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Abstract

Motivation: Information about RNA–protein interactions is a vital pre-requisite to tackle the dissec-

tion of RNA regulatory processes. Despite the recent advances of the experimental techniques, the

currently available RNA interactome involves a small portion of the known RNA binding proteins.

The importance of determining RNA–protein interactions, coupled with the scarcity of the available

information, calls for in silico prediction of such interactions.

Results: We present RNAcommender, a recommender system capable of suggesting RNA targets

to unexplored RNA binding proteins, by propagating the available interaction information taking

into account the protein domain composition and the RNA predicted secondary structure. Our re-

sults show that RNAcommender is able to successfully suggest RNA interactors for RNA binding

proteins using little or no interaction evidence. RNAcommender was tested on a large dataset of

human RBP-RNA interactions, showing a good ranking performance (average AUC ROC of 0.75)

and significant enrichment of correct recommendations for 75% of the tested RBPs.

RNAcommender can be a valid tool to assist researchers in identifying potential interacting candi-

dates for the majority of RBPs with uncharacterized binding preferences.

Availability and Implementation: The software is freely available at http://rnacommender.disi.

unitn.it.

Contact: gianluca.corrado@unitn.it or andrea.passerini@unitn.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-transcriptional regulation of gene expression is mediated by

interactions between transcripts and regulatory molecules, mainly

RNA-binding proteins (RBPs) and non-coding RNAs (ncRNAs),

creating ribonucleoprotein complexes (RNPs). RBPs are one of the

most numerous protein classes, crucial in driving multiple com-

plex mechanisms, from splicing to translation. Many proteins

with previously unsuspected RNA-binding properties are still

being discovered, increasing the range of RNA interactors

(Beckmann, 2015). Each RBP binds to a population of transcripts

with diverse affinity and specificity, recognizing RNA targets by

elements of sequence or structure (Lunde, 2007). RBPs often exert

versatile roles in multiple cellular compartments, working in con-

text with other RBPs or regulatory molecules (Corrado, 2014;

Hogan, 2008). Many of the rules underlying this complexity are

still unknown: information about RNA–protein interactions is a

vital pre-requisite to tackle the dissection of RNA regulatory

processes.
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From an experimental point of view, this field witnessed great

advances. Initially, RNA–protein interactions were determined with

low-throughput experimental techniques, testing the interaction of a

single RBP with a single transcript. The development of high-

throughput techniques, such as cross-linking and immunoprecipita-

tion (CLIP) coupled with deep sequencing (König, 2012; McHugh,

2014), allowed to identify, in a single experiment, the genome-wide

interactome for an RBP. Despite the potential of these genome-wide

techniques and the increase in available data, the RNA interactome

is currently available for less than 100 human proteins, representing

less than 10% of the known population of human RBPs [1542

manually curated human RBPs in Gerstberger (2014)]. The reason

for this lack of information is not only related to the cost and time

of performing the procedure, but also to experimental problems

such as unavailability of reliable antibodies, scarcity of material

(these approaches are still far from being single-cell), or chemical

properties of the interaction that complicate clipping.

The importance of determining RNA–protein interactions,

coupled with the scarcity of the available information, calls for in

silico techniques for predicting such interactions. Pancaldi and

B€ahler (2011) used support vector machines and random forests to

predict RNA–protein interactions. Their method relies on hundreds

of different biological features extracted from literature that are not

available for all proteins and transcripts. This limits the applicability

of the method at a genome-wide scale. RPIseq (Muppirala, 2011)

and Wang et al. (2013) predicts RNA–protein interactions from se-

quence information only, using SVM and random forest classifiers

on k-mer features in the former case and an extended Naive Bayes

classifier considering correlation between features in the latter.

CatRapid (Bellucci, 2011) uses the physicochemical properties of se-

quences to build interaction profiles to estimate the RNA–protein

interaction propensity. These methods are trained on RNA–protein

interactions obtained from 3D complexes available in PDB (Rose,

2015). Structural information is clearly more detailed than inter-

action maps obtained by sequencing approaches, but it is much

harder to determine. Additionally, PDB complexes cover only indi-

vidual interactions between fragments of proteins (usually one or

two domains) and small fragments of RNA (with median length of

21 nucleotides in eukaryotic cells). In our setting, we are instead

considering genome-wide interactions between proteins and tran-

scripts. The more recent version CatRapid omics (Agostini, 2013)

extends the prediction of the RNA-binding propensity at a genome-

wide scale. In this perspective, it has a scope which is the most simi-

lar to the one we are targeting in this work. However, the computa-

tional limitations of the CatRapid omics web server prevent a

genome-wide analysis of its performance1.

In this work, we present RNAcommender, a novel tool for

genome-wide recommendation of protein targets. The main purpose

of RNAcommender is to suggest candidate mRNA targets (tran-

scripts) for unexplored RBPs, using interaction information avail-

able from high-throughput experiments performed on other

proteins. RNAcommender basically works as a recommender system

(Ricci, 2010), by propagating interaction information from known

RBPs to novel ones. It takes as input a (incomplete) protein–mRNA

interaction map and sequence information for both proteins and

mRNAs, and attempts at completing the interaction map. For

RBPs with few known targets (from low-throughput assays), this

amounts at suggesting additional interactions. For completely

novel RBPs (or even putative ones), it recommends the entire set of

interactions from scratch. This de novo prediction task, known as

cold start recommendation in recommender systems, is made pos-

sible by turning sequence information into appropriate features

allowing to measure similarity between proteins (and between

mRNAs) in terms of their binding capabilities. RNAcommender

provides as output a ranking of candidate mRNA targets for each

protein of interest.

