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Abstract

Modelling problems containing a mixture of Boolean and numerical variables
is a long-standing interest of Artificial Intelligence. However, performing in-
ference and learning in hybrid domains is a particularly daunting task. The
ability to model these kind of domains is crucial in “learning to design”
tasks, that is, learning applications where the goal is to learn from examples
how to perform automatic de novo design of novel objects. In this paper we
present Structured Learning Modulo Theories, a max-margin approach for
learning in hybrid domains based on Satisfiability Modulo Theories, which
allows to combine Boolean reasoning and optimization over continuous linear
arithmetical constraints. The main idea is to leverage a state-of-the-art gen-
eralized Satisfiability Modulo Theory solver for implementing the inference
and separation oracles of Structured Output SVMs. We validate our method
on artificial and real world scenarios.

Keywords: Satisfiability Modulo Theory, Structured-Output Support
Vector Machines, Optimization Modulo Theory, Constructive Machine
Learning, Learning with Constraints

1. Introduction

Research in machine learning has progressively widened its scope, from
simple scalar classification and regression tasks to more complex problems
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involving multiple related variables. Methods developed in the related fields
of statistical relational learning (SRL) [1] and structured-output learning [2]
allow to perform learning, reason and inferences about relational entities
characterized by both hard and soft constraints. Most methods rely on some
form of (finite) First-Order Logic (FOL) to encode the learning problem,
and define the constraints as weighted logical formulae. One issue with these
approaches is that First-Order Logic is not suited for efficiently reasoning
over hybrid domains, characterized by both continuous and discrete vari-
ables. The Booleanization of an n-bit integer variable requires 2n distinct
Boolean states, making naive translation impractical; for rational variables
the situation is even worse. In addition, standard FOL automated reasoning
techniques offer no mechanism to deal efficiently with operators among nu-
merical variables, like comparisons (e.g. “less-than”, “equal-to”) and arith-
metical operations (e.g. summation), limiting the range of realistically appli-
cable constraints to those based solely on logical connectives. On the other
hand, many real-world domains are inherently hybrid and require to reason
over inter-related continuous and discrete variables. This is especially true in
constructive machine learning tasks, where the focus is on the de-novo design
of objects with certain characteristics to be learned from examples (e.g. a
recipe for a dish, with ingredients, proportions, etc.).

There is relatively little previous work on hybrid SRL methods. A number
of approaches [3, 4, 5, 6] focused on the feature representation perspective, in
order to extend statistical relational learning algorithms to deal with contin-
uous features as inputs. On the other hand, performing inference over joint
continuous-discrete relational domains is still a challenge. The few existing
attempts [7, 8, 9, 10, 11, 12] aim at extending statistical relational learning
methods to the hybrid domain. All these approaches focus on modeling the
probabilistic relationships between variables. While this allows to compute
marginal probabilities in addition to most probable configurations, it imposes
strong limitations on the type of constraints they can handle. Inference is
typically run by approximate methods, based on variational approximations
or sampling strategies. Exact inference, support for hard numeric (in addi-
tion to Boolean) constraints and combination of diverse theories, like linear
algebra over rationals and integers, are out of the scope of these approaches.
Hybrid Markov Logic networks [8] and Church [7] are the two formalisms
which are closer to the scope of this paper. Hybrid Markov Logic networks [8]
extend Markov Logic by including continuous variables, and allow to embed
numerical comparison operators (namely 6=, ≥ and ≤) into the constraints
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by defining an ad hoc translation of said operators to a continuous form
amenable to numerical optimization. Inference relies on a stochastic local
search procedure that interleaves calls to a MAX-SAT solver and to a nu-
merical optimization procedure. This inference procedure is incapable of
dealing with hard numeric constraints because of the lack of feedback from
the continuous optimizer to the satisfiability module. Church [7] is a very
expressive probabilistic programming language that can potentially represent
arbitrary constraints on both continuous and discrete variables. Its focus is
on modelling the generative process underlying the program, and inference
is based on sampling techniques. This makes inference involving continuous
optimization subtasks and hard constraints prohibitively expensive, as will
be discussed in the experimental evaluation.

