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1 Introduction

We consider the problem of automatically discovering thetsm preferred by a decision maker
(DM). Recent work in the field of constraint programming [8}rhalizes the user preferences in
terms ofsoft constraintswhose weights are assumed to be partially unknown. Artaficn strategy
is introduced based on the DM queries for constraint weightsthis paper, soft constraints are
cast intoweighted Boolean termsThe DM preference is represented by a combinatorial witilit
function which is a weighted combination of Boolean termise ©ptimization task is translated into
aweighted Maximum SatisfiabilifylAX-SAT) problem where the objective function is unknown
and has to be interactively learnt.

This Boolean model for the DM preferences is generalizeddoensomplex utility functions which
are combinations gfredicatesn a certain theory of interest. The generalization enallesnsider,
e.g., integer or real-valued features. It consists of @ptaSatisfiability withSatisfiability Modulo
Theory[1] (SMT). SMT is a powerful formalism combining first-ordigic formulas and theories
providing interpretations for the symbols involved, likeettheory of arithmetic for dealing with
integer or real numbers. For example, consider the casegbt #ielection. The predicate +
xo < 5 hoursdefines the preference for a travel duration, calculatedigist ftluration (1) plus
transfer time to the departure airpout,§, smaller than five hours. The predicate < 2 states
the desirability for a flight with number of stopovers;] smaller than two.Optimization Modulo
Theory also known as “Satisfiability Modulo the Theory of Costs] pf MAX-SMT in short,
extends SMT by considering optimization problems. Rathantchecking for the existence of a
satisfying assignment as in SMT, the target is a satisfysgigament that minimizes a given cost
function.

This work introduces a method for learning DM preferencesting the task into jointly learning and
optimizing an unknown MAX-SMT problem. To the best of our kriedge, this is the first approach
combining learning and SMT. A preliminary version of ouria@jue is described in [5]. Unlike the
approach in [8], our technique does not assume to know inmnedvidne decisional features of the user
and their detailed combination. The initial amount of kneglde required by our approach is limited
to a set of “catalog” features from which the decisionalahalés of the DM are selected. The limited
initial knowledge is translated intosparseunknown utility function: only a fraction of the catalog
features represent the decisional items of the DM and onlypaet of the possible terms constructed
from them defines the DM utility function. Unlike previous s on preference elicitation [8,
3], focusing on consistent feedback and optimality guaesit our method can handle uncertain,
inconsistent and contradictory preference informatiomifthe final user, which characterizes many
human decision processes.



1. procedureinteractivesparseoptimization

2. [ input: set of the catalog variables

3 output: learnt utility function and configuration optimizing it
4. /* Initialization phase */

5. Selects configurations uniformly at random;

6 Ask the DM for the ranking of the configurations;

7 initialize training setD by the ranking of the configurations;
8 /* Refinement phase */

9 while (terminationcriterion)

10. /* Utility function learning phase */

11. Based onD, select terms and relative weights for current

12. weighted MAX-SAT formulation (Eq. 1);

13. /* Optimization phase */

14. Gets/2 new configurations by optimizing current weighted MAX-SAT
15. formulation;

16. Ask the DM for the ranking of the newy/2 configurations and add it tb;

17. | return configuration optimizing the learnt weighted MAX-SAT formulation

Figure 1: Pseudocode for the interactive optimizationidlym. The parameterdefines the number
of examples to be compared by the DM at the different iteratioTraining setD is formed by
the partial rankings of candidate solutions generatedeairtitialization phase and at the different
iterations of the algorithm.

2 Overview of our approach

For the sake of simplicity, we introduce the method in the MBXT formulation and later gen-
eralize to the MAX-SMT case. Candidate configurationsaréimensional Boolean vectors
consisting ocatalogfeatures A priori knowledge of the problem is limited to the set of catalog fea
tures. The unknown combinatorial utility function expriegsthe DM preferences is the weighted
combination of Boolean terms generated from the cataldgifesand has to be jointly and interac-
tively learnt during the optimization process. Furthereyahe optimal utility function is complex
enough to prevent exhaustive enumeration of possibleisokit The only assumption we make on
the utility function is its sparsity, both in the number oaferes (from the whole set of catalog ones)
and in the number of terms constructed from them. We rely @nabsumption in designing our
optimization algorithm.

