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Abstract. Layout synthesis refers to the problem of arranging objects
subject to design preferences and structural constraints. Applications in-
clude furniture arrangement, space partitioning (e.g. subdividing a house
into rooms), urban planning, and other design tasks. Computer-aided
support systems are essential tools for architects and designers to pro-
duce custom, functional layouts. Existing systems, however, do not learn
the designer’s preferences, and therefore fail to generalize across sessions
or instances. We propose addressing layout synthesis by casting it as
a constructive preference elicitation task. Our solution employs a coac-
tive interaction protocol, whereby the system and the designer interact
by mutually improving each other’s proposals. The system iteratively
recommends layouts to the user, and learns the user’s preferences by ob-
serving her improvements to the recommendations. We apply our system
to two design tasks, furniture arrangement and space partitioning, and
report promising quantitative and qualitative results on both.

Keywords: Constructive Learning, Preference Elicitation, Layout Syn-
thesis, Furniture Arrangement, Space Partitioning.

1 Introduction

Layout synthesis refers to the problem of arranging objects in accordance to de-
sign preferences and hard constraints. It encompasses tasks like arranging furni-
ture within a room [32, 8, 31], planning entire floors [16], and designing block- or
city-sized urban spaces [19]. The constraints are meant to encode functional and
structural requirements, as well as any applicable human design guideline [18, 3]
(visibility, accessibility, etc.). In this paper we focus on the challenging problem
of synthesizing layouts customized for a particular user.

Striking the right balance between personal taste and hard requirements is
notoriously difficult. For instance, an apartment may be furnished in a minimalist
or industrial style depending on the owner’s preferences. But when furnishing it,
the tenants, who often have no knowledge of interior design principles, proceed
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intuitively, producing layouts that are not entirely functional or do not “look
or feel right” [32]. Even experienced designers often rely on trial-and-error [32,
14]. Understendably, the more complex the constraints (regulatory and design
guidelines, engineering requirements), the harder it is for the user to produce
a functional design that she actually enjoys. Layout synthesis tools assist both
expert and amateur designers in this endeavor, enhancing productivity and out-
come quality.

Now, consider a customer wishing to buy an apartment from a set of alter-
natives. To evaluate a candidate, she could use a layout synthesis tool to “fill
in” the missing furniture according to her taste. Existing tools assist the user
in this task [14, 13]. However, they do not explicitly learn the user’s preferences,
and thus can not generalize across synthesis instances or design sessions. This
implies that, in order to compare the alternative flats, the customer would have
to furnish every one of them individually, a tedious and time consuming activ-
ity. In stark constrast, a tool capable of interactively learning her preferences
could automatically furnish any flat based on the preferences estimated on the
previous ones. To the best of our knowledge, this challenging learning problem
has not been considered before.

Building on recent work on constructive learning [27, 26], we propose a con-
structive preference elicitation approach to synthesizing custom layouts. Our
method leverages Coactive Learning [24], a framework for interactive preference
learning from manipulative interaction intended specifically for structured do-
mains. As in previous work [14, 13], our interaction protocol involves iteratively
presenting high-scoring recommendations to the user, and then asking the lat-
ter to improve them. The user is free to perform small, large, or even multiple
adjustments at each round. The algorithm automatically acquires a preference
estimate from the observed improvements.

In our approach, layouts are represented as ensembles of components whose
properties (position, size, etc.) determine the feasible space of candidates. The
salient properties of the layouts are captured by features of its components
(rooms, furniture) and their arrangement (e.g. the maximal distance between
the bedrooms and the bathroom), whose weight is learned during the interac-
tion process. In contrast to standard preference elicitation [20], where the set of
alternatives can be easily searched over (e.g. looking up a movie in a catalogue),
in layout synthesis the number of possible arrangements is large or infinite. For
this reason, synthesizing a layout to be recommended to the user requires full-
fledged mathematical optimization [16]. Borrowing from previous work [16, 26],
we cast this synthesis step as a constrained combinatorial optimization problem,
which can be readily handled by off-the-shelf solvers.

