
Preference elicitation for interactive learning of
Optimization Modulo Theory problems

Paolo Campigotto Andrea Passerini Roberto Battiti
DISI - Dipartimento di Ingegneria e Scienza dell’Informazione,

Universit̀a degli Studi di Trento,
Via Sommarive 14, I-38123 Povo, TN, Italy

campigotto,passerini,battiti@disi.unitn.it

1 Introduction

We consider the problem of automatically discovering the solution preferred by a decision maker
(DM). Recent work in the field of constraint programming [8] formalizes the user preferences in
terms ofsoft constraints, whose weights are assumed to be partially unknown. An elicitation strategy
is introduced based on the DM queries for constraint weights. In this paper, soft constraints are
cast intoweighted Boolean terms. The DM preference is represented by a combinatorial utility
function which is a weighted combination of Boolean terms. The optimization task is translated into
a weighted Maximum Satisfiability(MAX-SAT) problem where the objective function is unknown
and has to be interactively learnt.

This Boolean model for the DM preferences is generalized to more complex utility functions which
are combinations ofpredicatesin a certain theory of interest. The generalization enablesto consider,
e.g., integer or real-valued features. It consists of replacing Satisfiability withSatisfiability Modulo
Theory[1] (SMT). SMT is a powerful formalism combining first-orderlogic formulas and theories
providing interpretations for the symbols involved, like the theory of arithmetic for dealing with
integer or real numbers. For example, consider the case of flight selection. The predicatex1 +
x2 ≤ 5 hoursdefines the preference for a travel duration, calculated as flight duration (x1) plus
transfer time to the departure airport (x2), smaller than five hours. The predicatex3 < 2 states
the desirability for a flight with number of stopovers (x3) smaller than two.Optimization Modulo
Theory, also known as “Satisfiability Modulo the Theory of Costs” [7] or MAX-SMT in short,
extends SMT by considering optimization problems. Rather than checking for the existence of a
satisfying assignment as in SMT, the target is a satisfying assignment that minimizes a given cost
function.

This work introduces a method for learning DM preferences casting the task into jointly learning and
optimizing an unknown MAX-SMT problem. To the best of our knowledge, this is the first approach
combining learning and SMT. A preliminary version of our technique is described in [5]. Unlike the
approach in [8], our technique does not assume to know in advance the decisional features of the user
and their detailed combination. The initial amount of knowledge required by our approach is limited
to a set of “catalog” features from which the decisional variables of the DM are selected. The limited
initial knowledge is translated into asparseunknown utility function: only a fraction of the catalog
features represent the decisional items of the DM and only a subset of the possible terms constructed
from them defines the DM utility function. Unlike previous works on preference elicitation [8,
3], focusing on consistent feedback and optimality guarantees, our method can handle uncertain,
inconsistent and contradictory preference information from the final user, which characterizes many
human decision processes.

1

1. procedure interactivesparseoptimization
2. input: set of the catalog variables
3. output: learnt utility function and configuration optimizing it
4. /* Initialization phase */
5. Selects configurations uniformly at random;
6. Ask the DM for the ranking of thes configurations;
7. initialize training setD by the ranking of thes configurations;
8. /* Refinement phase */
9. while (terminationcriterion)
10. /* Utility function learning phase */
11. Based onD, select terms and relative weights for current
12. weighted MAX-SAT formulation (Eq. 1);
13. /* Optimization phase */
14. Gets/2 new configurations by optimizing current weighted MAX-SAT
15. formulation;
16. Ask the DM for the ranking of the news/2 configurations and add it toD;
17. return configuration optimizing the learnt weighted MAX-SAT formulation

Figure 1: Pseudocode for the interactive optimization algorithm. The parameters defines the number
of examples to be compared by the DM at the different iterations. Training setD is formed by
the partial rankings of candidate solutions generated at the initialization phase and at the different
iterations of the algorithm.

