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Abstract

Generally speaking, the goal of constructive learning could be seen as, given an
example set of structured objects, to generate novel objects with similar properties.
From a statistical-relational learning (SRL) viewpoint, the task can be interpreted
as a constraint satisfaction problem, i.e. the generated objects must obey a set
of soft constraints, whose weights are estimated from the data. Traditional SRL
approaches rely on (finite) First-Order Logic (FOL) as a description language,
and on MAX-SAT solvers to perform inference. Alas, FOL is unsuited for con-
structive problems where the objects contain a mixture of Boolean and numerical
variables. It is in fact difficult to implement, e.g. linear arithmetic constraints
within the language of FOL. In this paper we propose a novel class of hybrid SRL
methods that rely on Satisfiability Modulo Theories, an alternative class of for-
mal languages that allow to describe, and reason over, mixed Boolean-numerical
objects and constraints. The resulting methods, which we call Learning Mod-
ulo Theories, are formulated within the structured output SVM framework, and
employ a weighted SMT solver as an optimization oracle to perform efficient in-
ference and discriminative max margin weight learning. We also present a few
examples of constructive learning applications enabled by our method.

1 Introduction

Traditional statistical-relational learning (SRL) methods allow to reason and make inference about
relational objects characterized by a set of soft constraints [[L]. Most methods rely on some form
of (finite) First-Order Logic (FOL) to encode the learning problem, and define the constraints as
weighted logical formulae. In this context, maximum a posteriori inference is often interpreted
as a (partial weighted) MAX-SAT problem, i.e. finding a truth value assignment of all predicates
that maximizes the total weight of the satisfied formulae; moreover, MAX-SAT plays a role in
maximum likelihood inference as well. In order to solve this problem, SRL methods may rely on
one of the many efficient, approximate solvers available. One issue with these approaches is that
First-Order Logic is not suited for reasoning over hybrid variables. The propositionalization of an
n-bit integer variable requires n distinct binary predicates, which account for 2™ distinct states,
making naive translation impractical. In addition, FOL offers no efficient mechanism to describe
simple operators between numerical variables, like comparisons (e.g. “less-than”, “equal”) and
arithmetical operations (e.g. summation), limiting the range of realistically applicable constraints to
those based solely on logical connectives.

In order to side-step these limitations, researchers in automated reasoning and formal verification
have developed more appropriate logical languages that allow to natively reason over mixtures of
Boolean and numerical variables (or more complex algebraic structures). These languages are
grouped under the umbrella term of Satisfiability Modulo Theories (SMT) [2]. Each such language
corresponds to a decidable fragment of First-Order Logic augmented with an additional background
theory 7. There are many such background theories, including those of linear arithmetic over the



rationals £LA(Q) and integers L.A(Z), among others [2]. In SMT, a formula can contain Boolean
variables (i.e. logical predicates) and connectives, mixed with symbols defined by the theory T, e.g.
rational variables and arithmetical operators. For instance, the SMT(L.A(Q)) syntax allows to write
constraints such as:

HasProperty(x) = ((a + b) > 1024 - ¢)

where the variables are Boolean (the truth value of HasProperty) and rational (a, b, and ¢). More
specifically, SMT is the decision problem of finding a variable assignment that makes all logical and
theory-specific formulae true, and is analogous to SAT. Recently, researchers have leveraged SMT
for optimization [3]]. In particular, MAX-SMT requires to maximize the rotal weight of the satisfied
formulae; Optimization Modulo Theories, or OMT, requires to maximize the amount of satisfaction
of all weighted formulae, and strictly subsumes MAX-SMT. Most important for the scope of this
paper is that there are high quality MAX-SMT (and OMT) solvers, which (at least for the 3V and
LA(Q) theories) can handle problems with a large number of hybrid variables.

There is relatively little previous work on hybrid SRL methods. Most current approaches are
direct generalizations of existing SRL methods [1]. Hybrid Markov Logic networks [4] extend
Markov Logic by including continuous variables, and allow to embed numerical comparison oper-
ators (namely #, > and <) into the constraints by defining an ad hoc translation of said operators
to a continuous form amenable to numerical optimization. Inference relies on an MCMC proce-
dure that interleaves calls to a MAX-SAT solver and to a numerical optimization procedure. This
results in a very expensive iterative process, which can hardly scale with the size of the problem.
Conversely, MAX-SMT and OMT are specifically designed to tightly integrate a theory-specific and
a SAT solver, and we expect them to perform very efficiently. Some probabilistic-logical methods,
e.g. ProbLog [5]] and PRISM [6], have also been modified to deal with continuous random variables.
These models, however, rely on probabilistic assumptions that make it difficult to implement fully
expressive constraints in, e.g. linear arithmetic, in their formalism. While there are other interesting
hybrid and continuous approaches in the literature, we skip over them due to space restrictions.