We tested RNAcommender on a large dataset of human RBP–

RNA interactions with high-throughput experimental evidence. For

each test protein, we simulated both completion and de novo predic-

tion by silencing most and all of the interaction information respect-

ively. From its ability in successfully recovering the silenced

interactions, RNAcommender appears to be a valid tool to identify

potential targets for uncharacterized RNA-binding proteins.

2 Materials and methods

2.1 Dataset
The AURA 2 database (August 5, 2015) (Dassi, 2014) includes a

manually curated and comprehensive catalogue of experimentally

determined interactions between human RBPs and UTRs (untrans-

lated regions in mRNAs). From this collection, we extracted data

for all RBPs with high-throughput interaction evidence (in order to

be able to validate RNAcommender predictions). This selection re-

sulted in a set of 67 distinct RBPs interacting with 72 226 UTRs for

a total of 502 178 interactions.

The available number of UTRs bound by an RBP ranges from

400 to 31 964, with a median of 4503 and a mean of 7495 (standard

deviation: 7711). The most selective RBPs interact with less than

1% of the possible targets, while the most general RBPs interact

with more than 40% of the UTRs (the median is around 5–10%).

The interaction information was encoded in an n�m matrix Y,

where n and m are the number of RBPs and UTRs respectively:

Yij¼1 if RBP i interacts with UTR j, and 0 otherwise.

2.2 RBP features
Features representing RBPs were built using domain information

provided by Pfam (v. 28.0) (Finn, 2013), in order to capture similar-

ities between protein structure, function and modularity at the same

time (Lunde, 2007).

Each protein sequence was scanned against the HMM models of

the Pfam-A v. 28.0 database, selecting all domains with e-value

equal to or lower than 1.0. For each domain found in the RBP, the

Fisher score of the matching protein subsequence was computed.

The Fisher score is the derivative of the subsequence log-likelihood

score with respect to each of the HMM model parameters

(Jaakkola, 2000). Each protein was represented by the concaten-

ation of the Fisher scores of its matching subsequences with respect

to their correspondent Pfam models. When multiple subsequences of

an RBP matched the same Pfam HMM model (i.e. they were identi-

fied as the same domain), their Fisher scores were averaged. When a

Pfam domain was not detected in a protein a zero vector was used.

Formally speaking, let T : ft1; . . . ; tMg be the set of domain types

modelled in Pfam (i.e. RRM_1, KH_1, . . .), and D : fd1; . . . ; dNg be

the set of domains associated to a protein p (e.g. protein FUS has an

1 A comparison ran on a reduced setting, with 50 randomly sampled

candidate targets per protein, proved favourable to RNAcommender,

with an AUC ROC of 0.74 averaged over all RBPs as compared to an

average AUC ROC of 0.60 achieved by CatRApid omics. Similar results

were obtained when comparing to the RPIseq web server (Muppirala,

2011), which obtained an average AUC ROC of 0.62. Details of the ex-

perimental comparison are reported in the Supplementary Material.
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RMM_1 in position 287–365 and a zf-RanBP in position 422–453).

We define H : D! T as the function mapping domains of p to

the domain types of Pfam. Let Dtj
¼ fdi : HðdiÞ ¼ tjg be the set of

domains of type tj in protein p. Let sdi
be the fisher score of domain

di with respect to the HMM model of HðdiÞ. In general if HðdiÞ 6¼ H
ðdjÞ then sdi

2 Ra; sdj
2 Rb with a 6¼ b. We computed the averaged

Fisher score with respect to a domain type tj as:

stj
¼

1

jDtj
j
X

di2Dtj

sdi
if jDtj

j > 0

0 otherwise

8>><
>>: (1)

We defined the Fisher score of a protein p as the concatenation

of the Fisher scores with respect to all Pfam domains: sp ¼ ½st1
; . . . ;

stM
� (Fig. 1A).

Finally, in order to control the dimensionality of the protein vec-

tors, each RBP was represented in terms of its empirical kernel map,

i.e. its similarity with respect to all other RBPs. The similarity be-

tween two proteins was computed as the normalized dot product be-

tween their Fisher score vector representations:

simðp;qÞ ¼ hsp; sqi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjspjj � jjsqjj

p
.

2.3 RNA features
The self interacting structure of an RNA sequence is key to under-

standing post-transcriptional processes like protein binding.