Our method consists of an iterative procedure alternatinglidy function learning phase with a
search phase. At each step, the current approximation ofitiiy function, represented as a
weighted MAX-SAT instance, is used to guide the search fdmwogd configurations. A subset
of candidate configurations is obtained by solving the wieidiMAX-SAT instancegearch phase
Preference information is required for these candidated tiae utility model is refined according
to the feedback receivede@rning phasg A set of randomly generated examples is employed to
initialize the utility model. The pseudocode of our algenit is in Fig. 1. The refinement of the
utility model consists of learning the weights of the termliscarding the terms with zero weight.

It includes both the selection of the relevant features ftbencatalog set and the learning of their
detailed combination from the space of all possible cortjons up to certain degreé

The learning of the utility function is cast into a rankingoptem. To identify sparse solutions, we

adopt 1-norm regularization. Given a datasets= {(x\”, ..., x%), (\”, ... 45 }ie1. . OF s
partial rankings, wher(eyg”, . ,y,(,il) defines the ih ranking, the learning problem is formulatd
as:
i 1—wl . (® (i)_q) (2) 1
min 3 3 - w (@)~ B + A wlh ®
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where where subscript “+” indicates the positive part. Thapping function® projects sample
vectors to the space of all possible conjunctions ug Boolean variables. Note that dealing with
the explicit projection® in Eq. (1) is tractable only for a rather limited number ofatag features
and size of conjunctiond. However, this will typically be the case when interactinghva human



DM. The bounded rationality of humans indeed allows themandfe non-linear interactions just
among a small number of features.

The learnt functionf(x) = w” - ®(x), wherew is the solution of the ranking problem, will be
used as the novel approximation of the utility functigrof the DM. Functionf is represented
as a weighted MAX-SAT instance. The set of novel candidaletisns to be ranked by the DM
is obtained by applying a complete solver over the weight@dXMBAT instance. The MAX-SAT
solver returns an optimizer for the input instance, i.e,dbnfigurationk™ maximizing the weighted
sum of the terms representirfg In order to obtain multiple candidate solutions, we optienagain
f with the additionahard constraint generated by the disjunction of all the termg ahsatisfied
by x*. Unlike the weighted terms, which may or may not be satisfiad] constraints do not have
a weight value and have to be satisfied. For example; lahd¢s be the terms of unsatisfied by
x*, then the hard constraint becomes:

(t1 Vts)
If x* satisfies all the terms of, the additionahard constraint generated is:
(mxy V-V )

which excludesc* from the feasible solutions set gff The generation of the candidate solutions
is iterated until the desired number of configurations hasenbgenerated or the hard constraints
generated made the MAX-SAT instance unsatisfiable. FinddeyDM will rank the new candidate
solutions based on her preferences and the ranking infmmatill be included in the training
examples set for the following refinements fof The mechanism creating the training examples is
motivated by the tradeoff between the selection of goodtgwis (w.r.t. the current approximation

f of utility function f) and the diversification of the search process.

3 Computational complexity and user cognitive load

The cognitive capabilities of the humans when making deosslimit the number. of catalog fea-
tures and the sizé of the Boolean terms. Therefore, the learning phase (pmofi)es accomplished
in a negligible amount of time (w.r.t. the user response lirAmalogous observation holds for the
computational effort required by the search phase. Progasiquery consists of generatingan-
didates to be ranked. Each candidate is obtained by a rureafdimplete MAX-SAT solver. Even
if the search space size28, the bounded value of and the efficient performance of modern SAT
solvers, that can manage problems with thousands of vasgabid millions of clauses, enable the
completion of the search phase in a negligible amount of.tiFieally, the estimation of the cog-
nitive load of the DM isO(c log ¢), with ¢ being the number of candidates to be ranked. In the
experiments reported here, the value:afsed in the refinement phase varies frono 50. Keeping

¢ low limits the computational effort of the DM. As matter otfathe DM typically prefers to rank
small batches of good quality solutions rather than a silagége batch of candidates, including also
lower quality ones. Therefore, a rule of thumb for the altjoni configuration consists of keeping
the value ofc low and increasing the number of refinement iterations.

