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Abstract

We introduce and study knowledge drift (KD), a special form of concept drift that
occurs in hierarchical classification. Under KD the vocabulary of concepts, their indi-
vidual distributions, and the is-a relations between them can all change over time. The
main challenge is that, since the ground-truth concept hierarchy is unobserved, it is
hard to tell apart different forms of KD. For instance, the introduction of a new is-a
relation between two concepts might be confused with changes to those individual
concepts, but it is far from equivalent. Failure to identify the right kind of KD com-
promises the concept hierarchy used by the classifier, leading to systematic prediction
errors. Our key observation is that in human-in-the-loop applications like smart per-
sonal assistants the user knows what kind of drift occurred recently, if any. Motivated
by this observation, we introduce TRCKD, a novel approach that combines two aufo-
mated stages—drift detection and adaptation—with a new interactive disambiguation
stage in which the user is asked to refine the machine’s understanding of recently
detected KD. In addition, TRCKD implements a simple but effective knowledge-aware
adaptation strategy. Our simulations show that, when the structure of the concept hier-
archy drifts, a handful of queries to the user are often enough to substantially improve
prediction performance on both synthetic and realistic data.
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1 Introduction

We are concerned with human-in-the-loop applications of hierarchical classification.
Our main interest lies in smart personal assistants (PAs) that must infer the location
or social context of their user from sensor data (e.g., GPS, nearby Bluetooth devices)
under the constraint that the hierarchy of relevant places and people changes over
time (Giunchiglia et al. 2017). In these applications, the concept hierarchy embedded
into the predictor can become obsolete and has to be continually re-aligned (Stojanovic
et al. 2002).

We refer to this as knowledge drift (KD). KD is a complex phenomenon: concepts
and is-a relations between them may appear, disappear, and change. The main chal-
lenge is distinguishing between different kinds of KD and especially between changes
to the data distribution and to the concept hierarchy. Existing approaches to concept
drift make no attempt at understanding whether shifts in the observed correlations
between concepts are due to changes to the hierarchy (like adding an is-a relation) or
not (Gama et al. 2014). These leave similar footprints on the data, but confusing one
for the other—and confusing different kinds of KD—entails acquiring spurious is-a
relations or neglecting changes to the hierarchy, leading to systematic mis-predictions
on future instances.

Our key observation is that, in our human-in-the-loop setting, an expert user can
identify with little effort what kind of drift occurred, if any. Several examples are
given below. Motivated by this observation, we design TRCKD (TRaCking Knowl-
edge Drift), an approach that tackles KD by combining automated drift detection and
adaptation with a novel, inferactive drift disambiguation step. In particular, TRCKD
maintains two windows of examples for each concept—one holds old data points and
the other the most recent ones—and it detects KD by checking whether the distribu-
tion of current and past examples have diverged in distribution. The two empirical
distributions are compared using the maximum mean discrepancy (MMD), a flexible
and efficient kernel-based divergence (Gretton et al. 2012). Whenever it detects KD,
TRCKD guesses what kind of KD occurred using a simple heuristic and presents this
initial description to a knowledgeable human supervisor. The latter is then tasked with
either confirming the machine’s description or improving it, if necessary, according
to her own understanding. Finally, in order to adapt the model to the different kinds
of KD, TRCKD implements a simple but effective knowledge-aware adaptation strat-
egy that we ground on top of kKNN-based multi-label classifiers (Spyromitros-Xioufis
etal. 2011). Our experiments show that, when changes to the structure of the concept
hierarchy occur, interactive drift disambiguation and knowledge-aware adaptation are
key for good performance under KD, and that asking a handful of queries to the user
is often enough to achieve substantial performance improvements.

Summarizing, we:

1. Identify knowledge drift as a special kind of concept drift.
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2. Introduce the related issue of drift disambiguation and identify interaction with an
expert user as a natural solution.

3. Design TRCKD, an approach for handling KD that combines automated detection
and adaptation with interactive disambiguation, and instantiate it on top of kNN-
based classifiers by implementing a knowledge-aware adaptation strategy.

4. Compare empirically TRCKD with state-of-the-art competitors on three representa-
tive data sets.

The remainder of this paper is structured as follows. In the next Section we introduce
our problem setting and define different forms of KD. Next, in Sect. 3 we present
TRCKD and detail its three stages: automatic detection, interactive disambiguation,
and knowledge-aware adaptation. Then, we evaluate TRCKD on three challenging data
sets in Sect. 4. In Sect. 5 we position our contribution with respect to the existing
literature and conclude with some final remarks and a brief discussion of promising
research directions.

2 Hierarchical classification and knowledge drift

We consider learning tasks in which each instance x belongs to one or more concepts
(classes) organized in a ground-truth hierarchy H = (C, I), a directed acyclic graph
in which nodes C = {1, ..., c} index concepts and edges I € C x C encode is-a
relations. Instances are labeled by indicator vectors y € {0, 1}¢, whose i-th element
y' is 1 if x belongs to the i-th concept in H and 0 otherwise.