We apply the proposed method to two tasks: arranging furniture in a room
and planning the layout of an apartment. In the first case, the user can interac-
tively adjust the values of features of interest (e.g. the average distance between
tables in a cafè), while in the second the user modifies the layout directly by,
for instance, moving or removing walls. We empirically evaluate our algorithm
on instances of increasing complexity in terms of recommendation quality and
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computational cost, showing that it can effectively learn the user’s preferences
and recommend better layouts over time. We also apply it to larger synthesis
instances and show how to tame the runtime of the synthesis step by employing
approximation techniques. Our results show that, even in this case, the algorithm
can reliably learn the user’s preferences with only a minor loss in recommenda-
tion quality. Finally, we also positively evaluate the ability of the algorithm to
deal with users with very different preferences and learn how to generate layouts
that suit their taste.

2 Related work

Synthesizing a custom layout requires to solve two problems: generating a layout
consistent with the known requirements and preferences (synthesis), and biasing
the synthesis process toward layouts preferred by the user (customization).

Broadly speaking, synthesis can be solved in two ways. One is to design a
parameterized distribution over layouts (e.g. a probabilistic graphical model [31]
or a probabilistic grammar [11]), whose structure encodes the set of validity
constraints on objects and arrangements. Synthesis equates to sampling from
the distribution via MCMC. A major downside of probabilistic approaches is
that enforcing hard constraints (other than those implied by the structure of the
distribution) may severely degrade the performance of the sampler, potentially
compromising convergence, as discussed for instance in [27].

An alternative strategy, adopted by our method, is to define a scoring func-
tion that ranks candidate layouts based on the arrangement of their constituents.
In this case, synthesis amounts to finding a high-scoring layout subject to de-
sign and feasibility constraints. This optimization problem may be solved using
stochastic local search [32, 1], mathematical optimization [14], or constraint pro-
gramming [16]. We opted for the latter: constraint programming [22] allows to
easily encode expressive local and global constraints, and is supported by many
efficient off-the-shelf solvers. Further, in many cases it is easy to instruct the
solver to look for (reasonably) sub-optimal solutions, allowing to trade-off so-
lution quality for runtime, for enhanced scalability. This synergizes with our
learning method, which is robust against approximations, both theoretically [23]
and experimentally (see Section 4).

Many of the existing tools are concerned with synthesis only, and do not
include a customization step: their main goal is to automate procedural gener-
ation of realistic-looking scenes or to produce concrete examples for simplifying
requirement acquisition from customers [30]. Other approaches bias the under-
lying model (distribution or scoring function) toward “good” layouts by fitting
it on sensibly furnished examples [31, 13, 32]. However, the generated configu-
rations are not customized for the target user1. More generally, offline model

1 While the examples may be provided by the end user, it is unreasonable to expect
the latter to manually select the large number of examples required for fine-grained
model estimation. Through interaction, our system allows a more direct control over
the end result.
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estimation may be used in conjunction with our method to accelerate layout
fine-tuning for the end user. We will explore this possibility in a future work.

Akase and colleagues proposed two interactive methods based on iterative
evolutionary optimization [1, 2]. Upon seeing a candidate furniture arrangement,
the user can tweak the fitness function either directly using sliders [1] or indi-
rectly via conjoint analysis [2]. In both works the number of customizable param-
eters is small and not directly related to the scene composition (e.g. illumination,
furniture crowdedness). Contrary to these methods, we enable the user to graph-
ically or physically manipulate a proposed layout to produce an improved one.
This kind of interaction was successfully employed by a number of systems [28,
14, 13] using ideas from direct manipulation interfaces [25, 10]. We stress that
our method works even if user improvements are small, as shown by our em-
pirical tests. The major difference to the work of Akase et al., however, is that
we leverage constraint programming rather than generic evolutionary optimiza-
tion algorithms. This enables our method naturally handle arbitrary feasibility
constraints on the synthesized layouts, extending its applicability to a variety of
layout synthesis settings.

Among interactive methods, the one of Merrell et al. [13] is the closest to
ours. Both methods rely on a scoring function, and both require the user and
system to interact by suggesting modifications to each other. In contrast to our
approach, the method of Merrel et al. does not learn the scoring function in
response to the user suggestions, i.e., it will always suggest configurations in line
with fixed design guidelines. Since no user model is learned, this method does
not allow to transfer information across distinct design session.