Unfortunately, there is still little experimental knowledge about the

folding structure of full-length mRNAs, and although high-

throughput protocols are now available (Sugimoto, 2015), one has

still to rely on computational approaches to predict the structural

properties of mRNA. In Lange (2012), different secondary structure

prediction methods have been assessed yielding the conclusion that

local folding can be more accurate than global approaches. They

suggest a maximal span of 150 nucleotide to achieve a reasonable

balance between maximizing the number of accurately predicted

base pairs, while minimizing the effects of incorrect long range pre-

dictions. As recommended, we used RNAplfold (Lorenz, 2011) to

estimate base pairs probabilities when interactions are constrained

to lie within a user defined maximal span, which makes it suitable to

scan long sequences. In order to consider only reliable predictions,

we set the locality parameter to 150 nucleotides, we reduced the

maximum span to 40 nucleotides and we set the average base pair

probability cut-off to 0.4. Differently from sequence based

approaches, here we built an explicit molecular graph using nucleo-

tides as vertices and the predicted base pairs, together with the

ribose-phosphate backbone, as edges (Fig. 1B). We then used the

Neighbourhood Subgraph Pair Decomposition Kernel (NSPDK) ap-

proach of Costa and De Grave (2010) to efficiently compute a

sparse feature representation from the graph encoding. The NSPDK

extends the notion of counting common k-mers (with gaps) from the

domain of strings to the domain of graphs. Like it was done in

Frasconi (2014), all distinct neighbourhood subgraphs are given a

unique numerical identifier using a fast hashing technique, obtaining

in this way an explicit, although sparse, feature encoding2. Instead

of considering short subsequences of length k (the k-mers), NSPDK

considers small neighbourhood graphs of maximal radius R, which

are defined as the subgraphs induced by all the vertices within a

given maximal distance R from a given node. To model the notion

of ‘gaps’, i.e. the idea that two parts can match even if they differ in

some positions, NSPDK considers pairs of neighbourhood graphs

at a maximal distance D as a single entity, in this way the matching

operation can ignore all the nodes that are in an intermediate pos-

ition between the two neighbourhood graphs. As an example con-

sider the feature marked as r¼0, d¼2 in Figure 1B, in this case the

‘G’ intermediate node is ignored and the feature can be matched to

any pair of nodes with labels ‘A’ and ‘U’ that are at a relative dis-

tance of 2. The complete set of features is obtained considering all

nodes in a graph as roots and all possible combinations of the values

for the radius and the distance up to the user defined maximal values

R and D.

Here, we follow the recommendations of Heyne (2012) and set

both maximal values to 2. The feature space dimensionality in

NSPDK can be controlled adjusting the co-domain of the hashing

function that maps graphs to integers. Note that a small dimension-

ality implies a higher efficiency in storage and subsequent process-

ing, but also a higher risk of collisions, i.e. of assigning the same

feature identifier to subgraphs that are not isomorphic, which leads

to greater noise in the encoding. However, Li and König (2010)

have shown theoretical robustness guarantees when considering

codes obtained from the lowest bits of each hashed value. For this

reason here, we considered only the 10 lowest bits, effectively limit-

ing the feature space dimensionality of the RNA structure encoding

to 1024 (Fig. 1B).

A

B

Fig. 1. (A) Each protein is represented by the concatenation of the Fisher scores (Jaakkola, 2000) of its domains with respect to their correspondent Pfam models.

Missing Pfam domains are represented with a zero vector. (B) The RNA secondary structure is predicted using RNAplfold (Lorenz, 2011), then the feature repre-

sentation is computed using the NSPDK approach that extends the notion of k-mers (with gaps) from the domain of strings to the domain of graphs

2 This is similar to the fingerprint technique used in chemoinformatics

for small molecules.
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2.4 The model
Our model is inspired by the matrix factorization (MF) approach to

collaborative filtering (Koren, 2009) where RBPs and RNAs play

the roles of ‘users’ and ‘items’, respectively. If used in its basic form,

MF would map both RBPs and RNAs to a latent feature space

where a large correlation (dot product) between latent vectors pre-

dicts an interacting RBP-RNA pair. In the absence of side informa-

tion, both RBPs and RNAs would be represented by their indicator

vectors. Learning consists of determining two low-rank matrices

P and R such that the RBP-RNA interaction matrix, Y, can be

approximated as Y � PR>. While the basic MF approach has

proved effective to build recommendation systems for movies

(Koren, 2009), it is not directly suitable in our case for two main

reasons. First, as explained in the introduction, the cold-start prob-

lem is severe for test proteins (none or just few RNA targets may be

available). This setting calls for explicit feature vectors for RNAs

and, most importantly, for RBPs in order to perform recommenda-

tions. Second, the number of RBPs is much smaller than the one of

RNAs, which makes it difficult to directly project both in the same

latent space.

The model used in this paper is based on tri-factorization, in a

similar way as in Ding (2006), but without orthogonality con-

straints. A related form of tri-factorization has been also proposed

for predicting multirelational dyadic data (Nickel, 2011). A major

difference of our approach is the introduction of explicit features,

mediated by latent projection matrices, and the use of non-linear

mappings.

In our model, explicit features for RBPs and RNAs are computed

as described in the Section 2.2 and 2.3, respectively. These feature-

based representations are (non-linearly) mapped into latent spaces

of different sizes, where a third mapping associates them. The three

factors (i.e. the parameters of the three mappings) are jointly tuned.