During operation, the machine receives a stream of examples z;, = (x;, y,) drawn
from a ground-truth distribution P;(X,Y) that is consistent with a corresponding
ground-truth hierarchy H;. In other words, if H; asserts that concept j is-a specializa-
tion of concept i, then the probability P; (X, y) of all labels y that violate this relation
(.e., yf = land y* = 0), is zero. The goal is to learn a predictor P; (as well as a hierar-
chy Hjy consistent with it) that outputs high-quality predictions on future instances.' It
goes without saying that, in order to avoid systematic prediction mistakes, the acquired
hierarchy H, must closely resemble the ground-truth H;.

Example 1 Ann’s PA receives observations x (like GPS coordinates, nearby Bluetooth
devices) and uses them to predict that “Ann is studying at the library with Bob™:
“Studying”, “Library”, and “Bob” are concepts and the hierarchy states, among other
things, that “Bob” is-a “Friend” of Ann’s and a “Person”.

What makes our setting challenging is that the (unobserved) ground-truth concept
hierarchy H; and data distribution P; can both unexpectedly and frequently change
overtimetr =1,2,....

Approaches for dealing with concept drift do not capture this scenario. Indeed,
regular concept drift is restricted to distribution shift, in which the prior distribution
P;(X) changes, and individual or multi-label concept drift, in which the conditional
distribution P;(Y; | X) of one or more concepts changes (Gama et al. 2014; Zheng

1 We assume y to be given for ease of exposition. In practical applications where y is not given, it can be
acquired using an active learning step.
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Fig. 1 Left: Decision surface and hierarchy of a classifier for Ann’s social context and five concepts:
“Person”, “Boss”, “Subordinate”, “Dave”, and “Farl”. Middle: Individual Concept Drift: Dave moves to
a different office, so the decision surface changes but the hierarchy remains the same. Right: Knowledge
Drift: Ann is promoted, “Dave” is now her subordinate. If the classifier knows that the hierarchy changed,
it can transfer examples from “Dave” to “Subordinate”, quickly improving its performance

etal. 2019), but the concepts themselves are not mutually constrained by a ground-truth
hierarchy.

Example 2 During the semester, Ann spends most of her time studying at the library.
Once the finals are over, Ann stops going to the library as often, and when she goes there
she is less likely to be studying. This affects both the distribution of GPS coordinates
and the conditional distribution of activities given GPS coordinates.

In stark contrast, changes to the hierarchy H; give rise to knowledge drift (KD),
a special form of drift in which changes to the distribution are specifically due to
changes to the hierarchy, cf. Fig. 1. KD combines four types of atomic changes:
concept addition and removal, which refer to the appearance of new concepts and
the phasing out of obsolete concepts in C;, respectively, and relation addition and
removal, which refer to changes in the edges I; themselves.

Example 3 While concepts like “Friend” are immutable, the specific friends that matter
to Ann (which are also concepts) change over time, e.g., if Ann moves abroad. For
instance, if Ann buys a vacation home, a new concept “Ann’s vacation home” appears
in the ground-truth hierarchy (concept addition). Conversely, if Ann’s vacation home
is sold, the corresponding concept is no longer meaningful and disappears (concept
removal). If Ann receives a promotion and her old boss Dave becomes her subordinate,
then “Dave” moves from being a child of “Boss” (relation removal) to being a child
of “Subordinate” (relation addition).

Now, handling regular concept drift requires to detect changes in the data and
adapt the model accordingly (Gama et al. 2014). KD, on the other hand, requires an
additional step, namely to understand what concepts and relations in the hierarchy
H; were affected, if any. This drift disambiguation step is crucial for preventing the
estimated hierarchy H, from getting misaligned, which could in turn lead to systematic,
cascading prediction errors. It is also very challenging.

To see this, consider relation addition (RA). Like all forms of KD, RA can only
be identified by its effects on the data, and specifically from the correlation between
the concepts that it entails. However, correlations can exist and vary independently of
the hierarchy. For instance, if Ann is visiting a branch of her company in another city,
she could be taken out for lunch and dinner by Mary, the branch manager. Data could
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thus suggest a correlation between the concepts “Mary” and “Friend”. Once Ann gets
back home, she no longer hangs out with Mary, and the correlation drops dramatically.
Since the machine has no sure way of telling apart RA from regular concept drift, it
might wrongly add a spurious relation to its concept hierarchy—a mistake that takes
plenty of examples to correct.

Similarly, concept removal (CR) implies not only that a concept i cannot occur (and
should not be predicted) ever again, but also that its children are not longer attached
to it. Treating CR as concept drift means that i) the conditional distribution P;(Y; | X)
is not constrained to zero, and that ii) the deleted concept might be predicted when
one of its children is.> Naturally, multiple atomic changes can occur simultaneously,
further complicating drift disambiguation.

3 Handling knowledge drift with TRCKD

Our key observation is that in many human-in-the-loop scenarios the user can naturally
disambiguate between different types of KD. In our running example, for instance, Ann
is perfectly aware that her vacation home has been recently sold, that Dave is now her
subordinate and that Mary is a colleague and not a friend. It is therefore sensible to
partially offload drift disambiguation to the user.