3 Coactive Learning for Automated Layout Synthesis

In this section we frame custom layout synthesis as a constructive preference
elicitation task. In constructive preference elicitation [7], the candidate objects
are complex configurations composed of multiple components and subject to
feasibility constraints. Choosing a recommendation amounts to synthesizing a
novel configuration that suits the user’s preferences and satisfies all the feasibility
constraints. In this setting, learning can be cast as an interactive structured-
output prediction problem [4]. The goal of the system is to learn a utility function
u over objects y that mimics the user’s preferences. The higher the utility, the
better the object. In layout synthesis, the objects y may represent, for instance,
the positions of all furniture pieces in a given room or the positions and shapes of
all rooms on a given floor. The utility can optionally depend on extra contextual
information x, e.g., the size and shape of the target apartment. More formally, the
utility is a function u : X×Y → R, where X and Y are the sets of all the contexts
and objects respectively. Typically, the utility is assumed to be a linear model
of the type: u(x, y) = 〈w,φ(x, y)〉. Here the feature function φ : X × Y → Rd

maps an object to a vector of d features summarizing its high-level properties.
For instance, in furniture arrangement the features might capture the maximum
distance of the furniture pieces from the walls or the minimum distance between
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1 Procedure PreferencePerceptron(T)
2 Initialize w1

3 for t = 1, . . . , T do
4 Receive user context xt

5 yt ← argmaxy∈Y 〈wt,φ(xt, y)〉
6 Receive improvement ȳt from the user
7 wt+1 ← wt + φ(xt, ȳt)− φ(xt, yt)

8 end

9 end

Algorithm 1: The Preference Perceptron from Coactive Learning [24].

each other. The weights w ∈ Rd associated to the features represent the user
preferences and are estimated by interacting with the user.

In our approach, the learning step is based on Coactive Learning [24], whereby
the system iteratively proposes recommendations y to the user and the user
returns an improvement ȳ, i.e. a new object with a (even slightly) higher utility
than y. Using this information, the algorithm updates the current estimate of
the parameters w in order to make better recommendations in the future.

Perhaps the simplest, yet effective, Coactive Learning algorithm is the Pref-
erence Perceptron [24], listed in Algorithm 1. The algorithm iteratively elic-
its the user preferences by making recommendations and getting user feed-
back in response. Across the iterations t ∈ [1, T ], the algorithm keeps an es-
timate of the parameters wt which are continuously updated as new feedback
is observed. At each iteration t, the algorithm first receives the context xt
and then produces a new object yt by maximizing the current utility estimate
yt = argmaxy∈Y ut(xt, y) = 〈wt,φ(xt, y)〉 (line 5). The object yt is recommended
to the user, who then provides an improvement ȳt. Lastly, the algorithm obtains
a new parameter vector wt+1 using a simple perceptron update (line 7).

Depending on the type of objects y ∈ Y, inference (line 5) may be solved
in different ways. In layout synthesis, the objects y ∈ Y are sets of variable
assignments representing the components of the layouts. For instance, in fur-
niture arrangement y may contain the position of each piece of furniture, its
size, type, color, and so on. The space of potential configurations (i.e. possi-
ble assignments of attributes) is combinatorial or even infinite (for continuous
variables) in the number of attributes. The space Y is also typically restricted
by feasibility constraints, enforcing functional and structural requirements, e.g.
non-overlap between furniture pieces. In this setting, the inference problem can
be formalized in the general case as a mixed integer program (MIP). In practice,
to make inference computationally feasible, we often restrict it to the mixed
integer linear program (MILP) case by imposing that constraints and features
be linear in y. Exploring in which cases more general constrained optimization
problems (e.g. mixed integer quadratic programs) are computationally feasible
is an interesting future direction (as outlined in the Conclusion). While being
NP-hard in the general case, MILP problems with hundreds of variables can be
quickly solved to optimality by existing off-the-shelf solvers. For problems that
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Fig. 1. Illustration of feature- and object-level improvements. Left: recommended con-
figuration. Right: corresponding user-provided improvement. The two top images il-
lustrate a feature-level improvement where the user increased the minimum distance
between tables (a feature) directly, affecting all tables. The bottom images show an
object-level improvement where the user modified the object itself by adding a new
wall. Best viewed in color.

are too complex for exact solution strategies, approximation techniques can be
used to speed-up the inference process. Reasonably sub-optimal synthesized lay-
outs do not significantly alter the performance of Coactive Learning, as proven
theoretically in [21] and shown empirically by our experiments.