2 Overview of our approach

For the sake of simplicity, we introduce the method in the MAX-SAT formulation and later gen-
eralize to the MAX-SMT case. Candidate configurations aren dimensional Boolean vectorsx
consisting ofcatalogfeatures.A priori knowledge of the problem is limited to the set of catalog fea-
tures. The unknown combinatorial utility function expressing the DM preferences is the weighted
combination of Boolean terms generated from the catalog features and has to be jointly and interac-
tively learnt during the optimization process. Furthermore, the optimal utility function is complex
enough to prevent exhaustive enumeration of possible solutions. The only assumption we make on
the utility function is its sparsity, both in the number of features (from the whole set of catalog ones)
and in the number of terms constructed from them. We rely on this assumption in designing our
optimization algorithm.

Our method consists of an iterative procedure alternating autility function learning phase with a
search phase. At each step, the current approximation of theutility function, represented as a
weighted MAX-SAT instance, is used to guide the search for optimal configurations. A subset
of candidate configurations is obtained by solving the weighted MAX-SAT instance (search phase).
Preference information is required for these candidates, and the utility model is refined according
to the feedback received (learning phase). A set of randomly generated examples is employed to
initialize the utility model. The pseudocode of our algorithm is in Fig. 1. The refinement of the
utility model consists of learning the weights of the terms,discarding the terms with zero weight.
It includes both the selection of the relevant features fromthe catalog set and the learning of their
detailed combination from the space of all possible conjunctions up to certain degreed.

The learning of the utility function is cast into a ranking problem. To identify sparse solutions, we
adopt 1-norm regularization. Given a datasetsD = {(x

(i)
1 , . . . ,x

(i)
mi

), (y
(i)
1 , . . . , y

(i)
mi

)}i=1,...,s, of s

partial rankings, where(y(i)1 , . . . , y
(i)
mi

) defines the i-th ranking, the learning problem is formulatd
as:

min
w∈IR

s∑

i=1

∑

hi,ki,y
(i)
hi

<y
(i)
ki

[1−w
T · (Φ(x

(i)
hi
)− Φ(x

(i)
ki
))]+ + λ||w||1 (1)

where where subscript “+” indicates the positive part. The mapping functionΦ projects sample
vectors to the space of all possible conjunctions up tod Boolean variables. Note that dealing with
the explicit projectionΦ in Eq. (1) is tractable only for a rather limited number of catalog features
and size of conjunctionsd. However, this will typically be the case when interacting with a human

2

DM. The bounded rationality of humans indeed allows them to handle non-linear interactions just
among a small number of features.

The learnt functionf̂(x) = w
T · Φ(x), wherew is the solution of the ranking problem, will be

used as the novel approximation of the utility functionf of the DM. Functionf̂ is represented
as a weighted MAX-SAT instance. The set of novel candidate solutions to be ranked by the DM
is obtained by applying a complete solver over the weighted MAX-SAT instance. The MAX-SAT
solver returns an optimizer for the input instance, i.e., the configurationx∗ maximizing the weighted
sum of the terms representinĝf . In order to obtain multiple candidate solutions, we optimize again
f̂ with the additionalhard constraint generated by the disjunction of all the terms off̂ unsatisfied
by x

∗. Unlike the weighted terms, which may or may not be satisfied,hard constraints do not have
a weight value and have to be satisfied. For example, lett1 andt5 be the terms of̂f unsatisfied by
x
∗, then the hard constraint becomes:

(t1 ∨ t5)

If x∗ satisfies all the terms of̂f , the additionalhard constraint generated is:

(¬x∗

1 ∨ ¬x∗

2 . . . ∨ ¬x∗

n)

which excludesx∗ from the feasible solutions set of̂f . The generation of the candidate solutions
is iterated until the desired number of configurations have been generated or the hard constraints
generated made the MAX-SAT instance unsatisfiable. Finally, the DM will rank the new candidate
solutions based on her preferences and the ranking information will be included in the training
examples set for the following refinements off̂ . The mechanism creating the training examples is
motivated by the tradeoff between the selection of good solutions (w.r.t. the current approximation
f̂ of utility function f) and the diversification of the search process.

