
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Inducing Sparse Programs for Learning Modulo Theories

Stefano Teso TESO@DISI.UNITN.IT

DISI, University of Trento, Italy

Andrea Passerini PASSERINI@DISI.UNITN.IT

DISI, University of Trento, Italy

Abstract
The ability to learn hybrid Boolean-numerical
concepts is crucial in “learning to design” tasks,
that is, learning applications where the goal is to
learn from examples how to perform automatic
de novo design of novel objects. Recently Learn-
ing Modulo Theories, an extension of Structured
Output SVMs leveraging state-of-the-art logical-
numerical optimization techniques, has been pro-
posed as a viable approach to performing in-
ference and parameter learning in this setting.
Like other statistical-relational learning methods,
LMT presupposes the availability of a set of con-
straints that act as feature functions over the ob-
jects. Designing such constraints by hand re-
quires a great deal of domain knowledge and may
not always be practical. In this paper we tackle
the challenging problem of automatically induc-
ing the constraints from data. We cast constraint
learning as a (non-trivial) sparse ranking prob-
lem, and sketch an approximate solution strategy
using convex programming.

1. Introduction
Constructive learning encompasses a number of “learning
to design” tasks, i.e. applications where the goal is to
learn from examples how to perform automatic design of
novel objects. In many cases such tasks involve hybrid
structured objects composed by a mixture of Boolean and
numerical variables. Prototypical examples include auto-
mated/interactive layout synthesis (Yang et al., 2013; Haus-
ner, 2001), where the task is to find an optimal 2D lay-
out constrained by logical and spatial relations between
building blocks; procedural generation of game content
and automated level design (Hendrikx et al., 2013); and

Preliminary work. Under review by the Constructive Machine
Learning workshop @ ICML 2015. Do not distribute.

many synthetic biology problems such as automated design
and optimization of chemical reaction networks (Fagerberg
et al., 2012; Yordanov et al., 2013).

Researchers in automated reasoning and formal verifica-
tion have developed logical languages and reasoning tools
that allow for natively reasoning over mixtures of Boolean
and numerical variables (or even more complex structures).
These languages are grouped under the umbrella term of
Satisfiability Modulo Theories (SMT) (Barrett et al., 2009).
Each such language corresponds to a decidable fragment
of First-Order Logic augmented with an additional back-
ground theory T , like linear arithmetic over the ratio-
nals LRA or over the integers LIA. SMT is a decision
problem, which consists in finding an assignment to both
Boolean and theory-specific variables making an SMT for-
mula true. Recently, researchers have leveraged SMT from
decision to optimization. The most general framework is
that of Optimization Modulo Theories (OMT) (Sebastiani
& Tomasi, 2015), which consists in finding a model for a
formula which minimizes the value of some (arithmetical)
cost function defined over the variables in the formula.

We recently proposed Learning Modulo Theories (LMT) as
a viable approach to learning in hybrid constructive prob-
lems (Teso et al., 2014). LMT is an instance of Structured-
output Support Vector Machines (Tsochantaridis et al.,
2005) that operates directly over combinations of Boolean
and rational variables. The OMT machinery is employed
by LMT to enable efficient inference and parameter learn-
ing.

In this paper we consider the problem of learning the struc-
ture of LMT problems from data. We formulate the corre-
sponding optimization problem as a non-trivial sparse rank-
ing problem, and outline both exact and heuristic learning
strategies.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Inducing Sparse Programs for Learning Modulo Theories

Symbol Meaning
x := (xB ,xC) Complete object
xB ∈ {>,⊥}` Boolean variables
xC ∈ Qm Rational variables
φk := xBk Boolean atomic constraints
φk := a>k x

C + bk Rational atomic constraints
{Ci, Cij , Cijk} Term constraints
ψ(x) Feature representation of x
A, b Learned atomic hyperplanes
w Learned term weights

Table 1. Explanation of the notation used throughout the text.