The Coactive Learning paradigm can be seen as a cooperation between the
learning system and the user to mutually improve each other’s design proposals.
This is particularly appealing for devising a layout synthesis system, since coac-
tive feedback may be acquired through visual or physical manipulation of the
recommended objects (see e.g. [28, 14, 13]). Such a system could be integrated
into graphical design applications and used by architects and designers to au-
tomatically improve their products. Depending on the type and complexity of
the design task, a visual layout recommendation system may also be used by an
amateur designer.

4 Experiments

In this section we evaluate the proposed system on two layout synthesis ap-
plications. The first is a furniture arrangement problem in which the system
recommends arrangements of tables in a room, for furnishing, e.g., bars versus
offices. The second is a space partitioning problem in which the system suggests
how to partition the area of an apartment into rooms. In our empirical analysis,
we [i] perform a quantitative evaluation of the system’s ability to learn the user
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preferences, with an emphasis on the trade-off between exact and approximate
synthesis; and [ii] perform a qualitative evaluation by illustrating the layouts
recommended at different stages of the learning process.

In our experiments we simulate a user’s behavior according to standard feed-
back models [24]. Namely, we assume that the user judges objects according to
her own true utility2 u∗(x, y) = 〈w∗,φ(x, y)〉, and measure the quality of rec-
ommendations by their regret. The regret at iteration t is simply the difference
between the true utility of the best possible object and that of the actual rec-
ommendation yt, that is, REG(xt, yt) = (maxy∈Y u

∗(xt, y)) − u∗(xt, yt). Since
varying contexts makes comparing regrets at different iterations impossible [24],

in the experiments we measure the average regret 1
T

∑T
t=1 REG(xt, yt).

We observe that, very intuitively, good recommendations can’t be improved
by much, while bad recommendations offer ample room for improvement. For
this reason, we assume the user’s feedback to follow the α-informative feedback
model [24], which states that the true utility of ȳt is larger than the true utility
of yt by some fraction α ∈ (0, 1] of the regret REG(xt, yt), that is u∗(xt, ȳt) −
u∗(xt, yt) ≥ αREG(xt, yt). Here α represents the user “expertise”. Higher values
of α imply better improvements and fewer iterations for learning to suggest good
(or optimal) recommendations. Indeed, if α-informative holds the average regret
of the Preference Perceptron decreases at a rate of O(1/(α

√
T )) (see [24]).

Crucially, the α-informative model is very general, since it is always possible
to find an α, no matter how small, that satisfies the feedback model3. In our
experiments we assume that no user expertise is required to interact usefully with
our system, and thus set α = 0.1 to simulate a non-expert user. Furthermore, we
assume that changes made by the user are small, in order to keep her effort to a
minimum. We thus take a conservative approach and simulate the user behavior
by selecting a “minimal” α-informative improvement (more details below).

For both settings, in the quantitative experiment we compare the average
regret of the system on instances of increasing complexity. As the complexity
increases, approximate solutions become necessary for guaranteeing real-time
interaction. We perform approximate synthesis by setting a time cut-off on the
solver and choosing the best solution found in that time. Regret bounds similar
to the aforementioned one can be found also in approximate settings [21]. We
evaluate empirically the effect of using approximate inference on the quality
of the recommendations in both settings. For the quantitative experiments we
simulated 20 users with randomly generated true parameter vectors w∗ and
plotted the median performance.