Motivated by this insight, we introduce TRCKD, a kNN-based approach for human-
in-the-loop hierarchical classification under KD that combines automated detection
and adaptation with a new, interactive drift disambiguation stage. Owing to their flexi-
bility, KkNN-based approaches are a popular choice for learning under drift (Gama et al.
2014) and achieve considerable performance in non-trivial learning tasks (Roseberry
et al. 2019).3 Our work builds on MW-kNN (Spyromitros-Xioufis et al. 2011), an
kNN-based approach to multi-class classification under drift that adapts to change by
passively forgetting old, potentially obsolete examples. TRCKD upgrades MW-ANN
from multi-class to hierarchical classification and additionally integrates a sliding-
window approach (Kifer et al. 2004) for drift detection. Moreover, TRCKD introduces
a simple but effective knowledge-aware adaptation strategy specifically tailored for
kNN-based classifiers (and that generalizes to other instance-based predictors).

The pseudo-code of TRCKD is listed in Algorithm 1. The algorithm takes a data
set S and a concept hierarchy Hj consistent with it and uses them to train an initial
classifier. Then, in each iteration + = 1,2, ... the machine receives a new example
z, = (X;,y,;) and performs three steps: (1) It detects whether KD occurred, (2) It
cooperates with the user to determine what concepts and relations were affected by
KD, and (3) It adapts the classifier and the machine’s hierarchy accordingly. We discuss
these three steps in turn.

2 The only “easy” case is concept addition, which is straightforward in our fully labeled setting and will
not be considered further.

3 While the ideas behind TRCKD do carry over to other models, a proper assessment using non-kNN
architectures is outside of scope for this paper and left to future work.
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Algorithm 1 The TRCKD algorithm. Inputs: initial data set S| and hierarchy Hy, s :=
|S1], window size w, threshold t, empirical estimator MMD; zﬁ = (xq, ylf).

1: Fit initial classifier on S; and Hj, 1:11 <~ Hj
2: for every concepti in H| do

3 Wiy {22

4: end for

5:fort=1,2,...do

6:  Receive new example z;

7. for every concept i in Hy do )

8: War < {zg_H, va+t—1’ e, Zé--o—z—w}
9: endfor )

10:  if 3i : MMD(W{,,, W(’)ld) > 7 then
11: Tllustrate detected KD to the user

12: Adapt based on user’s KD description
13:  endif

14: end for

3.1 Step 1: detection

For every concept i in H;, TRCKD maintains two windows of examples: Wi, holds the

w most recent examples and is updated in each iteration, while Wél 4 holds w reference
(past) examples.* Predictions for concept i are obtained by applying kNN to Wi,
TRCKD detects drift by looking for changes in distribution between the recent and
past windows of each concept. To this end, it employs the maximum mean discrepancy
(MMD), adiscrepancy employed in hypothesis testing (Gretton et al. 2012) and domain
adaptation (Zhang et al. 2013). Let P and Q be distributions over some space X and
k : X x X — R a user-defined kernel. Then the MMD between P and Q relative to

k is given by
MMD(P, 0)* = E[k(a, a')] — 2E[k(a, b)] + E[k(b, b)], 1)

where a, a’ are drawn i.i.d. from P and b, b’ from Q. Estimating the MMD between
W.1q and W, requires to define a kernel between examples z. TRCKD achieves this
by defining two separate kernels over instances and labels kx and ky and then taking

their tensor product, i.e.,
k(z,2') = k((x, y), (X', ) = kx(x,x) - ky (y, y). 2)

In our experiments, we employ a Gaussian kernel kx for the instances and a delta
kernel ky (y, y') = 1{y = y'} for the labels.

The MMD is well-behaved, in the sense thatif P = Q then MMD(P, Q) = Oand if
k is characteristic, the converse also holds (Szabé and Sriperumbudur 2017). However,
unlike other well-behaved alternatives—for instance the total variation distance, the A-
distance (Kifer et al. 2004), and the mutual information (Pérez-Cruz 2009)—the MMD
can be estimated efficiently (in linear time) even for high-dimensional data (Gretton

4 TRCKD reserves 1 /3 of each window to positive examples to account for class imbalance (Spyromitros-
Xioufis et al. 2011).
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etal. 2012). In addition, the MMD allows to select concrete examples (witness points)
that illustrate the difference between the two distributions, simplifying the interaction
with the user (Lloyd and Ghahramani 2015). It also performs well empirically: in our
experiments, the MMD achieved a better false detection rate than ME (Jitkrittum et al.
2016), a state-of-the-art discrepancy with better discrimination power on paper.

3.2 Step 2: disambiguation

Upon detecting drift, TRCKD initiates interaction with the user by presenting a visu-
alization of the detected KD and asking the user to verify and potentially improve a
description of the detected KD.

If the KD detected by the machine identifies the right concepts—which should
typically be if the drift detector is tuned well—then the user’s jobs is to tell the
machine whether the relations between the highlighted concepts have undergone drift
and how. To this end, the user can modify the visualization by selecting or deselecting
highlighted concepts and is-a edges. As long as the user is expert enough, she is likely
to improve the machine’s guess. A sufficiently motivated and knowledgeable user has
also the option of editing any drifting concepts or relations that were not detected by
the machine, providing even more guidance. Notice that even partial improvements
to the detected KD are likely to improve future predictive performance and are in any
case better than no adaptation and fully automated disambiguation.’