4 Optimization Modulo Theory

In the previous sections, we assumed our optimization taskdcbe cast into gropositional
Maximum-Satisfiability problem. However, the formalismptéin propositional logic is not suitable
or expressive enough to represent many real-world apjaitat These problems require or are more
naturally described in more expressive theories as fidgologic (FOL), involving quantifiers,
functions and predicate€ptimization Modulo Theorproblems generalize MAX-SAT problems
by considering the maximum-satisfiability of a FOL formulghwespect to a certaibackground
theoryT fixing the interpretation of (some of the) predicate and fiomcsymbols.

The extension of our optimization algorithm to handle MAXAS problems is straightforward. It
consists of replacing the MAX-SAT with the MAX-SMT solver.uDframework does not need to
be changed, as the effort required to handle non-Booleasdémgs is completely performed by the
MAX-SMT solver. When representing user preferences in thd Sktting, the DM utility function



f is expressed as a weighted sum of terms, where a term is tfjignction of up tod predicates
defined over the variables in the thedy The MAX-SAT solver integrated in the MAX-SMT one
finds a Boolean assignment to the predicates maximizingetéat utility function. The Theory-
sover is then used to validate this assignment using the ailéhe theoryl". Validation amounts
at finding values for the theory variables consistent withttluth assignment of the predicates. If
the validation is successful, the SMT solver stops, retgrhese variable values. Otherwise, an
additional constraint explaining (i.e., justifying) thesatisfiability is included in the MAX-SMT
instance and the SAT solver is asked for a new assignment.diVeesification strategy to obtain
multiple candidates solutions is analogous to the case oXKNAAT.

5 Experimental results

For a realistic application of our preference elicitatiesttnique, consider a customer planning to
build her own house and judging potential housing locatiprevided by a real estate company
(henceforth thénousingproblem). There are different locations available, chi@rémed by different
housing values, prices, constraints about the design dfuitéing (e.g., usually in the city center
you cannot have a family house with a huge garden and poal), T8ie customer may formulate
her judgments by considering a description of the housikgtlons based on a predefined set of
parameters, including, e.g., crime rate, distance fromndown, location-based taxes and fees, etc.
In addition, she is free to express her own requirementssisting of financial issues, working
opportunities, personal interests (e.g., the proximitg@ammercial facilities or green areas), etc.
As a result, this problem is characterized by a plethora ofsitenal features whose contribution
to the definition of the user preferences cannot be quaniifietlvance. Many of them may be
uninformative, as they do not represent any decisionaraoi for the customer. The set of catalog
features used in our experiments is listed in Table 1.

Table 1: Decisional features for the housing problem.

num feature type

1 house type ordinal

2 garden Boolean

3 garage Boolean

4  commercial facilities in the neighborhood Boolean

5 public green areas in the neighborhood Boolean

6 cycling and walking facilities in the neighborhood  Boolean

7  distance from downtown numerical

8 crimerate numerical

9 location-based taxes and fees numerical
10 public transit service quality index numerical
11 distance from high schools numerical
12 distance from nearest free parking numerical
13 distance from working place numerical
14  distance from parents house numerical
15 price numerical

A set of 10 hard constraints (Table 2) defining feasible huyfications and known in advance is
considered. The hard constraints are stated by the cusi{@nger cost bounds) or by the company
(e.g, constraints about the distance of the available imtsifrom user-defined points of interest).
Note that constraints 5, 6, 7 define a linear bi-objectivéfamm among distances from user-defined
points of interest. Prices of potential housing locatiarsdefined as a function of the other features.
For example, price increases if a semi-detached house tathrea flat is selected or in the case of
green areas in the neighborhood. On the other side, e.gn witae index of potential locations

increases, price decreases. Soft constraints are refgddsnveighted terms including predicates in
the linear arithmetic theory or Boolean variables, depegdin the variable type. For example, one
predicate may model the preference for a location with distdrom nearest free parking smaller
than a given threshold, while a Boolean variable encodgs,tee aspiration for a house with garage.

We generated a set of 40 predicates. The unknown DM utilitgtion is composed of terms with
two or three predicates, with at least one term with thredipates. The maximum size of terms



Table 2: hard feasibility constraints for the housing peobl Parameters;, ¢ = 1...13, are
threshold values specified by the user or by the sales pexsonn

num hard constraint
1 price< py
2 location-based taxes and feeg, => notpublic green ares in the neighborhood
and notpublic transit service quality index ps
commercial facilities in the neighborhoeg> not (gardenand garage)
crime rate< p, => distance from downtowe» ps
distance from working place + distance from parents houge
distance from working place + distance from high schools;
distance from parents house + distance from high schoals
distance from nearest free parkifgpy => notpublic green areas in the
neighborhood
distance from parents housep:o => distance from downtow p;; andcrime
rate> pi2
10 garden=> house type> pi3
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(three) is assumed to be known. Term weights are integeesalelected uniformly at random in the
range [1, 100]. Inaccurate preference information can ledaoccasional inattention or uncertainty
of the DM in comparing certain solutions. We model this byiadda 0.1 probability of swapping
the correct ranking during feedback.