We consider two types of user improvements, as exemplified in Figure 1.
In the first experiment we use a feature-based improvement, in which a user
may variate the value of a feature (e.g. with a simple set of UI controllers) to
generate a better configuration. In the top example of Figure 1, the user sets

2 Note that the learner can observe the user’s feedback, but has no access to the true
utility itself.

3 Assuming the user makes no mistakes, i.e., u∗(xt, ȳt) > u∗(xt, yt)∀t ∈ [T ]. This
model can be easily extended to allow user mistakes (see [24]).
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the minimum distance between the tables to a higher value. The second type
of improvement considered is an object-based improvement, in which the user
directly shapes the configuration by adding, moving or removing parts. This
is the case of the bottom example of Figure 1, in which the user adds a wall
to create a new room. The details of the user feedback simulation models are
reported in the corresponding subsections. In both experimental settings, we
also report a qualitative evaluation showcasing the behavior of the system in
interacting with some “prototypical” type of user (e.g. a cafè owner arranging
the tables in her place). We show that the system achieves the goal of finding
good configurations matching the user taste.

The system is implemented in Python4 and uses MiniZinc to model the con-
strained optimization problems [17], and an external MILP solver5 for the in-
ference and the improvement problems. All the experiments were run on a 2.8
GHz Intel Xeon CPU with 8 cores and 32 GiB of RAM.

4.1 Furniture arrangement

In the first experimental setting, the goal of the system is to learn to arrange
tables in a room according to the user preferences. Rooms are 2D spaces of
different shapes. We model the rooms as squared bounding boxes, plus several
inaccessible areas making up internal walls. The size of the bounding box and the
inaccessible areas are given in the context x, together with the number of tables
to place. The available space is discretized into unit squares of fixed size. Tables
are rectangles of different shape occupying one or more unit squares. The objects
y consist in the table arrangements in the given room. More precisely, tables are
represented by their bottom-left coordinates (h, v) in the bounding box and
their sizes (dh, dv) in horizontal and vertical directions. The object y contains
the coordinates (ht, vt) and the sizes (dht, dvt) of each table t. Several constraints
are imposed to define the feasible configurations. Tables are constrained to fit all
in the bounding box, to not overlap, and to not be positioned in unfeasible areas.
Tables must keep a minimum “walking” distance between each other. Doors are
also placed on the room walls (in the context) and tables are required to keep a
minimum distance from the doors.

In our experiment the total size of the bounding box is 12 × 12. Tables are
either 1× 1 squares (occupying one unit square) or 1× 2 rectangles (occupying
two unit squares). Room shapes were selected randomly at each iteration from
a pool of five candidates.

The feature vector φ(x, y) is composed of several numeric properties of the
configuration, such as the maximum and minimum distance between tables, the
maximum and minimum distance between tables and walls, and the number of
tables per type (1× 1 and 1× 2). The upper part of Table 1 contains a detailed
summary of the structure of x, y and φ(x, y) in this setting.

4 See https://github.com/unitn-sml/constructive-layout-synthesis for the
complete implementation.

5 Opturion CPX: http://opturion.com
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Furniture arrangement

Context x - Size of bounding box - Position of doors
- Inaccessible areas - Number of tables

Object y - Position (h, v) of all tables - Sizes (dh, dv) of all tables

Features φ(x, y) - Max and min distance of tables from bounding box:
maxt∈Tables bbdist(t); mint∈Tables bbdist(t)

- Max and min distance of tables from inaccessible areas:
maxt∈Tables wdist(t); mint∈Tables wdist(t)

- Max and min distance between tables:
maxt1,t2∈Tables dist(t1, t2); mint1,t2∈Tables dist(t1, t2)

- Number of tables per type (1× 1 and 1× 2):
|{t ∈ Tables | dht +dvt ≤ 2}|; |{t ∈ Tables | dht +dvt ≥ 3}|

Floor planning

Context x - Size of bounding box - Position of entrance door
- Inaccessible areas - Max and min rooms per type

Object y - Position (h, v) of all rooms - Type tr of each room r
- Sizes (dh, dv) of all rooms

Features φ(x, y) - Ranges of occupied space (percent) per room type:
∀t ∈ Types

∑
r∈Rt

Ar ≤ 15%
∀t ∈ Types 15% <

∑
r∈Rt

Ar ≤ 30%
∀t ∈ Types

∑
r∈Rt

Ar > 30%
- Upper bound Dr of difference of sides for each room r:
∀r ∈ Rooms Dr s.t. |dhr − dvr| ≤ Dr