Extra context can be supplied to the user by presenting a handful of examples that
summarize how the concepts affected by KD have changed. Such examples can be
selected from the past and current windows of those concepts using MMD witness
functions (Lloyd and Ghahramani 2015).

3.3 Step 3: adaptation

Once it receives the user’s drift description, TRCKD adapts the machine’s hierarchy
and the windows accordingly. Here we present a simple knowledge-aware adaptation
strategy for kNN-based approaches. In particular:

e For every instance of individual concept drift in the description, it transfers the
contents of the current window of the affected concept to the past window and
keeps only the u most recent examples in the former, i.e.:

i i i i i i
old <= Wcur’ Wcur <~ {Zs+t’ Lyt 15> Zs+t—u} (3)

where u is a user-provided hyperparameter. All examples are not longer used for
the classification task except for the most recent ones, which are likely drawn from
the post-drift distribution and thus kept to facilitate recovery.

5 The assumption is that the user is expert enough and therefore does not inject a lot of noise into the loop.
This is a reasonable assumption to make applications like smart personal assistants.
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e For concept removal, the past and current windows of the affected concept are
deleted, that is:

Wig <90, W

o cur < 0 (4)
Furthermore, all is-a relations between the removed concept are deleted and the
children of the latter are attached to its parent. The concept will not occur and
thus should not be predicted.® Notice that concept removal cannot be handled
as concept drift, otherwise the deleted concepts would end up being predicted
whenever one of its children is. The child concepts are no longer attached to it.
The parent’s window is reduced in size by w elements since it has to accommodate
the examples of fewer child classes.

e For relation addition, the positive examples belonging to the child concept are
copied to the ancestors’ windows and the former are increased in size by w in
order to take the examples of the new child. Given the child concept r:

Wéld <~ Wéur’ Wclur <~ Wclur U Wcrur (%)
for each ancestor i. This adaptation ensures that the ancestors are predicted when-
ever the children is.

e For relation removal, the positive examples belonging to the child concept are
removed from the parent’s window and the latter is shrank accordingly. The child
concept is also linked directly to its grand-parent. Given i and r the parent and the
child respectively, then:

éld < Weurt Weur = Weur \ Weir (6)

Our experiments show that, despite its simplicity, our knowledge-aware adaptation

strategy outperforms the knowledge-oblivious strategies of state-of-the-art kNN clas-

sifiers (Spyromitros-Xioufis et al. 2011; Roseberry et al. 2019). It is reasonable to
expect the benefits of knowledge-aware adaptation to carry over to other classifiers,

e.g., neural networks (Cao and Yang 2015).

4 Experiments

We empirically address the following research questions:

Q1 Is knowledge-aware adaptation useful for handling knowledge drift?
Q2 Does interaction with an expert user help adaptation?
Q3 Does TRCKD work in realistic, multi-drift settings?

The code of TRCKD as well as the complete experimental setup are available at: https://
gitlab.com/abonte/handling-knowledge-drift.

6 Notice that, by definition, a removed concept cannot recur unless it is added again to the hierarchy. This
is handled separated via concept addition.
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Competitors
We compared TRCKD against several alternatives:

e PAW-KNN punitive adaptive window kNN, a state-of-the-art multi-label approach
that employs a single sliding window for all concepts to address gradual drift, and
that adapts by discarding examples responsible for prediction mistakes in case of
abrupt drift (Roseberry et al. 2019);

e MW-KNN the multi-window kNN approach of Spyromitros-Xioufis et al. (2011)
designed specifically for multi-label problems that TRCKD builds on;

e kNN 1-window kNN with a single sliding window for all concepts that simply
forgets old examples;

e kNN regular kNN with no adaptation.

Data sets
We ran experiments on three data sets from different domains:

e H-STAGGER a hierarchical version of STAGGER, a widely used synthetic data
set of two-dimensional objects with three categorical attributes (shape, color, size)
and labeled by drifting random formulas like “small and (green or red)” (Schlimmer
and Granger 1986). H-STAGGER has 3 attributes with 4 values each and labels
instances using 5 different drifting random formulas chosen to have a reasonable
pos./neg. ratio. The hierarchy is created by selecting two concepts as part of a third
one that acts as parent concept.

e H-EMNIST a data set of 28 x 28 handwritten digits and (uppercase, lowercase)
letters (Cohen et al. 2017). The data set was converted to hierarchical classifica-
tion by grouping different characters into higher level concepts, e.g., even numbers
and vowels. The digits and letters are grouped in 5 concepts and the hierarchy is
created as for H-STAGGER. Instances were embedded using a variational autoen-
coder (Kingma and Welling 2014).

e H-20NG a data set of newsgroup posts categorized in twenty topics.” The data
set was converted to hierarchical classification by grouping different classes
into super-topics (e.g., “religion’ grouping alt.atheism, soc.religion.christian and
talk.religion.misc). The documents were embedded using a pre-trained Sentence-
BERT model (Reimers and Gurevych 2019) and compressed to 100 features using
PCA.

All instances always belong to the root concept in the concept hierarchy. Each
data sets is converted into a streams by sampling a sequence of examples at random.
Table 1 reports, for each data sets, the number of attributes d, the number of concepts
¢, as well as the following three measures of annotation density taken from Zhang and
Zhang (2010): the average number of positive labels per example LC, the empirical
probability that a label is positive L D, and how many distinct combinations of positive
categories (out of 2¢) are annotated in the data DL.