Formally speaking, let Fp 2 R
n�lp and Fr 2 R

m�lr be the explicit

feature matrices associated with RBPs and RNAs, respectively. Let

Ap 2 R
lp�kp , Fr 2 R

lr�kr , and B 2 R
kp�kr denote the three factors in

the decomposition. The model is then defined by:

P ¼ rðFpApÞ 2 R
n�kp (2)

R ¼ rðFrArÞ 2 R
m�kr (3)

bY ¼ rðPBR>Þ 2 R
n�m (4)

where r is the logistic function. The model can also be interpreted as

a feed forward neural network with a Kroneker layer (second-order

units) as shown in Figure 2. One additional interpretation of the

model is that RBP-RNA pairs are mapped into a non-linear feature

space where the similarity (dot product) between two pairs is the

product of the similarities between the corresponding RBP latent

vectors and the RNA latent vectors. Interaction is then predicted by

a linear classifier in this feature space. Preliminary results showed

that deeper architectures, even with pre-training of the layers, in-

crease the complexity and the training time of the model, without

introducing significative improvements in the model performance.

Additionally, worse performance was experienced when removing

the Kronecker layer, showing the benefit of projecting proteins and

RNAs into different latent spaces.

The factorization model is trained using stochastic gradient des-

cent to optimize the regularized mean squared error:

min
Ap ;Ar ;B

Pn
i¼1

Pm
j¼1

ðYij � bY ijÞ2

n �m þ k � rðAp;Ar;BÞ (5)

where Y 2 Rn�m is the interaction matrix between n proteins and m

RNAs, and the regularizer rðAp;Ar;BÞ is the normalized Frobenius

norm of the model weights:

rðAp;Ar;BÞ ¼
jjApjjF
lp � kp

þ jjArjjF
lr � kr

þ jjBjjF
kp � kr

(6)

The normalization has the role of cancelling out the dependency

on the sizes of the different matrices.

3 Results and discussion

RNAcommender performance was tested on a collection of human

protein–RNA interactions extracted from the AURA 2 database (see

Section 2.1). In order to provide an estimate of the quality of predic-

tions for protein target completion (for proteins with low-

throughput experiments only) and full de novo recommendations

(for proteins with no interaction information), we simulated both

scenarios using the set of proteins with high-throughput experimen-

tal evidence. We performed a set of leave-one-protein-out experi-

ments, each time using the full interaction information for n – 1

proteins, and hiding for the left-out one most of the interaction in-

formation available in the completion setting and all of it in the de

novo one. We then evaluated the consistency of the provided recom-

mendations with the hidden interactions (complete results are avail-

able as Supplementary Material).

All experiments were run on a machine mounting 12 IntelV
R

XeonVR CPUs E5-2603 v3 @ 1.60GHz, and 64GB of RAM, running

Linux Ubuntu 14.04 LTS. The computation of the features for 67

proteins required around 30 min (single-threaded computation). The

computation of the features for the 72 226 UTR sequences required

2.5 h splitting the computation over the 12 CPUs. Training the

model (see Section 2.4) required around 130–140 s per training

epoch in multi-threaded computation over 12 CPUs, where a train-

ing epoch is defined as a complete pass over the training dataset

(that contains around 4.8 million examples). Multi-threading scaled

the computation time in an almost linear fashion.

3.1 Protein target completion
In this section, we considered the scenario of the prediction of RNA

targets for an RBP with little RNA interaction information avail-

able. This situation frequently occurs when all known interactions

for the RBP were determined by low-throughput experiments. In

order to assess the performance of RNAcommender in this setting,

we considered RBPs with high-throughput experiments, masking the

majority of their known interactions. For each RBP, we masked

Fig. 2. Interpretation of the factorization model as a neural network
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(during training) all known interactions except for 15 RNA targets

(this value corresponds to the average number of known interactions

annotated in the AURA 2 database for proteins without high-

throughput evidence). To improve the reliability of the results, we

repeated the sampling procedure five times for each RBP (mean and

standard deviation are reported for all the results presented in this

section).

In principle, since the test RBP has few known interactions in the

training set, it is possible to perform recommendation even without

using explicit features for RBPs and RNA targets (see Sections 2.2

and 2.3). Nevertheless, our experiments indicate that the inclusion

of features clearly improved the recommendation in terms of diver-

sity and serendipity. Diversity expresses the heterogeneity level of

the recommendations, i.e. how different are the recommended

RNAs when considering different RBPs, while serendipity is a meas-

ure of how surprising the correct recommendations are (Shani and

Gunawardana, 2011). In this work, we actualize the concept of ser-

endipity on RBP target predictions. First, we introduce the measure

of the popularity of an RNA j, which corresponds to the percentage

of RBPs in the dataset binding to it: popj ¼ ð
Pn
i¼1

YijÞ=n, where n is

the number of RBPs and Y is the interaction matrix defined in

Section 2.1. The concept of serendipity is inversely related to the one

of popularity. An RNA that interacts with few (or none) of the RBPs

in the dataset is more surprising when recommended than a com-

mon RNA that is known to bind all the proteins in the dataset. For

this reason, we define the serendipity of an RNA j as

serj ¼ 1� popj.

In this section, the results for three different incremental feature

usage scenarios are shown: no explicit features (ID.ID), explicit fea-

tures only for the RNAs (ID.FE) and explicit features for both RBPs

and RNAs (FE.FE).

In the absence of explicit features the proteins and the RNAs

were represented by defining Fp ¼ In and Fr ¼ Im, respectively,

where Ir stands for the r-th dimensional identity matrix.