3 Computational complexity and user cognitive load

The cognitive capabilities of the humans when making decisions limit the numbern of catalog fea-
tures and the sized of the Boolean terms. Therefore, the learning phase (problem 1) is accomplished
in a negligible amount of time (w.r.t. the user response time). Analogous observation holds for the
computational effort required by the search phase. Proposing a query consists of generatingc can-
didates to be ranked. Each candidate is obtained by a run of the complete MAX-SAT solver. Even
if the search space size is2n, the bounded value ofn and the efficient performance of modern SAT
solvers, that can manage problems with thousands of variables and millions of clauses, enable the
completion of the search phase in a negligible amount of time. Finally, the estimation of the cog-
nitive load of the DM isO(c log c), with c being the number of candidates to be ranked. In the
experiments reported here, the value ofc used in the refinement phase varies from5 to 50. Keeping
c low limits the computational effort of the DM. As matter of fact, the DM typically prefers to rank
small batches of good quality solutions rather than a singlelarge batch of candidates, including also
lower quality ones. Therefore, a rule of thumb for the algorithm configuration consists of keeping
the value ofc low and increasing the number of refinement iterations.

4 Optimization Modulo Theory

In the previous sections, we assumed our optimization task could be cast into apropositional
Maximum-Satisfiability problem. However, the formalism ofplain propositional logic is not suitable
or expressive enough to represent many real-world applications. These problems require or are more
naturally described in more expressive theories as first-order logic (FOL), involving quantifiers,
functions and predicates.Optimization Modulo Theoryproblems generalize MAX-SAT problems
by considering the maximum-satisfiability of a FOL formula with respect to a certainbackground
theoryT fixing the interpretation of (some of the) predicate and function symbols.

The extension of our optimization algorithm to handle MAX-SMT problems is straightforward. It
consists of replacing the MAX-SAT with the MAX-SMT solver. Our framework does not need to
be changed, as the effort required to handle non-Boolean encodings is completely performed by the
MAX-SMT solver. When representing user preferences in the SMT setting, the DM utility function

3

f is expressed as a weighted sum of terms, where a term is the conjunction of up tod predicates
defined over the variables in the theoryT . The MAX-SAT solver integrated in the MAX-SMT one
finds a Boolean assignment to the predicates maximizing the learnt utility function. The Theory-
sover is then used to validate this assignment using the rules of the theoryT . Validation amounts
at finding values for the theory variables consistent with the truth assignment of the predicates. If
the validation is successful, the SMT solver stops, returning these variable values. Otherwise, an
additional constraint explaining (i.e., justifying) the unsatisfiability is included in the MAX-SMT
instance and the SAT solver is asked for a new assignment. Thediversification strategy to obtain
multiple candidates solutions is analogous to the case of MAX-SAT.

5 Experimental results

For a realistic application of our preference elicitation technique, consider a customer planning to
build her own house and judging potential housing locationsprovided by a real estate company
(henceforth thehousingproblem). There are different locations available, characterized by different
housing values, prices, constraints about the design of thebuilding (e.g., usually in the city center
you cannot have a family house with a huge garden and pool), etc. The customer may formulate
her judgments by considering a description of the housing locations based on a predefined set of
parameters, including, e.g., crime rate, distance from downtown, location-based taxes and fees, etc.
In addition, she is free to express her own requirements, consisting of financial issues, working
opportunities, personal interests (e.g., the proximity tocommercial facilities or green areas), etc.
As a result, this problem is characterized by a plethora of decisional features whose contribution
to the definition of the user preferences cannot be quantifiedin advance. Many of them may be
uninformative, as they do not represent any decisional criterion for the customer. The set of catalog
features used in our experiments is listed in Table 1.