7 From https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups.
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Table 1 Data sets statistics (mean =+ std. dev.) averaged over the runs of the sequential drift experiment

Name |S] d c LC LD DL
H-STAGGER 570 3 6 4.42 +0.16 0.63 £+ 0.02 34.63 £ 11.89
H-EMNIST 570 10 9 3.50 4+ 0.04 0.44 4+ 0.00 55.38 +5.57
H-20NG 570 100 6 2.19 +0.00 0.31 +0.00 85+0.5

|S]: number of instances, d: number of attributes, c: number of labels, LC: label cardinality, L D: label
density, DL: distinct label set. The metrics are averaged on 8 runs and refer to the experiment for Q3

4.1 Experimental details

All experiments were run on a machine with eight 2.8 GHz CPUs and 32 GiB RAM.
Each experiment was run ten times by randomizing the choice of examples in the
stream: 2 runs were used for hyperparameter selection and 8 for evaluation. The plots
report the average and the standard error over the 8 runs. All methods received exactly
the same sequences of examples.

The results for concept drift are independent of our knowledge-handling strategy,
so our evaluation focuses on concept deletion, relation addition, and relation removal.
In these three cases, drift is injected into the stream by removing a random concept
from the available ones, adding a random relation, and removing a random relation,
respectively. KD starts after all competitors approximately reach their peak perfor-
mance, namely after 100 iterations for H-STAGGER and H-EMNIST, and 170 for
H-20NG.

Performance was measured in terms of micro F; score on a hold-out test set (of
size 64 for H-STAGGER and 200 for H-EMNIST and H-20NG) randomly selected
before each run and shared by all competitors. The micro F; score we use considers
the sparsity of positive annotations that is characteristic of hierarchical classification;
that is, most concepts are negative most of the time. Letting {(x;,y;) : i =1, ..., n}
be the examples in the fest set, §; their predictions and yi] the jth element of y; (which
is 1 if x; belong to the jth concept and O otherwise), the micro F; for multi-label
classification is defined as follows (Sorower 2010):

23 i vl

Fi-micro =

where j iterates over concepts and i over examples.

User replies were simulated by an oracle that always answers correctly to disam-
biguation queries. More specifically, the user confirms that a drift occurred if and
only if the concept detected as drifting by MMD has actually undergone drift, i.e., the
concept has been removed, has drifted or is the child or parent of an added/removed
relation.
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Table 2 Hyperparameter values RQ Drift . TRCKD k PAW-ANN &

H-STAGGER

Q1-Q2 CD 0.04 3 3
CR 0.04 11 3
RA 0.04 11 3
RR 0.04 11 3

Q3 All 0.04 11 3

H-EMNIST

Q1-Q2 CD 0.04 5 3
CR 0.05 3 3
RA 0.05 3 3
RR 0.04 3 3

Q3 All 0.05 3 3

H-20NG

Q1-Q2 CD 0.05 3 3
CR 0.05 3 3
RA 0.04 3 3
RR 0.04 3 3

Q3 All 0.05 3 3

CD is concept drift, CR concept removal, RA relation addition, and
RR relation removal

4.2 Hyperparameters

The window size of all window-based methods was set to w = 200. This value enables
these approaches to achieve the same performance (micro Fj) as kNN when no drift
is present. To speed up detection, in TRCKD the MMD of each concept i is computed
on the 70 most recent examples in W/ only. This choice does not sacrifice reliability
of detection.

The MMD threshold 7 used by TRCKD, the number of neighbors k used by all com-
petitors are selected in two independent runs by optimizing the micro F. 7 is selected
from {0.4, 0.5} as these values were frequently observed to indicate drift in prelimi-
nary experiments. k was selected from {3, 5, 11} and it was chosen independently for
TRCKD plus its variants (including MW-kNN) and for PAW-kNN. Table 2 reports the
values used in each experiment of these hyperparamters. All other hyperparameters
were kept fixed across experiments. The penalty ratio of PAW-ANN was setto p = 1
as suggested in Roseberry et al. (2019), while the minimum and maximum window
sizes were set to m,,;,, = 50 for H-STAGGER and H-EMNIST and 80 for H-20NG
data set, and m,,,, = 200 respectively. The number of examples retained in Wy, in
case of concept drift adaptation was set to u = 10. The distribution ratio parameter of
TRCKD and MW-kNN was set to r = 2/3 as in Spyromitros-Xioufis et al. (2011).
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=& MW-kNN  —@— TRCKD_oracle  —4— TRCKD_forget —=¥-+ PAW-kNN  —&— kNN == kNN 1 window

concept removal relation addition relation removal

Fig.2 Comparison in terms of micro F| between TRCKD and standard forgetting strategies for kNN-based
methods. Top to bottom: results for H-STAGGER, H-EMNIST and H-20NG. Left to right: concept removal,
relation addition, and relation removal. Error bars indicate std. error