2. Background on LMT
In the LMT setting each object x := (xB ,xC) is encoded
as a vector of Boolean and rational variables:

xB ∈ {>,⊥}` xC ∈ Qm

The Boolean variables encode the truth value of predicates
while the rational variables represent the continuous com-
ponents of the object. The feature representation of an ob-
ject is determined by a finite set of (soft) constraints {ϕi},
each constraint ϕi being either a Boolean- or linear alge-
braic formula on the variables of the object x. An example
constraint may look like:

fat(x) ⇐⇒ ((width(x) > 2× height(x)) ∨
(weight(x) > 200))

These constraints are typically constructed using the back-
ground knowledge available for the domain. For each
Boolean-valued constraint ϕi, we denote its indicator func-
tion as 1i(x), which evaluates to 1 if the constraint is satis-
fied and to 0 otherwise. Similarly, we refer to the indicator
function of a rational-valued constraint ϕi as ci(x) ∈ Q:
more specifically, the costs ci are linear functions of the ra-
tional variables xC . The feature vector ψ(x) is obtained
by concatenating indicator and cost functions of Boolean
and rational constraints respectively.

The LMT score associated to an object x is defined as a
linear function of the feature representation of x, f(x) :=
w>ψ(x); the weight vector w is to be learned. Given
a partially observed object x = (I;O), where the vari-
ables in I are observed and those in O are not, inference
amounts to finding the value of O that maximizes the total
score: O∗ := argmaxOw

>ψ((I;O)). Parameter learn-
ing is formulated in a max-margin structured output set-
ting (Tsochantaridis et al., 2005) and solved approximately
using a Cutting Plane (CP) algorithm (Joachims et al.,
2009). The sub-problems generated by the CP procedure
can be cast as optimization modulo LRA problems and

solved with an appropriate tool (we use the OPTIMATH-
SAT solver1). Please see (Teso et al., 2014) for more de-
tails.

3. Inducing Sparse LMT Programs
Our aim is to automatically induce the set of Boolean and
linear algebraic constraints {ϕi} from a collection of pos-
itive and negative labelled objects. In this paper we focus
on inducing weighted MAX-SMT programs, i.e. programs
where the feature functionψ includes only indicator terms.
This formulation is general enough to capture a number of
interesting hybrid constructive problems. The assumption
underlying our method is that although the search space
may include arbitrarily complex programs, we seek to learn
a sparse program: only few variables and constraints are
relevant for discriminating between good and bad quality
objects.

We assume an upper bound n on the number of linear in-
equalities in the problem2, each represented as a>i x

C +
bi ≥ 0, i = 1, . . . , n, where xC is the rational part of the
object x. The Boolean atomic constraints are defined as
φk ⇐⇒ xBk , k = 1, . . . , `, while the atomic constraints
on the rational variables are φk ⇐⇒ a>k x

C + bk ≥ 0,
k = `+ 1, . . . , `+ n.

Terms are formed by conjunctions of up to d atomic con-
straints, including negations, e.g. for d = 3:

∀i, j, k ∈ [1, 2(`+ n)]

Ci ⇐⇒ φi

Ci,j ⇐⇒ φi ∧ φj
Ci,j,k ⇐⇒ φi ∧ φj ∧ φk

where if i > ` + n then φi = ¬φi−`−n. The choice of
d affects the degree of “non-linearity” of the learned pro-
gram, and therefore the difficulty of the learning problem3

The feature function ψ is the concatenation of all term in-
dicators:

ψ(x) := (1(C1), . . . ,1(C2(`+n),2(`+n),2(`+n))) (1)

The corresponding LMT score function can be seen as a
“soft” DNF over the terms {Ci} ∪ {Ci,j} ∪ {Ci,j,k} and
weights w. The role of the Boolean variables xB is that
of selecting the subsets of term constraints that are en-
abled/disabled for the example x. A summary of the no-
tation introduced so far can be found in Table 1.

1http://optimathsat.disi.unitn.it/
2An iterative approach progressively increasing this number

until a satisfactory solution is found could be conceived.
3As for the number of linear inequalities n, d could be in-

creased in an iterative fashion to learn progressively more com-
plex programs.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Inducing Sparse Programs for Learning Modulo Theories

Now let the matrix A be the result of vertically stacking
the rows a>i , and b := (b1, . . . , bn). Our goal is to learn
an LMT problem that constructs good quality (positive) ob-
jects, so we require each positive object to score higher than
any negative one. This insight can be formalized as:

min
w,A,b

‖w‖1 + λ‖A‖? (2)

s.t. ∀x ∈ pos,x′ ∈ neg
w>ψ(x) > w>ψ(x′) + ∆(x,x′)

where the constraints impose that objects are ranked cor-
rectly and ∆ is a structured loss quantifying the dissimilar-
ity between x and x′, such as the Hamming loss in instance
space:

∆(x,x′) :=
∑̀
i=1

1(xB
i 6= x′Bi) +

m∑
i=1

|xC
i − x′Ci |

The `1 regularization onw limits the number of active term
constraints (i.e. with non-zero weight), while the ‖·‖? norm
on A is chosen as to encourage learning sparse decision
hyperplanes (see next section for details).