Table 1: Decisional features for the housing problem.

num feature type
1 house type ordinal
2 garden Boolean
3 garage Boolean
4 commercial facilities in the neighborhood Boolean
5 public green areas in the neighborhood Boolean
6 cycling and walking facilities in the neighborhood Boolean
7 distance from downtown numerical
8 crime rate numerical
9 location-based taxes and fees numerical

10 public transit service quality index numerical
11 distance from high schools numerical
12 distance from nearest free parking numerical
13 distance from working place numerical
14 distance from parents house numerical
15 price numerical

A set of 10 hard constraints (Table 2) defining feasible housing locations and known in advance is
considered. The hard constraints are stated by the customer(e.g., cost bounds) or by the company
(e.g, constraints about the distance of the available locations from user-defined points of interest).
Note that constraints 5, 6, 7 define a linear bi-objective problem among distances from user-defined
points of interest. Prices of potential housing locations are defined as a function of the other features.
For example, price increases if a semi-detached house rather than a flat is selected or in the case of
green areas in the neighborhood. On the other side, e.g., when crime index of potential locations
increases, price decreases. Soft constraints are represented by weighted terms including predicates in
the linear arithmetic theory or Boolean variables, depending on the variable type. For example, one
predicate may model the preference for a location with distance from nearest free parking smaller
than a given threshold, while a Boolean variable encodes, e.g., the aspiration for a house with garage.

We generated a set of 40 predicates. The unknown DM utility function is composed of terms with
two or three predicates, with at least one term with three predicates. The maximum size of terms

4

Table 2: hard feasibility constraints for the housing problem. Parametersρi, i = 1 . . . 13, are
threshold values specified by the user or by the sales personnel.

num hard constraint
1 price≤ ρ1
2 location-based taxes and fees≤ ρ2 => not public green ares in the neighborhood

and notpublic transit service quality index≤ ρ3
3 commercial facilities in the neighborhood=> not (gardenandgarage)
4 crime rate≤ ρ4 => distance from downtown≥ ρ5
5 distance from working place + distance from parents house≥ ρ6
6 distance from working place + distance from high schools≥ ρ7
7 distance from parents house + distance from high schools≥ ρ8
8 distance from nearest free parking≤ ρ9 => not public green areas in the

neighborhood
9 distance from parents house≤ ρ10 => distance from downtown≥ ρ11 andcrime

rate≥ ρ12
10 garden=> house type≥ ρ13

(three) is assumed to be known. Term weights are integer values selected uniformly at random in the
range [1, 100]. Inaccurate preference information can be due to occasional inattention or uncertainty
of the DM in comparing certain solutions. We model this by adding a 0.1 probability of swapping
the correct ranking during feedback.

We run a set of experiments fors = 10, 20, . . . 100 initial training examples to be ranked. The
performance of our algorithm is measured by considering thequality of thebest configuration
at the different iterations for an increasing number of initial training examples. The best con-
figuration is the configuration optimizing the current approximation of the DM utility function.
Its quality is expressed in terms of the approximation errorw.r.t. the gold solution, where the
gold solution is the configuration obtained by optimizing the true DM utility function. Fig. 2 re-
ports the results over a benchmark of 400 randomly generatedutility functions for each of the
following instantiation of the triplet (number of DM features, number of terms, max term size):
{(5, 3, 3), (6, 4, 3), (7, 6, 3), (8, 7, 3), (9, 8, 3), (10, 9, 3)}. The quality of the solution rapidly im-
proves with a larger number of examples and the algorithm succeeds in exploiting its active learning
strategy.

5.1 DM utility function reconstruction

Our method does not need to learn the exact form of the DM utility function. The goal of our
approach is indeed to elicit as few preference information from the DM as possible in order to
identify her favourite solution (learning to optimize). For example, consider the toy DM utility
function represented by the negation of a single ternary term: ¬(x1 ∧ x2 ∧ x3). The approximation
of the DM utility function consisting, e.g., of the formula¬x1 is sufficient to find the favourite DM
solution. More in general, only the shape of the utility function locally guiding the search to the
correct direction is actually needed.

6 Discussion

This work presented an interactive optimization strategy for combinatorial problems over an un-
known utility function. A generic framework is introduced,enabling the adoption of off-the-shelf
learning methods and MAX-SMT solvers. 1-norm regularization is employed to enforce sparsity of
the learnt function. Thanks to the MAX-SMT formalism, our approach can handle a large class of
relevant optimization tasks.