In this paper we propose Learning Modulo Theories (LMT), a class of novel hybrid statistical re-
lational learning methods. By combining the flexibility of structured output Support Vector Ma-
chines [[7] and the expressivity and Satifiability Modulo Theories, LMT is able to perform learning
and inference in mixed Boolean-numerical domains. Thanks to the efficiency of the underlying
OMT solver, and of the discriminative max-margin weight learning procedure we propose, we ex-
pect LMT to scale to large constructive learning problems. Furthermore, LMT is generic, and can in
principle be applied to any of the existing SMT background theories. In the following two sections
we give a short overview of SMT and detail how it can be employed with the structured output SVM
framework, then we describe a few applications that can be tackled with our approach.

2 Satisfiability Modulo Theories

Propositional satisfiability, or SAT, is the problem of deciding whether a logical formula over
Boolean variables and logical connectives can be satisfied by some truth value assignment of the
variables. Satisfiability Modulo Theories, or SMT, generalize SAT problems by considering the sat-
isfiability of a formula with respect to a background theory T [2l]. The latter provides the meaning
of predicates and function symbols that would otherwise be difficult to describe, and reason over,
in classical logic. SMT is fundamental in mixed Boolean domains, which require to reason about
equalities, arithmetic operations and data structures. Popular theories include, e.g. those of lin-
ear arithmetic over the rationals £.A4(Q) or integers L.A(Z), bit-vectors BV, strings ST, and others.
Most current SMT solvers are based on a very efficient lazy procedure to find a satisfying assignment
of the Boolean and the theory-specific variables: the search process alternates calls to an underlying
SAT procedure and a specialized theory-specific solver, until a solution satisfying both solvers is re-
trieved, or the problem is found to be unsatisfiable. Recently, researchers have developed methods to
solve the SMT equivalent of MAX-SAT and more complex optimization problems [§]]. In particular,
MAX-SMT requires to maximize the total weight of the satisfied formulae; Optimization Modulo
Theories, or OMT, requires to maximize the amount of satisfaction of all formulae, modulated by the
formulae weights. Clearly, OMT is strictly more expressive than MAX-SMT. There are a number
of very efficient MAX-SMT packages available, specialized for a subset of the available theories,
such as MathSAT 5 [9], Yices [[10], Barcelogic [11], which can deal with industrial grade problems.
MAX-SMT solvers have been previously exploited to perform e.g., formal microcode verification



at Intel [9] and large-scale circuit analysis in synthetic biology [12]]. Most important for the goal of
this paper, the MathSAT 5 solver also supports full-fledged OMT problems in the LA(Q) theory of
linear arithmetic [8]].

3 Method Overview

Structured output SVMs [[7] are a very flexible framework that generalizes max-margin methods to
the case of multi-label classification with exponentially many classes. In this setting, the associa-
tion between inputs x € X and outputs y € )Y is controlled by a so-called compatibility function
f(x,y) = wI'¥(x,y), defined as a linear combination of the joint feature space representation ¥
of the input-output pair and a vector of learned weights w. Inference reduces to finding the most
compatible output y* for a given input x:

y* = argmax f(x,y) = argmax w’ ¥(x,y) (1)
yey yey

Performing inference is non-trivial, since the maximization ranges over an exponential number of
possible outputs.

In order to learn the weights from a training set of n examples {(x;,y:)};—; C X x Y, we need
to define a non-negative loss function A(y;,y) that quantifies the penalty incurred when predicting
y instead of the correct output y;. Weight learning can then be expressed, following the margin
rescaling formulation [7], as finding the weights w that jointly minimize the training error £ and the
model complexity:

. C
argmin ||wlj2 + — Z& (2)
weERd £ERP n- =

st wh(W(x,y:) —O(xi,y) > Alysy) =&  Vi=1,....my #vy;

Here the constraints require that the compatibility between x; and the correct output y; is always
higher than that with all wrong outputs y’, with &; playing the role of per-instance violations. Weight
learning is a quadratic program, and can be solved very efficiently with a cutting-plane algorithm [[7].
Since in Eq [2| there is an exponential number of constraints, it is infeasible to naively account for
all of them during learning. Based on the observations that the constraints obey a subsumption
relation, the CP algorithm [[13] sidesteps the issue by keeping a working set of active constraints:
at each iteration, it augments the working set with the most violated constraint, and then solves the
corresponding reduced quadratic program. The procedure is guaranteed to find an e-approximate
solution to the QP in a polynomial number of iterations, independently of the cardinality of ) and
the number of examples n [7]].