A naive method to solve the above minimization problem
is to encode it as an OMT(LRA) problem and solve it ac-
cordingly. OMT solvers however focus on finding globally
optimal solutions, which is intractable for general LMT
structure learning problems. In the next section we sketch
a tractable approximate solution technique.

4. An Approximate Solution Strategy
We approximate the problem by decoupling the optimiza-
tion of w and (A, b). In the first step we attempt to deter-
mine a sparse set of non-redundant hyperplanes that sep-
arate positive from negative objects. This can be done by
solving the following convex problem:

min
A,b

λ2‖A‖1,2 + λ1‖A‖1,1 (3)

s.t. ∀x ∈ pos Ax+ b ≥ 0

∀x ∈ pos,x′ ∈ neg∑
i

(Ax+ b)i >
∑
i

(Ax′ + b)i

The group lasso ‖A‖1,2 =
∑n

i=1 ||ai||2 encourages
sparsity over the rows of A, i.e. over the set of
atoms/hyperplanes, and ‖A‖1,1 =

∑
i

∑
j |aij | encourages

sparsity of the individual weights. This regularization func-
tional is called sparse group lasso (Friedman et al., 2010),
and encourages the hyperplanes to be non-redundant (at the
atomic constraint level). Learning ai = 0 essentially dis-
cards the ith atomic constraint.

The hyperplanes determined in the first step can be used to
precompute the feature representation ψ(x) (see Eq. 1) for

all examples x. Findingw equates to solving the following
linear problem:

min
w

‖w‖1

s.t. ∀x ∈ pos,x′ ∈ neg
w>ψ(x) > w>ψ(x′) + ∆(x,x′)

where the number of constraints is quadratic in the number
of examples.

Note that the first step only deals with linear combinations
of atomic constraints, which are non-linearly combined in
the second step only. As a consequence, this approach fails
to identify atomic constraints having an exclusively non-
linear role. In order to lift this limitation we plan to learn
hyperplanes whose combination is discriminative with re-
spect to the objects, e.g. by replacing the comparison in
Eq 3 with a non-linear one such as:

∀x ∈ pos f(Ax+ b) ≥ 0

∀x ∈ pos,x′ ∈ neg∑
i

(f(Ax+ b))i >
∑
i

(f(Ax′ + b))i

where f is an inhomogeneous (multi-valued) polynomial.
The resulting mathematical problem however is much
harder to handle.

The quality of the solution depends crucially on the qual-
ity of the hyperplanes found in the first step. While in-
tuitively looking for diverse hyperplanes should provide a
good starting point, we currently have no guarantees on
the quality of said hyperplanes with respect to the original
objective function (Eq. 2). We leave the required detailed
analysis to future work.

5. Related Work
Structure learning of statistical-relational models is fre-
quently cast to Inductive Logic Programming (see
e.g. (Huynh & Mooney, 2008)) followed by a separate
weight learning stage; or solved via custom methods.
Purely logical approaches however are not directly appli-
cable to hybrid Boolean-continous problems. As a mat-
ter of fact, little attention has been given to learning the
structure of hybrid statistical-relational models. To the best
of our knowledge, the only study tackling this challenging
problem is (Ravkic et al., 2015). Ravkic and colleagues
propose a technique for learning the structure of hybrid re-
lational dependency networks. Assuming that the candi-
date structure scoring function is decomposable, the pro-
cedure of (Ravkic et al., 2015) allows to learn both the de-
pendency structure and the conditional probability table for
each predicate in the network using a clever decomposition
technique. However, unlike LMT, hybrid relational depen-

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Inducing Sparse Programs for Learning Modulo Theories

dency networks do not allow to express linear arithmetical
constraints over the continuous variables.

Related decoupling strategies have been proposed for
learning the structure of Bayesian Networks. Under the
condition that the structure scoring function decomposes
over the parent sets of the network, structure learning can
be cast as an (exponentially large but extremely sparse)
constrained integer linear programming instance (Cussens
& Bartlett, 2013), where the constraints ensure that the
learned structure is acyclic. Efficient optimization schemas
for this kind of problem have been devised, see (Cussens
& Bartlett, 2013) for a review. These techniques however
do not support parameter and structure learning jointly, as
is the case in our problem.