—4— TRCKD  -<¢* TRCKD_LLR —@— TRCKD_oracle = —f TRCKD_ni
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1.00 1.00 1.00
" Rt 41‘
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Fig.3 Comparison in terms of micro F| between TRCKD and less interactive variants. Top to bottom: results
for H-STAGGER, H-EMNIST and H-20NG. Left to right: concept drift, concept removal, relation addition,
and relation removal. Error bars indicate std. error
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4.3 Q1: knowledge-aware adaptation improves performance

To evaluate the impact of our adaptation strategy, we compare TRCKD against MW-
kNN, PAW-kNN, kNN I-window, regular kNN in a setting where all approaches
are told exactly when KD occurs. In this setting, TRCKD is denoted TRCKDyqcies aS
knowledge-aware disambiguation combined with exact detection implies a perfect
knowledge of the kind of drift that occurred. We also compare to a simple knowledge-
unaware variant of TRCKD, named TRCKD forg¢, that adapts to all types of KD by
forgetting old examples.

The results can be viewed in Fig. 2. The plots show that TRCKD; /. 1S the best
performing method on all data sets and for all forms of KD. Note how the performance
difference between TRCKD,,4j and the alternatives is larger than standard errors in
most cases, especially when considering the first iterations after the drift. Most often
the runner up is TRCKD f,¢¢: While it performs similarly to TRCKDyy4¢/e for concept
removal (because our adaptation strategy boils down to forgetting in this simple setup),
it does lag behind for relation addition and removal, showing a sizeable advantage
for knowledge-aware adaptation. MW-kNN works reasonably well but suffers from
relying on passive adaptation and does not always performs better than the two kNN
baselines. PAW-kNN tends to underperform on H-EMNIST and H-20NG, especially
when KD affects the relations. These results validate knowledge-aware adaptation on
all data sets and allows us to answer Q1 in the affirmative. For this reason, we will
focus on knowledge aware adaptation in the following experiments.

4.4 Q2:interaction is beneficial

To measure the impact of interaction, we compare four variants of TRCKD that differ
in what information they elicit from the supervisor, namely: TRCKD, TRCKDqcle,
TRCKDy 1. g and TRCKDy,;.

TRCKDy 1. g is a fully-automated version of TRCKD that follows up MMD detection
by performing drift disambiguation with a likelihood ratio test. This test detects a
relation y/ is-a y' iff

PO/ | y)/PG | =y > B (7

with 8 = oo. (This is the best possible value for 8 as the ground-truth data is assumed
to be always consistent with the ground-truth hierarchy.) If the test detects relation
addition/removal, TRCKD7 1 g applies the corresponding knowledge-aware adaptation
strategy, otherwise it defaults to emptying the current window of the detected con-
cept(s).

TRCKD,,; is like TRCKD except that instead of interacting with the user it assumes
that all concepts detected as drifting by MMD have undergone individual concept drift
and adapts by purging their current window.

The results in Fig. 3 are quite intuitive: TRCKD,q¢1. Substantially outperforms all
alternatives in all cases except for relation removal in H-20NG. This shows that, if
driftis detected correctly and timely, interactive disambiguation is extremely useful for
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Fig. 4 TRCKD versus competitors on sequential KD in terms of micro Fj. Left: H-STAGGER. Middle:
H-EMNIST. Right: H-20NG. Error bars indicate std. error

guiding knowledge-aware adaptation and quickly aligning the model to the ground-
truth. TRCKD tends to perform substantially better than the no-interaction baselines
TRCKDy 7 g and TRCKD,; and if MMD detection works well it quickly reaches the
performance of the oracle. This allows us to answer Q2 in the affirmative. If MMD
underperforms (as in H-EMNIST), TRCKD does not get a chance to quickly interact
with the user and shows no improvement. This could be fixed by better optimizing
the choice of kernel and threshold used by MMD, perhaps by turning them into per-
concept parameters. This is left to future work. The complexity of the task and the
impact of the drift vary across the data sets. Thus, the difference between TRCKD and
the competitor is smaller in some cases. Importantly, TRCKD interacts with the user
1.54 4+ 0.78 times per run on average, showing that few interaction rounds are often
enough to achieve a noticeable performance boost.

4.5 Q3: TRCKD works well in multi-drift settings

We consider a realistic scenario with four sequential KD events: concept drift, relation
addition, relation removal, and concept removal. The results in Fig. 4 show that TRCKD
tends to outperform all competitors except the oracle. The advantage is quite marked
whenever the KD affects the concept hierarchy itself, up to +10% F; for H-STAGGER
and +5% for H-EMNIST. The plots mirror the advantages shown by TRCKD in the
previous experiments and highlight that the benefits knowledge-aware adaptation and
interaction carry over to more realistic settings. This allows us to answer Q3 in the
affirmative. The lack of reactive adaptation penalizes MW-kNN and PAW-kNN, the
latter especially on H-EMNIST.

4.6 Additional comparisons

TRCKD outperforms structure learning
Given the similarity between drift disambiguation and structure learning for prob-
abilistic graphical models (Koller and Friedman 2009), it is natural to ask whether
structure learning techniques could be used for handling KD in a fully automatical
manner.