The CP algorithm is generic, meaning that it can be adapted to any structured prediction problem
as long as it is provided with: i) a joint feature space representation ¥ of input-output pairs (and
consequently a compatibility function f); ii) an oracle to perform inference, i.e. Equation (I} iii) an
oracle to retrieve the most violated constraint of the QP, i.e. solve the separation problem:

argmaxw’ W(x;,y") + Alyi, y') 3)
y/

The oracles are used as sub-routines during the optimization procedure. Efficient implementations
of the oracles are fundamental for the prediction to be tractable in practice. For a more detailed
exposition, please refer to [7]]. In the following we provide exactly the three ingredients required
to apply the structured output SVM framework for predicting hybrid boolean-continuous possible
worlds.

We first define the LMT joint feature space of possible words z = (x,y). Our definition is grounded
on the concept of violation or cost incurred by z with respect to a set of SMT formulae. Given m
formulae /' = {f;}}";, we define the feature vector Wr(z) = (¢, (2), ..., ¥y, (2)) as the
collation of m per-formula cost functions s (z). In the simplest case, the individual components
1y are indicator functions, termed boolean costs, that evaluate to 0 if z satisfies f, and to 1 otherwise.
The LMT compatibility function, written as f(z) = w’ W (z), represents the fotal cost incurred
by a possible world: each unsatisfied formula f; contributes an additive factor w; to ¥, while



satisfied formulae carry no contribution. Two possible worlds z and z’ are therefore close in feature
space if they satisfy/violate similar sets of constraints.

Since we want the formulae to hold in the predicted output, we want to minimize the total cost of the
unsatisfied rules, or equivalently maximize its opposite: argmaxy ¢y, —wTW¥(x,y). The resulting
optimization problem is identical to the original inference problem in Equation|[T} as the minus at the
RHS can be absorbed into the learned weights. By defining an appropriate loss function, such as the
Hamming loss A(y,y’) = >_, I(y; # y7}). it turns out that both Eq. |I|and Eq can be interpreted
as MAX-SMT problems. This observation enables us to use a MAX-SMT solver to implement the
two oracles required by the CP algorithm, and thus to efficiently solve the learning task. Note also
that hard constraints, i.e. formulae with infinite weight, can also be included in the SMT problem.

The above definition of per-formula boolean cost 1)y is only the simplest option. A more refined
alternative, applicable to formulae with only numerical variables, is to employ a linear cost of the
assignment z and the constants appearing in the formula f, as follows:

by<e(y) =max(y —c,0)  Pyse(y) =max(c —y,0)  dy=c =y —¢|

For instance, given f = ¢+ y < 5and z = (x,y) = (4,3), the amount of violation would
be ¥¢(z) = max((x +y) — 5,0) = 2, while for z = (1,5) the cost would be 0 (since f is
satisfied). Applying linear costs has two consequences. First, they allow to enrich the feature space
with information about the amount of violation of any linear formula f: an unsatisfied formula
contributes w; - ¢, (z) to Wr. Second, since the cost of unsatisfied constraints depends on the
value of the numerical variables involved, the resulting inference and separation oracles can not be
solved using MAX-SMT, but require a full-fledged OMT solver. More complex cost functions can
be developed for mixed boolean-numerical formulae (consider e.g. (y > 10) = (a Vb)), for instance
by summing the violations of the individual clauses. One issue with this formulation is that, since the
cost of continuous clauses is unbounded, inference may have a bias towards satisfying continuous
clauses rather than the Boolean ones; this problem however is shared by all hybrid satisfaction-based
models.

4 Applications

There are a number of applications involving both Boolean and numerical constraints, such as en-
vironment learning for robot planning [4] and the modeling of gene expression data [14]. Here
we describe two of them, to illustrate the flexibility and expressive power of LMT. We postpone a
formal definition of these problems to a future publication, due to space restrictions.