All parameters for our model were selected with a 10-fold cross-

validation procedure. We obtained kp¼5 and kr¼50 for the latent

space sizes. The difference in the optimal sizes for the two spaces

was expected because of the different cardinality of the sets of RBPs

and RNAs in the dataset. For the stochastic gradient descent, we set

the learning rate g ¼ 1:0. Regarding the parameter that controls the

regularization of the weights of the model, different values were se-

lected according to the feature usage: k ¼ 10�2 for ID.ID and k
¼ 10�4 for ID.FE and FE.FE. In addition to regularization, we used

early stopping in order to avoid over fitting. We trained our model

for 25 epochs for ID.ID, and 14 epochs for ID.FE and FE.FE, where

an epoch consists of a complete iteration over the entire training

dataset. From these cross-validated parameters, we note that the

introduction of explicit features diminishes the importance of the

regularization of the model weights, and improves the convergence

speed.

RNAcommender outputs a ranking (ranging from 0 to 1) of

RNA targets for the test protein. As an overall measure of the qual-

ity of this ranking, we computed the Area Under the ROC curve

(AUC ROC) for the three different feature settings. When averaged

over the left-out proteins, we obtained very similar scores (0.76 for

ID.ID and FE.FE, 0.77 for ID.FE; detailed results are available as

the Supplementary Material). However, the informativeness of these

predictions in terms of coverage and serendipity is rather different,

as will be detailed in the following.

It is common, when evaluating recommender systems, to focus

the attention on the top recommendations because they are the ones

that the user will most likely take into consideration. For each test

protein and for each feature setting we considered the top 50 recom-

mended targets. Figure 3A shows the number of different targets

with a correct recommendation that are included in the top 50 target

list of at least one protein. It is clear that the use of explicit features

significantly increased the number of correctly recommended RNA

targets. From 60 in the ID.ID case, to 298 in the ID.FE case and 506

in the FE.FE case. This increase in the overall number of different

RNA targets in the top 50 recommendations implies a higher diver-

sity and, indirectly, a higher serendipity because the targets for dif-

ferent proteins tend to be more diverse. Figure 3B represents box

plot of the number of recommended RBPs per RNA target. Clearly

the absence of explicit features (ID.ID) tended to produce less differ-

entiated recommendations, since on average an RNA was recom-

mended to 32 out of 67 proteins (with a median value of 38 RBPs).

On the other hand the introduction of explicit features (ID.FE and

FE.FE) produced very diverse recommendations, where an RNA

was on average recommended to six proteins in the ID.FE case and

to three proteins in the FE.FE case (for both cases the median value

was 2).

One could wonder whether the previous analysis is influenced by

the decision to focus on the first 50 predictions. Figure 3C shows the

cumulative moving average of the serendipity of the recommended

RNA targets along the top 5000 rankings produced by the three fea-

ture settings. Values were averaged over all samplings of all the 67

test RBPs. In all the cases, the serendipity increased along the rank-

ings. However, the introduction of explicit features (ID.FE and

FE.FE) improved the serendipity of the recommendation, by suggest-

ing more specific targets for each RBP, especially when focusing on

the top recommendations.

The same phenomenon of increased coverage and serendipity

was observed when switching from single predicted targets to func-

tional enrichments of sets of predicted targets. Gene Ontology en-

richments became more specific and diverse as soon as explicit

features were introduced in the model, while the ID.ID scenario pro-

vided the same set of repeated enrichments for each RBP analyzed

(Supplementary Figure S1).

A

C

B

Fig. 3. (A) Number of different targets with a correct recommendation that are

included in the top 50 target list of at least one protein. (B) Box plot of the

number of recommended RBPs per RNA target. (C) Moving average of the

serendipity of the RNA sequences along the rankings produced by the three

feature settings.
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3.2 De novo recommendation of protein targets
After testing our approach on the target completion task, we eval-

uated the ability of RNAcommender to suggest RNA targets for

completely unexplored proteins. Performance was again computed

in a leave-one-protein-out fashion, this time hiding all the inter-

action information for the left-out protein. In this setting, where no

interaction-based propagation is possible, predictions need to be

driven solely by feature similarity with training proteins. This

implies that no recommendation is possible for proteins with null

similarity with all other proteins in the dataset. This reduced the

number of feasible leave-one-out experiments on our dataset from

67 to 49. In this setting we trained our model using the same param-

eters obtained through 10-fold cross-validation in the case in which

both RBPs and RNAs were represented by explicit features (see

Section 3.1).

Table 1 shows the results of the predictions for each leave-one-

protein-out experiment. Each row reports the identity of the left-out

RBP, the number of bound RNA targets (over the total of 72 226),

the cumulative similarity (defined by the sum of the similarities with

all other proteins in the dataset), the fraction of correct targets in the

top 50 predictions and when considering a number of predictions

equal to the number of true targets (nTargets) of the protein, and fi-

nally the AUC ROC computed over the entire set of candidate tar-

gets. Boldface numbers indicate a statistically significant enrichment

in the number of correct targets in the top predictions with respect

to an equally sized random sample, as computed by a Fisher test

with a ¼ 0:05. Out of 49 leave-one-out experiments, the enrichment

was statistically significant in 37 and 46 cases when considering pre-

cision at 50 and precision at nTargets respectively (in most cases

with a P-value many orders of magnitude smaller than the signifi-

cance threshold).