Our algorithm can be generalized in a number of directions. The learning stage is based on support
vector ranking, with the ranking loss function formulated as correctly ordering each pair of instances.
More complex ranking losses have been proposed in the literature (see for instance [6]), especially to
increase the importance of correctly ranking the best solutions, and could be combined with 1-norm

5

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

3 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

4 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

6 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

7 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

8 terms

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

train exa

pe
rf

or
m

an
ce

9 terms

Figure 2: Learning curves observed at different iterationsof our algorithm. They-axis reports the
approximation error, while thex-axis contains the number of initial training examples. Approxima-
tion error is the difference between the utility of the solution optimizing the current approximation
of the DM preference function and the utility of the gold solution, i.e., the favourite DM solution
(see text for details). Red, green and cyan colors show the performance of the algorithm at the first,
the second and the third iteration, respectively.

regularization. Retaining the need for sparse features learning, Bayesian approaches to preference
elicitation [4] could also be investigated in order to further reduce the cognitive burden for the DM.

In this paper the experimental evaluation is focused on small-scale problems, typical of an interac-
tion with a human DM. In principle, when combined with appropriate SMT solvers, our approach
could be applied to larger real-world optimization problems, whose formulation is only partially
available. In this case, alocal searchalgorithm rather than a complete solver can be used during
the optimization stage. However, the cost of requiring an explicit representation of all possible con-
junction of predicates (even if limited to the unknown part)would rapidly produce an explosion of
computational and memory requirements. An option consistsof resorting to an implicit represen-
tation of the function to be optimized, as in 2-norm kernel machines. However, our preliminary
results [5] showed this to produce worse results for the lackof sparsification in feature space. Ker-
nelized versions of zero-norm regularization [9] could be tried to address this shortcoming. On the
other hand, the lack of an explicit formula would prevent theuse of all the efficient refinements of
SMT solvers, based on a tight integration between SAT and theory solvers.

Finally, another direction for future research is the extension of our approach to handle feedback
from multiple DMs [10]. In particular, an interesting case study is the exploitation of preferences of
previous DMs to minimize the elicitation effort for a new user [2].

References

[1] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. InHandbook of
Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

[2] E. Bonilla, S. Guo, and S. Sanner. Gaussian process preference elicitation. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,Advances in Neural Information Processing Systems
23, pages 262–270. 2010.

[3] C. Boutilier, K. Regan, and P. Viappiani. Simultaneous elicitation of preference features and utility. In
Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence, pages 1160–1167, Atlanta,
USA, July 2010.

6

[4] D. Braziunas. Computational approaches to preference elicitation.Technical report, Department of Com-
puter Science, University of Toronto, 2006.

[5] P. Campigotto, A. Passerini, and R. Battiti. Active learning of combinatorial features for interactive
optimization. InLION V: Learning and Intelligent OptimizatioN Conference, Rome, Italy, Jan 17-21,
2011, LNCS. Springer Verlag, 2011.

[6] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Structured learning for non-smooth ranking
losses. In14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
88–96. ACM, 2008.

[7] A. Cimatti, A. Franzen, A. Griggio, R. Sebastiani, and C. Stenico. Satisfiability Modulo the Theory
of Costs: Foundations and Applications. In Javier Esparza and Rupak Majumdar, editors,Tools and
Algorithms for the Construction and Analysis of Systems, volume 6015 ofLNCS, pages 99–113. Springer,
2010.

[8] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Elicitation Strategies for Soft Constraint
Problems with Missing Preferences: Properties, Algorithms and Experimental Studies.Artificial Intelli-
gence Journal, 174(3-4):270–294, 2010.

[9] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero norm with linear models and
kernel methods.Journal of Machine Learning Research, 3:1439–1461, 2003.

[10] Yan Yan, Romer Rosales, Glenn Fung, and Jennifer Dy. Active learning from crowds. InProceedings of
the 28th International Conference on Machine Learning.

7

