e., the training examples of batches by, by, ...b;—1) is
decreased as a function of the value res;_;1 —res,_;. In detail, the cost is updated
by a multiplicative factor d = ¢(res;—1 —res,_;), where the function ¢ is defined
as follows:

1 if$§td
clxy=¢ 1—zifty<x <05 (3)
0 ifz>05

Let us comment. If the value res;—1 — res;_; is bigger than the threshold and
smaller than 0.5, the cost of the training examples is decreased by the normalized
value of the difference res;_; — res;—_1. When the decrease of the performance
accuracy over the last batch of observable data is bigger than value 0.5, the
training examples of the previous batches are discarded (i.e., their cost becomes
zero). The rationale for this choice is that a large decrease in the accuracy of the
learnt model is seen as symptom of a radical change in the preferences of the
DM, outdating training examples collected in previous iterations.

If a drift in the preferences of the user has been detected, the model selection
phase is executed using only the data in the i-th batch rather than using all the
collected examples, as in the original version of BC-EMO (algorithm 1, line 6).
Furthermore, the genetic population of the EMOA is reinitialized.

Let res; the prediction accuracy of the selected model over batch b;. If res;
is smaller than threshold ¢,., the selected model is discarded as it does not satisfy
the minimal performance requirement, and all training examples of of batches
by ...b;_1 are discarded as well. The plain EMOA underlying BC-EMO will then
be executed starting with a random population, until the next training iteration
is reached. The rationale for this choice is the assumption that the poor per-
formance of the selected model is caused by the collected training examples,
localized in a region of the Pareto front that does not provide informative ex-
amples to learn the drift of the user preferences. The plain EMOA algorithm
is executed to generate a population representing the whole Pareto front (with-
out considering the preferences of the decision maker), in order to create more
informative training examples at the next training iteration.

Algorithm 3 describes the modification of the training procedure at the
generic i-th training iteration of BC-EMO to handle preference drift.

Algorithm 3 Training procedure to handle preference drift
1: procedure TRAIN(P;, U;_1, exa, res;—1, tq, tr)
2: P, «— PREFORDER(F;,U;—1,exa)

3: obtain pairwise preferences for P, from the DM

4: b; « sort Py, according to user preferences

5: Add b; to training instances

6: res;_, « test U;_1 using b;

7. if res;_1 — res;,_; >ty then

8: Decrease costs of examples in by ...b;—1 according to (3) using tq
9: Re-initialize P; randomly

10: end if

11: Choose best kernel K and regularization C by k-fold cross validation
12: res; «+ k-fold cv estimate of function performance

13: if res; > t, then

14: U; « function trained on full training set with K and C'

15: else

16: res; «— 0, U; +— RAND

17: end if

18: return U;, res;

19: end procedure

5 Experimental results

The experimental evaluation is focused on demonstrating the effectiveness of
the extension of BC-EMO to handle decision maker preference drift for a se-
lected case study. Given this focus, we did not attempt to fine-tune non-critical
parameters which were fixed for the experiment.

Following [1], BC-EMO has been applied on top of NSGA-II [6] EMOA.
We chose a population size of 100, 2000 generations, probability of crossover
equal to one and probability of mutation equal to the inverse of the number
of decision variables. Concerning the learning task of BC-EMO, the number
of initial generations (gen;) was set to 200, while the number of generations
between two training iterations (gens) was set to 100. Both 5 and 10 examples per
training iteration are tested. The minimum performance requirement threshold
t, was set to 0.5, while a decrease of the performance greater than 10% (¢4 = 0.1)
triggers the procedure handling the preference drift.

The case study consists of the bi-objective version of DTLZ6 problem, taken
from popular DTLZ suite [7]:

minge o (X)
N={x0<z;<1Vi=1,...,n}

fi) =21, fmo1(X) = T,

fm (<) = (L4 g(m))h(f1, f2,- -y fm-1,9)
g0m) =14 (9/1%Xml) 220, ex,, Ti

h=m— S /(L4) (1 + sin(3mfi)]

This problem is characterized by an highly disconnected Pareto front, with both
convex and concave regions (Fig. 1 (left)).

A= 4
3.8’ '\\ .
3.61 SSeese \ 2 S . \
3.4¢ ‘\‘ o \\-(thwd \

3.2t 0
o \ 4
3 \ \fifth \
2.8 \

first
W

2.6’ \\
2.4¢ \..
0.10.20.3 0.4f 0.50.6 0.7 0.8 0.9
1

Fig. 1: Problem DTLZ6 with two objectives: (left) Pareto front for a sample run of
plain NSGA-II without user preference; (right) preference values of the Pareto front
according to the different values functions simulating the preference drift.