To answer this question, we evaluated a variant of TRCKD that uses graphical lasso
to reconstruct the structure of the hierarchy from the most recent examples (Friedman
et al. 2008). In particular, in each iteration a data set is built by combining the 70
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Fig. 5 Micro Fp results on H-STAGGER, automatic drift type identification with Graphical Lasso and
MMD for detection versus TRCKD. Left: relation addition. Right: relation removal

most recent examples (analogously to what is done for MMD) for all concepts in the
machine’s hierarchy. This data set set is fed to graphical lasso, which spits out an
(sparse) undirected graph based on the empirical correlation between all the concepts.
The directions of individual edges are set so to maximize the likelihood of the child
implying the parent and edges are treated as is-a relations. The resulting directed graph
replaces the machine’s concept hierarchy. The difference between the previous and
current concept hierarchy is used to perform knowledge-aware adaptation.

A comparison between TRCKD +lasso and TRCKD is reported in Fig. 5. It turns
out that for relation addition and removal, graphical lasso often fails to estimate the
ground-truth concept hierarchy, leading to systematic prediction errors. Furthermore,
it is quite unstable and often detects spurious changes to the hierarchy. The main issue
is that—Tlike other fully automated approaches for structure learning—graphical lasso
does require substantial amounts of data to perform reliably, and this is simply not the
case in our non-stationary setting. This makes structured learning-based approaches
unsuitable for this setup.

MMD outperforms mean embeddings

Another reasonable question is whether recent hypothesis tests outperform MMD for
drift detection. Motivated by this, we replace MMD in TRCKD with Mean Embeddings
(ME), a state-of-the-art kernel-based discrepancy between distributions (Jitkrittum
et al. 2016). Importantly, the discrimination power of ME can be optimized for the
task at hand by performing gradient ascent on an independent training set. In our
experiment, we carried out this optimization on the pre-drift examples (i.e., on the
first 100 examples in the stream for H-STAGGER and H-EMNIST and on the first 170
for H-20NG). We also used the very same tensor product kernel for both MMD and
ME and for ME we tuned the width of the Gaussian kernel kx over instances along
with the discrimination power of ME.

Despite being more powerful than MMD on paper, ME did not perform as well
in our tests. In particular, ME turned out to be overly sensitive and had severe false
detection issues. In practice, ME tends to detect three to four times as many drifts as
MMD. For instance, the average number of changepoints detected by TRCKD +ME for
the case of H-EMNIST with sequential drifts is 15.25 4 1.0 compared to 4.25 0.5 of
TRCKD +MMD. The ME final hyperparameters used for this experiment are number of
witness points J = 15 and o = 0.01. This overly sensitivity makes it inadequate for
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interacting with the user: indeed, querying the user too frequently is likely to rapidly
make her lose interest in the interaction in practice.

5 Related work

There is an enormous amount of work on concept drift, most of which focuses on
single-label (Gama et al. 2014) and—to a lesser extend—multi-label (Zheng et al.
2019) classification. Surprisingly, drift in hierarchical classification, in which concepts
are explicitly mutually constrained, has been so far neglected. In addition, we are not
aware of any work on concept drift affecting the concept hierarchy nor on knowledge-
aware adaptation strategies. As shown by our experiments, this setup is special enough
that standard strategies struggle when applied or adapted to our setting.

The disambiguation step introduced with TRCKD is conceptually related to the
problem of drift understanding (Lu et al. 2018), however works on this topic are
unconcerned with hierarchical classification and, therefore, with drift in the back-
ground knowledge. To the best of our knowledge, this is the first work that tackles
knowledge drift and drift disambiguation and to leverage interaction with a human
supervisor to do so.

TRCKD makes ample use of well-known strategies. In particular, it combines ideas
from MW-kNN (Spyromitros-Xioufis et al. 2011), a multi-label kNN approach that
adapts passively by discarding old examples, with a proactive detection strategy based
on sliding windows. Actively detecting and reacting to drift is key for enabling inter-
action with the user. Importantly, sliding windows offers distribution-free guarantees
on detection accuracy under mild assumptions on the model class and on drifting
frequency and speed (Kifer et al. 2004).

Maximum mean discrepancy

MMD has been applied extensively in domain adaptation (Zhang et al. 2013; Redko
et al. 2020). The ME criterion (Jitkrittum et al. 2016), a more recent alternative,
underperformed in our experiments but can act as a drop-in replacement for the MMD
in applications where it performs better.

The idea of using concrete examples in the windows to explain drift was discussed
in (Kifer et al. 2004), although not for MMD. It is true, however, that MMD lends
itself to this task. For instance, Kim ef al. propose a subset selection procedure for
identifying both prototypes (examples that are representative of a particular learned
concept) and criticism (examples that, conversely, are not representative) (Kim et al.
2016), built around a submodular objective defined using MMD. These ideas can be
used directly for illustrate drifting concepts to the user and could be generalized to
explain the effects of knowledge drift (DemSar and Bosni¢ 2018).

Drift over graph data

Drift detection has been studied in the context of graph classification. In this set-
ting, the input data streams encodes a sequence of knowledge graphs (Paudel and
Eberle 2020; Yao and Holder 2016; Zambon et al. 2018) or an ontology stream (Chen
et al. 2017), and drift affects the distribution of said graphs. In contrast, in our tar-
get applications the machine receives a sequence of examples, consisting of a set

@ Springer



Human-in-the-loop handling of knowledge drift

of subsymbolic observations and of concept annotations, while the knowledge graph
controlling the relationship between concepts is completely unobserved. Since KD
can only be inferred indirectly by monitoring the examples, this makes drift detection
(and disambiguation) much harder.