In order to overcome the limitations of existing approaches, we focused
on the most recent advances in automated reasoning over hybrid domains.
Researchers in automated reasoning and formal verification have developed
logical languages and reasoning tools that allow for natively reasoning over
mixtures of Boolean and numerical variables (or even more complex struc-
tures). These languages are grouped under the umbrella term of Satisfiability
Modulo Theories (SMT) [13]. Each such language corresponds to a decid-
able fragment of First-Order Logic augmented with an additional background
theory T . There are many such background theories, including those of lin-
ear arithmetic over the rationals LRA or over the integers LIA, among
others [13]. In SMT, a formula can contain Boolean variables (i.e. 0-ary
logical predicates) and connectives, mixed with symbols defined by the the-
ory T , e.g. rational variables and arithmetical operators. For instance, the
SMT(LRA) syntax allows to write formulas such as:

touching i j↔ ((xi + dxi = xj) ∨ (xj + dxj = xi))

where the variables are Boolean (touching i j) or rational (xi, xj, dxi,dxj).
1

More specifically, SMT is a decision problem, which consists in finding an
assignment to the variables of a quantifier-free formula, both Boolean and

1Note that SMT solvers handle also formulas on combinations of theories, like e.g.
(d ≥ 0) ∧ (d < 1) ∧ ((f(d) = f(0))→ (read(write(V, i, x), i+ d) = x+ 1)), where d, i, x
are integer variables, V is an array variable, f is an uninterpreted function symbol, read
and write are functions of the theory of arrays [13]. However, for the scope of this paper
it suffices to consider the LRA and LIA theories, and their combination.
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theory-specific ones, that makes the formula true, and it can be seen as an
extension of SAT.

Recently, researchers have leveraged SMT from decision to optimization.
In particular, MAX-SAT Modulo Theories (MAX-SMT) [14, 15, 16] gener-
alizes MAX-SAT [17] to SMT formulae, and consists in finding a theory-
consistent truth assignment to the atoms of the input SMT formula ϕ which
maximizes the total weight of the satisfied clauses of ϕ. More generally, Op-
timization Modulo Theories (OMT) [14, 18, 19, 20, 21, 22] consists in finding
a model for ϕ which minimizes the value of some (arithmetical) term, and
strictly subsumes MAX-SMT [19]. Most important for the scope of this pa-
per is that there are high-quality OMT solvers which, at least for the LRA
theory, can handle problems with thousands of hybrid variables.

In this paper we propose Learning Modulo Theories (LMT), a class of
novel hybrid statistical relational learning methods. The main idea is to
combine a solver able to deal with Boolean and rational variables with a
structured output learning method. In particular, we rely on structured-
output Support Vector Machines (SVM) [23, 24], a very flexible max-margin
structured prediction method. Structured-output SVMs are a generaliza-
tion of binary SVM classifiers to predict structured outputs, like sequences
or trees. They generalize the max-margin principle by learning to sepa-
rate correct from incorrect output structures with a large margin. Training
structured-output SVMs requires a separation oracle for generating counter-
examples and updating the parameters, while the prediction stage requires
an inference oracle generating the highest scoring candidate structure for a
certain input. In order to implement the two oracles, we leverage a state-
of-the-art OMT solver. This combination enables LMT to perform learning
and inference in mixed Boolean-numerical domains. Thanks to the efficiency
of the underlying OMT solver, and of the cutting plane algorithm we em-
ploy for weight learning, LMT is capable of addressing constructive learning
problems which cannot be efficiently tackled with existing methods. Fur-
thermore, LMT is generic, and can in principle be applied to any of the
existing background theories. This paper builds on a previous work in which
MAX-SMT was used for interactive preference elicitation [25]. Here we fo-
cus on generating novel structures from a few prototypical examples, and
cast the problem as supervised structured-output learning. Furthermore, we
increase the expressive power from MAX-SMT to full OMT. This allows to
model much richer cost functions, for instance by penalizing an unsatisfied
constraint by a cost proportional to the distance from satisfaction.
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The rest of the paper is organized as follows. In Section 2 we review
the relevant related work, with an in-depth discussion on all hybrid ap-
proaches and their relationships with our proposed framework. Section 3
provides an introduction to SMT and OMT technology. Section 4 reviews
structured-output SVMs and shows how to cast LMT in this learning frame-
work. Section 5 reports an experimental evaluation showing the potential of
the approach. Finally, conclusions are drawn in Section 6.