Another related line of research is that of global param-
eter learning for linear decision trees, i.e. decision trees
with linear classifiers at each node. Such DTs can be seen
as a simple instance of SMT program in disjunctive nor-
mal form. In (Bennett, 1994) Bennet proposes a global
(non-greedy) parameter learning technique for such mod-
els. Bennet defines the total loss as a polynomial of local
hinge losses over individual nodes, which turns parameter
learning into a non-convex multilinear program. The tech-
nique assumes the structure of the DT to be known in ad-
vance. While it could in principle used as a sub-procedure
within an iterative LMT constraint learner, it is not imme-
diately clear how it would compare in terms of solution
quality and runtime against our proposed approximate pro-
cedure.

6. Conclusions
In this paper we presented a formulation of LMT constraint
learning for the case of MAX-SMT programs by casting it
as a sparse ranking problem. We also outlined a decoupled
greedy procedure that allows to find approximate solutions,
and highlighted some methods that may allow to alleviate
the greediness of the current approximate strategy. Further
work on the subject involves of course validating the pro-
posed approach on real-world data, and evaluating alterna-
tive approximate solution strategies.

References
Barrett, C., Sebastiani, R., Seshia, S. A., and Tinelli, C.

Satisfiability Modulo Theories, chapter 26, pp. 825–885.
Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009. ISBN 978-1-58603-929-5.

Bennett, Kristin P. Global tree optimization: A non-greedy
decision tree algorithm. Computing Science and Statis-
tics, pp. 156–156, 1994.

Cussens, James and Bartlett, Mark. Advances in bayesian

network learning using integer programming. arXiv
preprint arXiv:1309.6825, 2013.

Fagerberg, R., Flamm, C., Merkle, D., and Peters, P. Ex-
ploring chemistry using smt. In CP’12, pp. 900–915,
2012.

Friedman, J., Hastie, T., and Tibshirani, R. A note on the
group lasso and a sparse group lasso. arXiv preprint
arXiv:1001.0736, 2010.

Hausner, Alejo. Simulating decorative mosaics. In SIG-
GRAPH ’01, pp. 573–580, 2001.

Hendrikx, Mark, Meijer, Sebastiaan, Van Der Velden, Jo-
eri, and Iosup, Alexandru. Procedural content generation
for games: A survey. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOM-
CCAP), 9(1):1, 2013.

Huynh, Tuyen N and Mooney, Raymond J. Discrimina-
tive structure and parameter learning for markov logic
networks. In Proceedings of the 25th international con-
ference on Machine learning, pp. 416–423. ACM, 2008.

Joachims, Thorsten, Finley, Thomas, and Yu, Chun-
Nam John. Cutting-plane training of structural svms.
Machine Learning, 77(1):27–59, 2009.

Ravkic, Irma, Ramon, Jan, and Davis, Jesse. Learning rela-
tional dependency networks in hybrid domains. Machine
Learning, pp. 1–38, 2015.

Sebastiani, Roberto and Tomasi, Silvia. Optimization Mod-
ulo Theories with Linear Rational Costs. ACM Transac-
tions on Computational Logics, 16, 2015.

Teso, Stefano, Sebastiani, Roberto, and Passerini, An-
drea. Structured learning modulo theories. To appear
in Artificial Intelligence Journal, 2014. URL http:
//arxiv.org/abs/1405.1675.

Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann,
Thomas, and Altun, Yasemin. Large margin methods for
structured and interdependent output variables. J. Mach.
Learn. Res., 6:1453–1484, December 2005.

Yang, Yong-Liang, Wang, Jun, Vouga, Etienne, and
Wonka, Peter. Urban pattern: Layout design by hier-
archical domain splitting. ACM Trans. Graph., 32(6):
181:1–181:12, November 2013.

Yordanov, Boyan, Wintersteiger, Christoph M., Hamadi,
Youssef, and Kugler, Hillel. Smt-based analysis of bi-
ological computation. In NASA Formal Methods Sympo-
sium 2013, pp. 78–92, May 2013.

http://arxiv.org/abs/1405.1675
http://arxiv.org/abs/1405.1675