- Number of rooms per type: ∀t ∈ Types |Rt|
- Room with entrance door rdoor is of type t:
∀t ∈ Types t = type(rdoor)

- Sum of pairwise difference of room areas per type:
∀t ∈ Types

∑
i,j∈Rt

|Ai −Aj |
- Number of rooms adjacent to corridors:
|{r ∈ Rooms | ∃s ∈ Rcorridor adj(r, s)}|

- Distance of each room from South (bottom edge):
∀r ∈ Rooms sdist(r)

Table 1. Summary of the structure of the objects in the two experimental settings. In
the furniture arrangement task, Tables is the set of tables, bbdist(t) is the distance of
table t from the bounding box, wdist(t) is the distance of table t from the inaccessible
areas (walls), dist(t1, t2) is distance between tables t1 and t2. In the floor planning
setting, instead, Types is the set of room types, Rooms is the set of rooms, Rt the set
of rooms of type t, Ar the area of room r (number of unit squares), dhr and dvr the
horizontal and vertical size of room r, type(r) the type of room r, adj(r, s) is a boolean
function denoting the adjacency between rooms r and s, sdist(r) is the distance between
r and the south edge of the bounding box. All distances considered here are Manhattan
distances.
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Fig. 2. Median average regret (top) and median cumulative time (bottom) in three
settings. Left to right: furniture arrangement with exact inference on 6, 8 and 10
tables; comparison between exact and approximate inference in furniture arrangement
with 10 tables; exact versus approximate inference on floor planning. Best viewed in
color.

As mentioned, in this setting we employ a feature-based improvement scheme
to simulate the user behavior. In particular, the following constrained problem
is solved to generate an α-informative improvement ȳt:

ȳt = argmin
y∈Y

‖φ(xt, y)− φ(xt, yt)‖0

s.t. u∗(xt, ȳt)− u∗(xt, yt) ≥ α(u∗(xt, y
∗
t )− u∗(xt, yt))

where ‖φ(xt, y)−φ(xt, yt)‖0 is the `0 norm of the difference between the feature
vectors, i.e. the number of different features between φ(xt, y) and φ(xt, yt). This
is in line with the assumption made on the minimal user effort.

In the quantitative evaluation we run the recommendation algorithm for an
increasing number of tables to be placed. A high number of tables makes the
inference problem more complex, as it involves more optimization variables and
constraints. We test the algorithm on problems with 6, 8 and 10 tables. We
compare the average regret and the running time of the system in each of these
scenarios. Figure 2 shows the median results (over all users) on settings with dif-
ferent number of tables. The plots show the median average regret (top) and the
median cumulative inference time (bottom). The first column of Figure 2 shows
the results for the table arrangement task with exact inference on problems with
different numbers of tables. Using exact inference, the difference in regret decay
between different levels of complexity is minimal. This means that when the sys-
tem is able to solve the inference problem to optimality, the complexity of the
problem does not affect much the performance of the system. Inference time,
however, increases drastically with the increasing complexity. Exact inference
in the 10 tables setting is already largely impractical for an interactive system.
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The second column of Figure 2 shows a comparison of the results of exact and
approximate inference on the furniture arrangement setting with 10 tables, for
time cut-offs at 5, 10 and 20 seconds6. When using approximate inference, the
running times drop to a much lower rate, while the regret suffers a slight increase
but keeps decreasing at a similar pace as the exact variant. We can see that the
time cut-off can be modulated to achieve the desired balance between recom-
mendation quality and inference time. This is a promising behaviour suggesting
that the method can scale with the problem size with predictable running time
without compromising performance.