2. Related Work

There is a body of work concerning integration of relational and numerical
data from a feature representation perspective, in order to effectively incor-
porate numerical features into statistical relational learning models. Lippi
and Frasconi [3] incorporate neural networks as feature generators within
Markov Logic Networks, where neural networks act as numerical functions
complementing the Boolean formulae of standard MLNs. Semantic Based
Regularization [6] is a framework for integrating logic constraints within ker-
nel machines, by turning them into real-valued constraints using appropriate
transformations (T-norms). The resulting optimization problem is no longer
convex in general, and they suggest a stepwise approach adding constraints
in an incremental fashion, in order to solve progressively more complex prob-
lems. In Probabilistic Soft Logic [4], arbitrarily complex similarity measures
between objects are combined with logic constraints, again using T-norms for
the continuous relaxation of Boolean operators. In Gaussian Logic [5], nu-
meric variables are modeled with multivariate Gaussian distributions. Their
parameters are tied according to logic formulae defined over these variables,
and combined with weighted first order formulae modeling the discrete part
of the domain (as in standard MLNs). All these approaches aim at extend-
ing statistical relational learning algorithms to deal with continuous features
as inputs. On the other hand, our framework aims at allowing learning and
inference over hybrid continuous-discrete domains, where continuous and dis-
crete variables are the output of the inference process.

While a number of efficient lifted-inference algorithms have been devel-
oped for Relational Continuous Models [26, 27, 28], performing inference over
joint continuous-discrete relational domains is still a challenge. The few ex-
isting attempts aim at extending statistical relational learning methods to
the hybrid domain.
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Hybrid Probabilistic Relational Models [9] extend Probabilistic Relational
Models (PRM) to deal with hybrid domains by specifying templates for hy-
brid distributions as standard PRM specify templates for discrete distribu-
tions. A template instantiation over a database defines a Hybrid Bayesian
Network [29, 30]. Inference in Hybrid BN is known to be hard, and restric-
tions are typically imposed on the allowed relational structure (e.g. in condi-
tional Gaussian models, discrete nodes cannot have continuous parents). On
the other hand, LMT can accomodate arbitrary combinations of predicates
from the theories for which a solver is available. These currently include lin-
ear arithmetic over both rationals and integers as well as a number of other
theories like strings, arrays and bit-vectors.

Relational Hybrid Models [11] (RHM) extend Relational Continuous Mod-
els to represent combinations of discrete and continuous distributions. The
authors present a family of lifted variational algorithms for performing ef-
ficient inference, showing substantial improvements over their ground coun-
terparts. As for most hybrid SRL approaches which will be discussed further
on, the authors focus on efficiently computing probabilities rather than effi-
ciently finding optimal configurations. Exact inference, hard constraints and
theories like algebra over integers, which are naturally handled by our LMT
framework, are all out of the scope of these approaches. Nonetheless, lifted
inference is a powerful strategy to scale up inference and equipping OMT
and SMT tools with lifting capabilities is a promising direction for future
improvements.

The PRISM [31] system provides primitives for Gaussian distributions.
However, inference is based on proof enumeration, which makes support for
continuous variables very limited. Islam et al. [12] recently extended PRISM
to perform inference over continuous random variables by a symbolic pro-
cedure which avoids the enumeration of individual proofs. The extension
allows to encode models like Hybrid Bayesian Networks and Kalman Filters.
Being built on top of the PRISM system, the approach assumes the exclusive
explanation and independence property: no two different proofs for the same
goal can be true simultaneously, and all random processes within a proof
are independent (some research directions for lifting these restrictions have
been suggested [32]). LMT has no assumptions on the relationships between
proofs.