We run a set of experiments fer= 10, 20, ... 100 initial training examples to be ranked. The
performance of our algorithm is measured by consideringahadity of the best configuration
at the different iterations for an increasing number ofiahitraining examples. The best con-
figuration is the configuration optimizing the current apgmuation of the DM utility function.
Its quality is expressed in terms of the approximation ewart. the gold solution, where the
gold solution is the configuration obtained by optimizing thestibM utility function. Fig. 2 re-
ports the results over a benchmark of 400 randomly gener#tity functions for each of the
following instantiation of the tripletrumber of DM features, number of terms, max term)size
{(5,3,3),(6,4,3),(7,6,3),(8,7,3),(9,8,3),(10,9,3)}. The quality of the solution rapidly im-
proves with a larger number of examples and the algorithroeseds in exploiting its active learning
strategy.

5.1 DM utility function reconstruction

Our method does not need to learn the exact form of the DMtyfilinction. The goal of our
approach is indeed to elicit as few preference informatrmmfthe DM as possible in order to
identify her favourite solutionléarning to optimize For example, consider the toy DM utility
function represented by the negation of a single ternary:tei(x; A z2 A 2:3). The approximation
of the DM utility function consisting, e.g., of the formutar is sufficient to find the favourite DM
solution. More in general, only the shape of the utility ftioo locally guiding the search to the
correct direction is actually needed.

6 Discussion

This work presented an interactive optimization strategycombinatorial problems over an un-

known utility function. A generic framework is introduceehabling the adoption of off-the-shelf

learning methods and MAX-SMT solvers. 1-norm regularmais employed to enforce sparsity of
the learnt function. Thanks to the MAX-SMT formalism, oumpapach can handle a large class of
relevant optimization tasks.

Our algorithm can be generalized in a number of directiom® [€arning stage is based on support
vector ranking, with the ranking loss function formulatadtarrectly ordering each pair of instances.
More complex ranking losses have been proposed in thetlirerésee for instance [6]), especially to
increase the importance of correctly ranking the best mwlst and could be combined with 1-norm
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Figure 2: Learning curves observed at different iteratiohsur algorithm. They-axis reports the
approximation error, while the-axis contains the number of initial training examples. Agpjima-
tion error is the difference between the utility of the smntoptimizing the current approximation
of the DM preference function and the utility of the gold g@n, i.e., the favourite DM solution
(see text for details). Red, green and cyan colors show ttierpeance of the algorithm at the first,
the second and the third iteration, respectively.

regularization. Retaining the need for sparse featuresiteg Bayesian approaches to preference
elicitation [4] could also be investigated in order to fuamtlmeduce the cognitive burden for the DM.

In this paper the experimental evaluation is focused onlsscale problems, typical of an interac-
tion with a human DM. In principle, when combined with appiiefe SMT solvers, our approach
could be applied to larger real-world optimization probfernwhose formulation is only partially
available. In this case, lacal searchalgorithm rather than a complete solver can be used during
the optimization stage. However, the cost of requiring grlieit representation of all possible con-
junction of predicates (even if limited to the unknown pavtuld rapidly produce an explosion of
computational and memory requirements. An option consistesorting to an implicit represen-
tation of the function to be optimized, as in 2-norm kernekhiaes. However, our preliminary
results [5] showed this to produce worse results for the tdd@parsification in feature space. Ker-
nelized versions of zero-norm regularization [9] could fect to address this shortcoming. On the
other hand, the lack of an explicit formula would prevent tise of all the efficient refinements of
SMT solvers, based on a tight integration between SAT anatyteolvers.

Finally, another direction for future research is the egten of our approach to handle feedback
from multiple DMs [10]. In particular, an interesting casedy is the exploitation of preferences of
previous DMs to minimize the elicitation effort for a new u§z.
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