The drift in the preferences of the user is simulated by a sequence of five
value functions:

0.2% f1 +0.8% fo
0.05 % fo % f1 + 0.6 % f2 +0.38 % fo

0.05 % fo % f1 +0.6 % fZ +0.38 % fo +0.23 % f1
0.05 % fo % f1 + 0.68 % f2 +0.26 % fo + 0.23 * f1
0.05 % fo % f1 +0.68 % fZ + 0.1 % fo +0.23 % f1

Cuks W=

The sequence is generated by increasing the importance of the first objective (f1)
w.r.t. the second objective (f2), assuming a non-linear formulation of the user
preferences. This experimental setting simulates a decision maker that gradually
becomes aware of the relation between her objectives to be optimized. Note that
designing value functions which are non-monotonic in the Pareto front while re-
taining Pareto dominance properties is a non-trivial task. See [1] for a description
of the generation process. Fig.1 (right) shows the different value functions con-
sidered, and their global minima over the Pareto front (square marked points).
Tracking the shift of the global minimum between disconnected regions of the
Pareto front is a challenging task for the optimization algorithm. The changes
between the different value functions were fixed at generations 300, 600, 900 and
1200.

Fig. 2 and 3 report the results for the plain BC-EMO algorithm, for a base-
line algorithm and for our BC-EMO extension, respectively, over the considered
case study. The performance of the algorithms is measured in terms of percent
approximation error w.r.t. the gold standard solution (y-axis) in function of the
generation of the genetic population (z-axis). The gold standard solution is ob-
tained by guiding the algorithm with the true value function. Each graph reports

w
1

w
al

" [~5exa S " [~5exa
=30 st 10exal . 30 bt 10 exa
5 S |
@25 @25 |
c c
220 S 20
[©
€ 15 Eis
X X
s 10 s 10 |
[} [=% |
S 1 frrr e
<5 <5 i

G s) X X X X X X X X X X X X X O ."-')—O—E X X X X X X X \
2345678 91011121314151617181920 23456 78 91011121314151617181920
Generation (x100) Generation (x100)

Fig. 2: Performance of the BC-EMO algorithm (left) and of the baseline algorithm
(right).

w
Ul

w
o

ST T T T T =Bexa
| 10 exal

N
(53]

N
o

Approximation error
[=
o ()]

(53]

O2 3 4 56789 101112131Z151617181920

Generation (x100)

Fig. 3: Performance of the extension of BC-EMO to handle preference drift.

two learning curves for an increasing number of training examples per iteration
(exa). Results are the medians over 500 runs with different random seeds for the
search of the evolutionary algorithm.

At the generic i-th training iteration, the baseline algorithm retrains the
learnt model using only the i-th batch of observable data. This is the only dif-
ference with the plain BC-EMO. Experimental results not reported here due to
space limitations show the better performance obtained by discarding the previ-
ous training examples rather than discounting their cost by a fixed multiplicative
factor in (0, 1).

Fig. 2 (left) shows that the original version of BC-EMO cannot handle prefer-
ence drift. The algorithm cannot track the changes of the user preferences: with
the exception of the first drift, the performance of the algorithm keeps degrading
each time the value function changes. After the last drift of the user preferences,
the percent approximation error exceeds value 35%. This sub-optimal perfor-
mance is caused by the lack of diversification during the search phase of the
algorithm: the genetic population “gets trapped” in the region surrounding the
global minima of the first and the second value functions.

A better performance is showed by the baseline algorithm (Fig. 2 (right)).
Like BC-EMO, with 10 examples per iteration, a successful recover from the first
drift is shown. The baseline algorithm fails to detect the second and the third
changes of the value function (at generation 600 and 900, respectively): between
generations 900 and 1200, the curves for both 5 and 10 training examples show
a constant percentage deviation from the gold solution greater than 30%. When
the fourth concept drift happens, the worst performance is observed. However,
after generation 1400 the approximation error rapidly becomes zero, with both 5
and 10 training examples per iteration. Three iterations are required for perfect
recovery from the fourth concept drift.