Hybrid Markov Logic Networks [8] extend Markov Logic Networks to deal
with numeric variables. A Hybrid Markov Logic Network consists of both
First Order Logic formulae and numeric terms. Most probable explanation
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(MPE) inference is performed by a hybrid version of MAXWalkSAT, where
optimization of numeric variables is performed by a general-purpose global
optimization algorithm (L-BFGS). This approach is extremely flexible and
allows to encode arbitrary numeric constraints, like soft equalities and in-
equalities with quadratic or exponential costs. A major drawback of this
flexibility is the computational cost, as each single inference step on contin-
uous variables requires to solve a global optimization problem, making the
approach infeasible for addressing medium to large scale problems. Further-
more, this inference procedure is incapable of dealing with hard constraints
involving numeric variables, as can be found for instance in layout problems
(see e.g. the constraints on touching blocks or connected segments in the
experimental evaluation). This is due to the lack of feedback from the con-
tinuous optimizer to the satisfiability module, which should inform about
conflicting constraints and help guiding the search towards a more promising
portion of the search space. Conversely, the OMT technology underlying
LMT is built on top of SMT solvers and is hence specifically designed to
tightly integrate theory-specific and SAT solvers [14, 15, 18, 19, 20]. Note
that the tight interaction between theory-specific and modern CDCL SAT
solvers, plus many techniques developed for maximizing their synergy, are
widely recognised as one key reason of the success of SMT solvers [13]. Note
also that previous attempts to substitute standard SAT solvers with Walk-
SAT inside an SMT solver have failed, producing dramatic worsening of
performance [33].

Hybrid ProbLog [10] is an extension of the probabilistic logic language
ProbLog [34] to deal with continuous variables. A ProbLog program consists
of a set of probabilistic Boolean facts, and a set of deterministic first order
logic formulae representing the background knowledge. Hybrid ProbLog in-
troduces a set of probabilistic continuous facts, containing both discrete and
continuous variables. Each continuous variable is associated with a proba-
bility density function. The authors show how to compute the probability
of success of a query, by partitioning the continuous space into admissible
intervals, within which values are interchangeable with respect to the prov-
ability of the query. The drawback of this approach is that in order to make
this computation feasible, severe limitations have to be imposed on the use
of continuous variables. No algebraic operations or comparisons are allowed
between continuous variables, which should remain uncoupled. Some of these
limitations have been overcome in a recent approach [35] which performs in-
ference by forward (i.e. from facts to rules) rather than backward reasoning,
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which is the typical inference process in (probabilistic) logic programming
engines (SLD-resolution and its probabilistic extensions). Forward reason-
ing is more amenable to be adapted to sampling strategies for performing
approximate inference and dealing with continuous variables. On the other
hand, inference by sampling makes it prohibitively expensive to reason with
hard continuous constraints.

Church [7] is a very expressive probabilistic programming language that
can easily accomodate hybrid discrete-continuous distributions and arbitrary
constraints. In order to deal with the resulting complexity, inference is again
performed by sampling techniques, which result in the same aforementioned
limitations. Indeed, our experimental evaluation shows that Church is inca-
pable of solving in reasonable time the simple task of generating a pair of
blocks conditioned on the fact that they touch somewhere. 2

An advantage of these probabilistic inference approaches is that they allow
to return marginal probabilities in addition to most probable explanations.
This is actually the main focus of these approaches, and the reason why
they are less suitable for solving the latter problem when the search space
becomes strongly disconnected. As with most structured-output approaches
over which it builds, LMT is currently limited to the task of finding an opti-
mal configuration, which in a probabilistic setting corresponds to generating
the most probable explanation. We are planning to extend it to also perform
probability computation, as discussed in the conclusions of the paper.

3. From Satisfiability to Optimization Modulo Theories

Propositional satisfiability (SAT), is the problem of deciding whether a
logical formula over Boolean variables and logical connectives can be satisfied
by some truth value assignment of the Boolean variables. 3 In the last two
decades we have witnessed an impressive advance in the efficiency of SAT
solvers, which nowadays can handle industrially derived formulae in the order

2The only publicly available version of Hybrid ProbLog is the original one by Gutmann,
Jaeger and De Raedt [10] which does not support arithmetic over continuous variables.
However we have no reason to expect the more recent version based on sampling should
have a substantially different behaviour with respect to what we observe with Church.