In order to get a visual grasp of the quality of the recommended solutions, we
also evaluated our system on two propotypical arrangement problems, namely
a user interested in furnishing a café and one willling to furnish an office. Cafés
are usually furnished with small tables (1 × 1), positioned along the walls in a
regular fashion. Offices, instead, contain mostly desks (1×2) positioned along the
walls or in rows/columns across the room. We sampled two users according to the
above criteria. Figure 3 showcases the recommendations of the system at different
stages of the learning procedure. Initially, tables are randomly spread across the
room. Gradually, the system learns to position tables in a more meaningful way.
In the case of the café, the intermediate image shows that the algorithm has
learned that a café should have mostly 1×1 tables and that they should be placed
along the walls. For the office, the intermediate figure shows that the algorithm
has roughly figured out the position of tables, but not their correct type. At the
end of the elicitation, the final configurations match the user desiderata.

4.2 Floor planning

Our second experimental setting is on floor planning, that is recommending par-
titionings of apartments into separate rooms. The outer shape of the apartment
is provided by the context, while the user and the system cooperate on the place-
ment of the inner walls defining the room boundaries. As in the previous setting,
the space is discretized into unit squares. Each room is a rectangle described by
four variables: (h, v) indicate its position, (dh, dv) its size. Coordinates and sizes
are measured in unit squares. Rooms must fit in the apartment and must not
overlap. Rooms can be of one among five types, namely kitchen, living room,
bedroom, bathroom and corridor. In the context, the user can also specify an
upper and lower bound on the number of rooms of each type. For instance, a
user may look for an apartment with exactly one kitchen, one living room, and
between one and two bathrooms and bedrooms. After placing all the rooms, the
spaces left in the apartment are considered corridors. The context also specifies
the position of the entrance door to the apartment.

In this experiment we consider a 10×10 bounding box. We define five different
apartment shapes and generate random contexts with any combination of room
types, summing to a maximum of five rooms, with random lower bounds.

6 The time cut-off is on the solver time, but the actual inference time has some more
computational overhead, taking on average 2.21 seconds more.
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Café

Initial Intermediate Final

Office

Initial Intermediate Final

Fig. 3. Two use cases of our system. The images are 3D renderings of configurations
recommended by our system when interacting with users whose goal is to furnish a
café (top) and an office (bottom). Horizontally, the figures show different stages of
the elicitation process. In the café, 1 × 1 and 1 × 2 tables are seen as dining tables
of different sizes, whereas in the office 1 × 2 tables represent desks while 1 × 1 tables
contain utilities such as printers. Best viewed in colors.

While the number of generated rooms is variable, we impose a maximum. The
dimension of feature vector φ(x, y) depends on the maximum number of rooms,
hence it must be fixed in advance and cannot change throughout the iterations.
Features are normalized in order to generalize different contexts and different
numbers of rooms. The features include: [i] the percentage of space occupied by
the rooms of each type, discretized in several ranges of values, each denoting
a certain target size for each room type; [ii] an upper-bound on the difference
between the sides dhr and dvr of each room r, which is used to modulate how
“squared” the room should be; [iii] the actual number of rooms per type; [iv]
a boolean value for each room type indicating whether the entrance door is in
a room of that type; [v] the sum of the pairwise difference between the areas
of rooms of the same type, to modulate how similar in size rooms of a certain
type should be; [vi] the number of rooms that are adjacent to corridors; [vii] the
distance of each room from the south border of the apartment, as living rooms
are usually made to look south and bedrooms look north for lighting purposes.
A summary of all the features of this setting is listed in the lower part of Table 1.
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Flat

Initial Intermediate Final

Loft

Initial Intermediate Final

Fig. 4. Two use cases of our system for the task of floor planning. The images are 3D
renderings of configurations recommended by our system when interacting with users
whose goal is to build a flat (top) and an loft (bottom). Horizontally, the figures show
different stages of the elicitation process. Room colors are associated to room types: the
kitchen is in red, the living room is in blue, the bathroom is in turquoise, the bedroom
in green, the corridor is in violet. Best viewed in colors.

Differently from the previous setting, here we employ an object-based im-
provement schema. We simulate the user feedback by solving the following op-
timization problem:

ȳt = argmin
y∈Y

‖Uy − Uyt‖0

s.t. u∗(xt, ȳt) ≥ u∗(xt, yt) + α(u∗(xt, y
∗
t )− u∗(xt, yt))

where Uy is the matrix 10 × 10 containing the room types per unit square. We
assume a user to perform a change that involves as least rooms as possible and
we simulate this behavior by minimizing the number of unit squares affected by
the improvement. This is done to simulate a minimal effort for the user.