Cold start recommendation is driven by similarity, among RBPs

and among targets. For this reason, higher performance was associ-

ated with RBPs with higher values of cumulative similarity (Figure

4A) (P-value 0.024, by Wilcoxon Rank Sum test). Cumulative simi-

larity with the proteins in the training set should be taken into ac-

count when predicting an unexplored RBP, because this factor

influences the quality of the recommendation. In other words, a

higher cumulative similarity for the test protein results in a more re-

liable recommendation on average. Note however, that the system

learns how to weight and combine similarities with respect to train-

ing proteins in providing recommendations. Indeed, a simple ap-

proach predicting for a test protein all targets of its nearest

neighbour in the training set provides substantially lower results

(Supplementary Table S1). The average AUC ROC of the nearest-

neighbour predictor is 0.66, against a value of 0.75. For the majority

of the proteins RNAcommender outperforms the nearest-neighbour

approach, with the exception of the strongly related proteins in

dataset, e.g. IGFBP1, IGFBP2 and IGFBP3 or LIN28A and LIN28B.

We next classified the RBPs of the dataset according to their do-

main composition. We considered the six most frequent domains in

the RBPs of the dataset, grouping all the left-out RBPs under the cat-

egory named ‘others’. As expected, the most frequent domains were

RNA binding. Figure 4B shows the percentage of significant recom-

mendations, grouping the test proteins according to the criteria just

explained, and Supplementary Figure S2 reports the average AUC

ROC values. For nearly all the most frequent domains, the percent-

age of test proteins with significant recommendations was above

75%. The only exception was represented by proteins with the dou-

ble stranded RNA binding motif (dsrm) domain : ADAR1, DGCR8,

STAU1 and TARBP2. None of these proteins was significant in

terms of top 50 recommendations. These RBPs were also

characterized by fairly low values of cumulative similarity (Table 1).

When classifying RBPs according to their Gene Ontology anno-

tation, we observed excellent performance for RBPs located in the

‘polysome’ (CC), acting as ‘negative regulators of translation’ or

involved in ‘mRNA transport’ (BP) and, with ‘mRNA binding’ func-

tion (MF) (Supplementary Figures S3–S5). Worse performance was

associated with translation initiation factors (EIF3B, EIF3G and

Table 1. Evaluation of the recommendations of RNAcommender in

a de novo setting

RBP nTargets cumSim Pre@50 Pre@nTargets AUCROC

TAF15 4462 1.69 1:00 0:49 0.90

FXR2 10460 1.85 1:00 0:60 0.87

LIN28B 15063 0.33 1:00 0:64 0.86

HNRNPD 15786 1.10 1:00 0:41 0.61

FMR1_iso1 16923 2.04 1:00 0:66 0.86

FMR1_iso7 18228 2.04 1:00 0:58 0.77

TIA1 19453 1.40 1:00 0:73 0.89

TIAL1 25616 1.03 1:00 0:76 0.88

AGO1 31964 0.59 0:98 0:72 0.82

EWSR1 6214 1.62 0:96 0:58 0.91

MSI1 10801 1.02 0:96 0:47 0.80

LIN28A 12821 0.33 0:96 0:64 0.88

EIF4A3 21759 0.05 0:96 0:46 0.65

RBM47 18653 –0.12 0:92 0:58 0.79

HNRNPF 4503 1.34 0:90 0:30 0.79

FUS 7577 1.74 0:86 0:53 0.87

AGO2 20761 0.40 0:86 0:69 0.85

ELAVL1 25715 1.34 0:86 0:58 0.72

DDX21 9424 0.05 0:84 0:32 0.67

ZC3H7B 12439 0.20 0:82 0:51 0.82

PCBP2 3749 0.31 0:72 0:28 0.78

FXR1 3358 1.50 0:70 0:49 0.93

YTHDF1 6648 0.26 0:70 0:37 0.81

HNRNPC 4799 0.88 0:62 0:38 0.85

RBM10 9968 0.10 0:62 0:18 0.72

HNRNPH1 4858 1.36 0:56 0:23 0.72

RBPMS 4706 0.03 0:44 0:36 0.86

IGF2BP2 9265 1.00 0:42 0:40 0.81

IGF2BP3 11429 1.15 0:38 0:39 0.75

IGF2BP1 9389 1.15 0:30 0:37 0.79

HNRNPA1 632 0.85 0:28 0:18 0.77

RBFOX2 850 0.55 0:28 0:15 0.77

HNRNPA2B1 2201 1.34 0:28 0:22 0.82

PUM2 3581 0.95 0:18 0:21 0.76

CELF1 940 0.27 0:14 0:06 0.72

QKI 1008 0.09 0:14 0:12 0.82

TARDBP 1332 0.06 0:14 0:14 0.80

STAU1 3520 0.42 0.10 0:08 0.48

YTHDF2 2108 0.26 0.04 0:19 0.85

AGO4 400 0.48 0.02 0:04 0.83

TARBP2 460 0.32 0.02 0:05 0.75

PUM1 3788 0.95 0.02 0:12 0.53

EIF3B 421 0.15 0.00 0.01 0.60

EIF3G 597 0.76 0.00 0.00 0.55

DGCR8 1600 0.27 0.00 0:06 0.63

PABPC1 2322 –0.11 0.00 0:01 0.39

U2AF2 2202 0.11 0.00 0:05 0.52

ADAR1 2210 0.02 0.00 0:08 0.70

RC3H1 2950 0.20 0.00 0.04 0.43

Test RBPs are sorted according to the precision at 50 (descending), and the

number of targets (ascending). Boldface numbers indicate precisions which

are significantly better than what would be obtained with an equally sized

random sample according to a Fisher test (a ¼ 0:05).
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PABPC1) and, again, double stranded RNA binding proteins.