As expected, the best results are observed for the extension of BC-EMO
designed for handling preference drift. Even if three training iteration are not
enough for the perfect recovery from the second concept drift, the favourite
solution of the decision maker generated by her third preference drift is perfectly
identified. In the case of 10 training examples per iteration, an approximation
error smaller than 1% is obtained at generation 1100. An even faster recovery
is observed from fourth concept drift: two training iteration are required to
approximate the new gold solution within an 1% approximation error. Note
that, with the exception of the peak at generation 900 (corresponding to the
third preference drift), the results tend to remain within 10% of the gold solution
when 10 examples per iteration are provided.

6 Conclusion

This work addresses the problem of handling evolving preferences in interactive
decision making. We modify BC-EMO, a recent multi-objective genetic algo-
rithm based on pairwise preferences, by adapting its learning stage to learn
under a concept drift. Our solution relies on the popular approach of instance
weighting, in which the relative importance of examples is adjusted according
to their predicted relevance for the current concept. We integrate these modi-
fications with a diversification strategy favouring exploration as a response to
changing DM preferences. Experimental results on a benchmark MOO problem
with non-linear user preferences show the ability of the approach to early adapt
to concept drifts.

Our promising preliminary results leave much room for future work. First,
additional benchmark problems with evolving non-linear user preferences will be
generated, possibly derived from real-world applications. Both sudden and grad-
ual preference drift will be considered. Furthermore, active learning approaches
could be devised in order to reduce the number of answers to the DM. This
requires a shift of paradigm with respect to standard active learning strategies,
in order to model the relevant areas of the optimization surface rather than
reconstruct it entirely, and early detect and adapt to a changing surface.

References

ot

10.

11.

12.

13.

14.

15.

16.

. Battiti, R., Passerini, A.: Brain-computer evolutionary multi-objective optimiza-

tion (BC-EMO): a genetic algorithm adapting to the decision maker. IEEE Trans-
actions on Evolutionary Computation (2010, to appear)

Belton, V., Branke, J., Eskelinen, P., Greco, S., Molina, J., Ruiz, F., Slowinski,
R.: Interactive multiobjective optimization from a learning perspective. In: Mul-
tiobjective Optimization: Interactive and Evolutionary Approaches, pp. 405-433.
Springer-Verlag, Berlin, Heidelberg (2008)

Campigotto, P., Passerini, A.: Adapting to a realistic decision maker: experiments
towards a reactive multi-objective optimizer. In: LION IV: Learning and Intelli-
gent OptimizatioN Conference, Venice, Italy, Jan 18-22, 2010. Lecture Notes in
Computer Science, Springer Verlag (2010, to appear)

Collins, M., Duffy, N.: Convolution kernels for natural language. In: Advances in
Neural Information Processing Systems 14. pp. 625-632. MIT Press (2001)

Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182-197 (2000)

Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Congress on Evolutionary Computation (CEC2002). pp.
825-830 (2002)

Huang, H.Z., Tian, Z.G., Zuo, M.J.: Intelligent interactive multiobjective opti-
mization method and its application to reliability optimization. IITE Transactions
37(11), 983-993 (2005)

Klinkenberg, R., Riiping, S.: Concept drift and the importance of examples. In:
Text Mining Theoretical Aspects and Applications. pp. 55-77. Physica-Verlag
(2002)

Miettinen, K.: Nonlinear Multiobjective Optimization, International Series in Op-
erations Research and Management Science, vol. 12. Kluwer Academic Publishers,
Dordrecht (1999)

Miettinen, K., Ruiz, F., Wierzbicki, A.: Introduction to Multiobjective Optimiza-
tion: Interactive Approaches. In: Multiobjective Optimization: Interactive and Evo-
lutionary Approaches, pp. 27-57. Springer-Verlag Berlin, Heidelberg (2008)
Miettinen, K., Mékela, M.M.: On scalarizing functions in multiobjective optimiza-
tion. OR Spectrum 24, 193-213 (2002)

Schlimmer, J., Granger, R.: Incremental learning from noisy data. Mach. Learn.
1(3), 317-354 (1986)

Sun, M., Stam, A., Steuer, R.: Solving multiple objective programming problems
using feed-forward artificial neural networks: the interactive ffann procedure. Man-
age. Sci. 42(6), 835-849 (1996)

Sun, M., Stam, A., Steuer, R.: Interactive multiple objective programming using
tchebycheff programs and artificial neural networks. Comput. Oper. Res. 27(7-8),
601-620 (2000)

Zliobaité, I.: Learning under concept drift: an overview. Tech. rep., Vilnius Uni-
versity, Faculty of Mathematics and Informatics (2009)