Activity recognition [[15]] is the problem of determining which human activities y; have produced
a given set of sensor observations x; at each time instant ¢. Here the activities are understood
to be common everyday tasks such as “having breakfast”, “watching TV” or “taking a shower”.
The observations are taken from sensors deployed in a smart environment (e.g. an instrumented
home/hospital), and may include different sensory channels such as video, audio, the agent’s posi-
tion, posture, heartbeat, efc. Activity recognition is typically cast as a fagging problem in discrete
time, and tackled by means of probabilistic temporal models. In real-world scenarios the activities
are often concurrent and inter-related, in which case Factorial versions of Hidden Markov Mod-
els or Conditional Random Fields are used. Unfortunately, training these models is intractable.
With LMT we take a rather different route, and cast activity recognition as a form of data-driven
scheduling in continuous time. Allen’s interval temporal logic (ITL) [[16] is an intuitive formal lan-
guage to express relations between temporal events. ITL provides primitives such as before(a,b),
after(a,b), overlaps(a,b), during(a,b), equal(a,b). These predicates can be straightfor-
wardly translated to linear arithmetic constraints, and therefore easily implemented in LMT. The
combination of ITL and FOL allows to express concurrent, interdependent, nested and hierarchical
activities, and to specify the likely duration of activities and intervals between them. Consider for
instance constraints such as “breakfast occurs within an hour after waking up”, and “cooking a dish
involves interacting with at least three ingredients, in a specific order”. Using similar constraints,
LMT would be able to generate a scheduling of the activities that is consistent with respect to the
observations and with the (soft) constraints.

Another interesting application is the housing problem [17]], which is just one instance of a class
of weighted constraint satisfaction problems that routinely occur in logistics. Consider a customer



planning to build her own house and judging potential housing locations provided by a real estate
company. There are different locations available, characterized by different housing values, prices,
constraints about the design of the building (e.g a minimum distance to other buildings), efc. A
description of the customer preferences and requirements may be given in SMT, in order to express
them with both Boolean and numerical constraints, e.g., the crime rate, distance from downtown,
location-based taxes, public transit service quality, maxiumum walking or cycling distances to the
closest facilities. The underlying optimization problem is clearly an instance of MAX-SMT, and
LMT can be used to efficiently learn the formula weights from user-provided data. We have already
developed a MAX-SMT-based prototype to solve the housing problem in an active learning setting,
by using an interactive preference elicitation mechanism to learn the relative importance of the
various constraints for the customer which has shown encouraging results [17].

References

[1] Lise Getoor and Ben Taskar. Introduction to statistical relational learning. The MIT press,
2007.

[2] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability modulo
theories. Handbook of satisfiability, 185:825-885, 2009.

[3] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. A
modular approach to maxsat modulo theories.

[4] Jue Wang and Pedro Domingos. Hybrid markov logic networks. In AAAI volume 8, pages
1106-1111, 2008.

[5] Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. Extending problog with continuous
distributions. In Inductive Logic Programming, pages 76-91. Springer, 2011.

[6] Muhammad Asiful Islam, CR Ramakrishnan, and IV Ramakrishnan. Parameter learning in
prism programs with continuous random variables. arXiv preprint arXiv:1203.4287, 2012.

[7] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large
margin methods for structured and interdependent output variables. In Journal of Machine
Learning Research, pages 1453—1484, 2005.

[8] Roberto Sebastiani and Silvia Tomasi. Optimization in smt with £A4(Q) cost functions. In
Automated Reasoning, pages 484—498. Springer, 2012.

[9] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
mathsat5 smt solver. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 93—107. Springer, 2013.

[10] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at http://yices. csl.
sri. com/tool-paper. pdf, 2:2, 2006.

[11] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell, and Albert
Rubio. The barcelogic smt solver. In Computer Aided Verification, pages 294-298. Springer,
2008.

[12] Boyan Yordanov, Christoph M Wintersteiger, Youssef Hamadi, Andrew Phillips, and Hillel
Kugler. Functional analysis of large-scale dna strand displacement circuits. In DNA Computing
and Molecular Programming, pages 189—-203. Springer, 2013.

[13] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of struc-
tural svms. Machine Learning, 77(1):27-59, 2009.

[14] Ondiej KuZelka, Andrea Szabdova, Maté&j Holec, and Filip Zelezny. Gaussian logic for pre-
dictive classification. In Machine Learning and Knowledge Discovery in Databases, pages
277-292. Springer, 2011.

[15] Tim Van Kasteren, Athanasios Noulas, Gwenn Englebienne, and Ben Krose. Accurate ac-
tivity recognition in a home setting. In Proceedings of the 10th international conference on
Ubiquitous computing, pages 1-9. ACM, 2008.

[16] James F Allen and George Ferguson. Actions and events in interval temporal logic. Journal of
logic and computation, 4(5):531-579, 1994.

[17] Paolo Campigotto, Andrea Passerini, and Roberto Battiti. Active learning of combinatorial
features for interactive optimization. In Learning and Intelligent Optimization, pages 336—
350. Springer, 2011.



	Introduction
	Satisfiability Modulo Theories
	Method Overview
	Applications