Considering the modularity of molecular complexes operating in

post-transcriptional regulation, recommendations are expected to be

difficult for RBPs whose RNA interaction is highly mediated by

other protein components. For example, EIF3B and EIF3G, for

which no correct target was identified in the first 50 recommenda-

tions (Table 1), are both components of eIF3, the largest eukaryotic

initiation factor, which is made up of 13 subunits (Des Georges,

2015); the majority of these components do not directly interact

with mRNA or participate in the selection of the bound target.

The same consideration can be applied to double stranded RNA

binding proteins, possibly providing a further explanation for their

low recommendation performance.

Until now, we focused the attention on the top recommendations

because they are reasonably the most relevant for the researcher. In

order to measure the overall quality of the ranking imposed by our

recommendations, Table 1 also reports the value of the AUC ROC

computed over the entire set of candidate RNA targets. High values

of AUC ROC are often correlated with high significance of the

Fisher test (e.g. TAF15, EWSR1), and AUC ROC values close to 0.5

are always correlated with a lack of significance. However, for some

of the proteins where the Fisher test was not significant, the value of

the AUC ROC was substantially higher than the one of a random

ranking (e.g. AGO4, TARBP2). Even if a reasonably good ranking

function is learned, when the number of true targets is very small it

can be hard to rank them in the first 50 predictions. In fact, we

noticed a significant fraction of correct targets in the precision at

nTargets for both AGO4 and TARBP2.

Finally, we compared the quality of de novo recommendations

with the one of target completion as reported in the previous sec-

tion. We analyzed the feature setting FE.FE reported in Section 3.1

and the case presented in this section. Note that the only difference

between these two settings is the number of available interactions

for the left-out protein (15 for the first case, 0 for the other). We

compared the recommendation performance in terms of precision at

50 and AUC ROC. Since in Section 3.1 we repeated the sampling of

the 15 positive interactions five times for each test protein, we aggre-

gated the performance measures by taking the median value. The

average precision at 50 was 0.51 in the case of target completion

and 0.53 in the de novo one. An even smaller difference was regis-

tered for the mean AUC ROC value, i.e. 0.761 against 0.754. Both

performance measures are strongly correlated between the two set-

tings (Spearman’s rank correlation of 0.97 and 0.98, respectively).

A Wilcoxon signed-rank test confirmed that differences are not stat-

istically significant, with P-values of 0.98 and 0.09 for precision and

AUC ROC, respectively. These results showed that training a model

including interaction information from low-throughput experimen-

tal techniques did not improve the recommendation performance in

a significant manner. We did not test the performance for an

increased number of interactions in the training set, since only the

scenarios with no (novel proteins), few (low-throughput experi-

ments) or many (high-throughput experiments) known interactions

are meaningful in the RNA–protein interaction prediction problem.

Note that, as shown in Maticzka (2014), even in the case of high-

throughput data availability, the development of predictive in silico

models is of interest as these models can better compensate for ex-

perimental noise, such as false negatives due to tissue dependent ex-

pression or false positives due to accidental cross-linking effects.

4 Conclusion

In this work, we proposed RNAcommender, a tool for RNA–protein

interaction recommendation. By representing RNAs and proteins

with features extracted from RNA secondary structure and protein

domains and combining them with existing interaction information,

we enabled the recommendation of targets for RBPs with little or no

experimental evidence of interaction. We validated

RNAcommender on a large dataset of human RBP–RNA inter-

actions, showing an overall good ranking performance (average

AUC ROC of 0.75) and a significant enrichment in correct targets in

the top 50 predictions for 75% of the tested RBPs. Considering the

successful results obtained by RNAcommender we also recom-

mended RNA targets to 25 RBPs with low-throughput evidence

[from Dassi (2014)] and 18 completely unknown proteins [from

Gerstberger (2014)]. The recommendations are available as supple

mentary data. Surely, the complexity of RNA regulation requires

further efforts to optimize the predictions, but our tool can be a

valid companion to assist experimental research, especially for the

majority of RBPs whose interactors have not yet been experimen-

tally identified.

In future work, we will address the integration of the interactions

suggested by RNAcommender with other tools to provide a more

robust and comprehensive analytical pipeline; in particular we plan

to localize the interaction sites within the RNAs leveraging

GraphProt models (Maticzka, 2014), and to integrate interaction

predictions within the PTRcombiner system (Corrado, 2014) in

order to improve the identification of groups of RBPs binding simi-

lar sets of targets.
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The authors want to thank Björn Grüning for the useful help in the creation

of the Galaxy tool of RNAcommender.

Funding

F.C. is funded by the Federal Ministry of Education and Research (BMBF

grant 031 6165A e:Bio RNAsys) and by the German Research Foundation

(DFG grant BA 2168/3-3).