Open world recognition

Our work is related to open world recognition, a streaming classification setting in
which unanticipated classes appear over time (Boult et al. 2019). Open world recog-
nition matches our setting in the case of concept addition, but it is unconcerned with
other forms of KD. Furthermore, even though the overall goal is to achieve low error
rate on the new, unknown classes (Scheirer et al. 2013), most algorithms for open word
recognition achieve this by refusing to output any predictions for incoming instances
that belong to the unknown classes (Scheirer et al. 2014; Rudd et al 2017; Boult
et al. 2019). In stark contrast, and compatibly with other approaches to concept drift,
TRaCking Knowledge Drift aims to adapt the model to new classes rather than reject
challenging data points. Other recent work on interactive classification under concept
addition (Bontempelli et al. 2020) focuses on handling noisy labels rather than on
adapting to drift.

Novelty and anomaly detection

Our approach shares some similarities with recent work interactive anomaly detection
for structured data (Ding et al. 2019). In this work, anomalies are first identified by a
machine and then double-checked by a human supervisor. The key idea of leveraging
interaction with a supervisor has similar motivations as in our task. More generally,
concept drift is related to novelty, anomaly, and out-of-distribution detection, which
tackle the problem of identifying unexpected or anomalous datapoints (Pimentel et al.
2014). Concept drift and novelty detection have also been combined (Spinosa et al.
2007; Masud et al. 2011). One key difference is that in these settings the set of con-
cepts is typically fixed. Furthermore, and more importantly, KD—and more generally
concept drift—involve updating the model to track changes in the world, wherease no
adaptation is typically necessary in novelty detection.

Other topics

In continual learning a machine acquires new concepts or tasks over time, and the
challenge is to prevent the learned model—typically a neural network—from forget-
ting previously acquired knowledge (Parisi et al. 2019; Flesch et al. 2018). In stark
contrast, in our setting the goal is to intentionally forget obsolete information when-
ever necessary. Moreover, continual learning is unconcerned with forms of knowledge
drift other than concept addition, whereas we tackle all forms of KD.

Another related but separate topic is active learning of graphical models, see for
instance (Tong and Koller 2001), where the aim is to acquire a multivariate distribution
(with a non-trivial factorization) by querying a human-in-the-loop. Specifically, the
machine asks for the downstream value of certain variables upon intervention (i.e.,
manipulating a variable to a chosen value). Individually, these queries are not very
informative and it may take tens of queries to acquire a model with a handful of
variables. In contrast, TRaCking Knowledge Drift is only interested in obtaining a
description of change to the concept hierarchy—not a whole model, not a distribution
over concepts—and to this end it presents the user with an initial guess as guidance
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and then elicits a one-shot description. These more expressive queries are tailored to
the KD use case and lead to more efficient interaction.

Prototypical networks uses a prototypes representations for each class, which are
used to classify a test point (Snell et al. 2017). Adding new classes cause catastrophic
forgetting, which deteriorate the classifier performance . To avoid this effect, a set
of training points that approximate the class mean are kept (Rebuffi et al. 2017).
This solutions is then robust to data representations changes. These two works do not
address the concept drift challenge. By estimating the drift in the previous task, it can
be compensated in the new task without storing exemplar of previous tasks (Yu et al.
2020). The main limitations of these approaches is that they support one prototype for
each class (e.g., different libraries are mapped to the same prototype). The solution
does not provide a way to erase concepts that does not hold anymore.

6 Conclusion

We introduced the problem of knowledge drift in hierarchical classification and pro-
posed to partially offload drift disambiguation to a user. We also proposed TRCKD, an
approach for learning under KD that combines automated drift detection and adap-
tation, upgraded to hierarchical classifiers, with interactive drift disambiguation. Our
empirical results indicate that TRCKD outperforms fully automated approaches by ask-
ing just a few questions to the user, even when detection performance is not ideal,
showcasing the importance of interaction for handling knowledge drift.

Our work can be improved and extended in several directions. First of all, in prac-
tical applications the learner often receives no labels during its normal operation and
must acquire any necessary supervision from the user during the interaction. Dealing
with this setting requires to integrate a knowledge-aware active learning component
into TRCKD. On the user interaction side, we plan to improve the interpretability of
our interaction protocol (beyond using examples to illustrate the machine’s behav-
ior to the user) by adapting ideas from explainable Al (DemsSar and Bosni¢ 2018)
and explainable interactive learning (Schramowski et al. 2020). Another promising
direction is to extend TRCKD to sequential learning methods beyond kNN, especially
deep neural networks. The challenge here is to develop knowledge-aware adaptation
strategies appropriate for this class of models. It is relatively straightforward to extend
our approach to instance-based neural models, see for instance (Snell et al. 2017).
Knowledge-aware adaptation for other kinds of neural networks could be approached
by leveraging recent developments in machine unlearning—so to force the model
to forget obsolete concepts and relations—cf. Cao and Yang (2015) and follow-ups.
These extensions, however, are highly non-trivial and left to future work.
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