In this case, the problem complexity is mainly given by the maximum number
of rooms to be placed in the apartment. Notice that this problem is more diffi-
cult than the previous one, as it has more optimization variables, more features
and it has to learn from a more diverse set of possible contexts. We evaluate
this setting only on a scenario with a maximum of five rooms. As in the pre-
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vious experiment, we report a comparison of the results of exact inference and
approximate inference. We again run approximate inference with time cut-offs
at 5, 10, and 20 seconds. The last column of Figure 2 shows the median average
regret and the median cumulative inference time in this setting. Both regret and
times follow the same trend as the ones in the previous experiment. Approx-
imate inference allows for substantial computational savings7 at the cost of a
small reduction in recommendation quality.

In the qualitative experiment we compare two users who are interested in
different kinds of apartments. In the first case, the user is interested in a “tradi-
tional” apartment (here dubbed “flat” to avoid ambiguities), which contains a
corridor from the entrance door to the rooms, two separate rooms for the kitchen
and living room, with the former slightly smaller that the latter, a bedroom and
a bathroom. The second user is interested in a loft, which is composed by fewer
rooms, usually a big living room with a kitchenette, a bedroom and a bathroom.
In Figure 4 we can see different stages of the learning process for both users. At
the beginning the recommended configurations are random. The system then is
able to learn that a flat should have a corridor as entrance and a smaller bath-
room, and that a loft should have only a moderately large living room plus a
bedroom and a bathroom of approximately equal size. Finally the system reaches
good recommendations that meet the preferences of the users: an apartment with
a a kitchen smaller than the living room and a corridor connecting rooms, and
a loft with a big living room, a bedroom and a small bathroom.

5 Conclusion

We presented an approach to layout synthesis suitable for suggesting layouts
customized for a particular user. We cast layout synthesis as a constructive
preference elicitation problem, where the set of potential arrangements is deter-
mined by hard constraints encoding the functional and structural requirements.
Contrary to previous solutions, our approach learns the user’s preferences and
thus generalizes across synthesis instances and design sessions. Our interactive
learning strategy pairs a very natural interactive protocol based on direct manip-
ulation with a simple but principled learning framework for manipulative feed-
back [24]. We applied our system to two design tasks, namely furniture arrange-
ment and floor planning, and evaluated it on instances of increasing complexity.
The results show that our approach can reliably learn the user’s preferences even
when synthesis is (moderately) sub-optimal, for improved scalability, at the cost
of a minor degradation of recommendation quality. We showcased the flexibilty
of our system by learning from users with radically different preferences, e.g.,
users that prefer lofts to highly partitioned apartments and vice-versa.

This work can be extended in several directions. First, it makes sense to bias
the learner toward “known working” layouts, as done in [31, 13, 32], to acceler-
ate convergence towards promising candidates and reduce the amount of user

7 Exact inference becomes impractical for more that five rooms.



Automating layout synthesis with constructive preference elicitation 15

intervention. Second, although our presentation focuses on linear constraints and
features (which yield a MILP synthesis problem) our learning procedure is not re-
stricted to this setup. As solver technology for mixed integer quadratic problems
matures8, it becomes progressively more viable to employ non-linear terms to
model even richer layout properties, such as surface areas, Euclidean distances,
and variances. The increased computational requirements could be handled with
appropriate quality-runtime trade-offs, as done in our experiments. Third, de-
composition strategies like those presented in [6] offer a promising direction for
aggressively reducing the cognitive and computational costs of layout synthe-
sis. This is especially fitting for inherently modular layouts such as buildings,
which can be decomposed into progressively simpler parts (floors, rooms, etc.).
This would also facilitate the introduction of more computationally demanding
features, as hinted to above, by restricting inference to portions of layouts. We
are actively investigating these research directions. Finally, the proposed method
can in principle be employed to automate tasks other than layout synthesis, like
environmental [12] and chemical engineering [29] and synthetic biology [9].
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