Conflict of Interest: none declared.

References

Agostini,F. et al. (2013) catRAPID omics: a web server for large-scale predic-

tion of protein–RNA interactions. Bioinformatics, 29, 2928–2930.

Beckmann,B. et al. (2015) The RNA-binding proteomes from yeast to man

harbour conserved enigmRBPs. Nat. Commun., 6, 10127.

Fig. 4. (A) Box plot of the cumulative similarity of the RBPs grouped by signifi-

cance. (B) Percentage of proteins with statistically significant predictions

grouped by protein domain. The six most common domains are reported,

plus ‘others’ containing all remaining ones

Genome-wide recommendation of RNA–protein interactions 3633

Deleted Text: see 
Deleted Text: s
Deleted Text: 5
Deleted Text: <italic>p</italic>
Deleted Text: -
Deleted Text: <italic>-</italic>
Deleted Text: -
Deleted Text: -
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw517/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw517/-/DC1
Deleted Text: s
Deleted Text: s


Bellucci,M. et al. (2011) Predicting protein associations with long noncoding

RNAs. Nat. Methods, 8, 444–445.

Corrado,G. et al. (2014) PTRcombiner: mining combinatorial regulation of

gene expression from post-transcriptional interaction maps. BMC

Genomics, 15, 304.

Costa,F. and De Grave,K. (2010). Fast neighborhood subgraph pairwise dis-

tance kernel. In: . Proceedings of the 27th International Conference on

Machine Learning (ICML-2010), Haifa, Israel, pp. 255–262.

Dassi,E. et al. (2014) AURA 2: empowering discovery of post-transcriptional

networks. Translation, 2, e27738.

Des Georges,A. et al. (2015) Structure of mammalian eIF3 in the context of

the 43S preinitiation complex. Nature, 525, 491–495.

Ding,C. et al. (2006). Orthogonal nonnegative matrix t-factorizations for clus-

tering. In: Proceedings of ACM SIGKDD ACM Press, New York, pp.

126–135.

Jaakkola,T. et al. (2000) A discriminative framework for detecting remote

protein homologies. J. Comp. Biol., 7, 95–114.

Finn,R.D. et al. (2013) Pfam: the protein families database. Nucleic Acids

Res., 42, D222–D230.

Frasconi,P. et al. (2014) klog: a language for logical and relational learning

with kernels. Artif. Intell., 217, 117–143.

Gerstberger, S. et al. (2014) A census of human RNA-binding proteins. Nat.

Rev. Genet., 15, 829–845.

Heyne,S. et al. (2012) GraphClust: alignment-free structural clustering of local

RNA secondary structures. Bioinformatics, 28, i224–i232.

Hogan,D. et al. (2008) Diverse RNA-binding proteins interact with function-

ally related sets of RNAs, suggesting an extensive regulatory system. PLoS

Biol., 6, e255.

König,J. et al. (2012) Protein–RNA interactions: new genomic technologies

and perspectives. Nat. Rev. Genet., 13, 77–83.

Koren,Y. et al. (2009) Matrix factorization techniques for recommender sys-

tems. Computer, 30–37.

Lange,S. et al. (2012) Global or local? Predicting secondary structure and ac-

cessibility in mRNAs. Nucleic Acids Res., 40, 5215–5226.

Li,P. and König,C. (2010). b-bit minwise hashing. Proceedings of the 19th

International Conference on World Wide Web, Raleigh, North Carolina,

pp. 671–680.

Lorenz,R. et al. (2011) ViennaRNA package 2.0. Algorithms Mol. Biol., 6, 26.

Lunde,B.M. et al. (2007) RNA-binding proteins: modular design for efficient

function. Nat. Rev. Mol. Cell Biol., 8, 479–490.

Maticzka,D. et al. (2014) GraphProt: modeling binding preferences of RNA-

binding proteins. Genome Biol., 15, R17.

McHugh,C.A. et al. (2014) Methods for comprehensive experimental identifi-

cation of RNA–protein interactions. Genome Biol., 15, 203.

Muppirala,U.K. et al. (2011) Predicting RNA-protein interactions using only

sequence information. BMC Bioinformatics, 12, 489.

Nickel,M. et al. (2011). A three-way model for collective learning on multi-

relational data. In Proc. of ICML, pp. 809–816.

Pancaldi,V. and B€ahler,J. (2011) In silico characterization and prediction of

global protein–mRNA interactions in yeast. Nucleic Acids Res, 39,

5826–5836.

Ricci,F. et al. (2010). Recommender Systems Handbook. Springer-Verlag,

New York.

Rose,P.W. et al. (2015) The RCSB protein data bank: views of structural biol-

ogy for basic and applied research and education. Nucleic Acids Res., 43,

D345–D356.

Shani,G. and Gunawardana,A. (2011). Evaluating recommendation systems.

In Recommender Systems Handbook. Springer, Berlin, pp. 257–297.

Sugimoto,Y. et al. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary

structures recognized by Staufen 1. Nature, 519, 491–494.

Wang,Y. et al. (2013) De novo prediction of RNA–protein interactions from

sequence information. Mol. BioSyst., 9, 133–142.

3634 G.Corrado et al.


	btw517-FN1
	btw517-FN2
	btw517-TF1