3CDCL SAT-solving algorithms, and SMT-solving ones thereof, require the input for-
mula to be in conjunctive normal form (CNF), i.e., a conjunction of clauses, each clause
being a disjunction of propositions or of their negations. Since they very-effectively pre-
convert input formulae into CNF [36], we assume wlog input formulae to have any form.
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of up to 106 − 107 variables. Modern SAT solvers are based on the conflict-
driven clause-learning (CDCL) schema [37], and adopt a variety of very-
efficient search techniques [38].

In the contexts of automated reasoning (AR) and formal verification
(FV), important decision problems are effectively encoded into and solved as
Satisfiability Modulo Theories (SMT) problems [39]. SMT is the problem of
deciding the satisfiability of a (typically quantifier-free) first-order formula
with respect to some decidable background theory T , which can also be a
combination of theories

⋃
i Ti. Theories of practical interest are, e.g., those

of equality and uninterpreted functions (EUF), of linear arithmetic over the
rationals (LRA) or over the integers (LIA), of non-linear arithmetic over the
reals (NLA), of arrays (AR), of bit-vectors (BV), and their combinations.

In the last decade efficient SMT solvers have been developed following
the so-called lazy approach, that combines the power of modern CDCL SAT
solvers with the expressivity of dedicated decision procedures (T -solvers)
for several first-order theories of interest. Modern lazy SMT solvers —like
e.g. CVC44, MathSAT55, Yices6, Z37— combine a variety of solving
techniques coming from very heterogeneous domains. We refer the reader to
[40, 13] for an overview on lazy SMT solving, and to the URLs of the above
solvers for a description of their supported theories and functionalities.

More recently, SMT has also been leveraged from decision to optimiza-
tion. Optimization Modulo Theories (OMT) [14, 18, 19, 20], is the problem
of finding a model for an SMT formula ϕ which minimizes the value of some
arithmetical cost function. References [18, 19, 20] present some general OMT
procedure adding to SMT the capability of finding models minimizing cost
functions in LRA. This problem is denoted OMT(LRA) if only the LRA
theory is involved in the SMT formula, OMT(LRA ∪ T ) if some other the-
ories are involved. Such procedures combine standard lazy SMT-solving
with LP minimization techniques. OMT(LRA ∪ T ) procedures have been
implemented into the OptiMathSAT tool,8 a sub-branch of MathSAT5.

4http://cvc4.cs.nyu.edu/
5http://mathsat.fbk.eu/
6http://yices.csl.sri.com/
7ttp://research.microsoft.com/en-us/um/redmond/projects/z3/ml/z3.html
8 http://optimathsat.disi.unitn.it/
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Example 3.1. Consider the following toy LRA-formula ϕ:

(cost = x+y)∧(x ≥ 0)∧(y ≥ 0)∧(A∨(4x+y−4 ≥ 0))∧(¬A∨(2x+3y−6 ≥ 0))

and the OMT(LRA) problem of finding the model of ϕ (if any) which makes
the value of cost minimum. In fact, depending on the truth value of A, there
are two possible alternative sets of constraints to minimize:

{A, (cost = x+ y), (x ≥ 0), (y ≥ 0), (2x+ 3y − 6 ≥ 0)}
{¬A, (cost = x+ y), (x ≥ 0), (y ≥ 0), (4x+ y − 4 ≥ 0)}

whose minimum-cost models are, respectively:

{A = True, x = 0.0, y = 2.0, cost = 2.0}
{A = False, x = 1.0, y = 0.0, cost = 1.0}

from which we can conclude that the latter is a minimum-cost model for ϕ.

Overall, for the scope of this paper, it is important to highlight the fact
that OMT solvers are available which, thanks to the underlying SAT and
SMT technologies, can handle problems with a large number of hybrid vari-
ables (in the order of thousands, at least for the LRA theory).

To this extent, we notice that the underlying theories and T -solvers pro-
vide the meaning and the reasoning capabilities for specific predicates and
function symbols (e.g., the LRA-specific symbols “≥” and “+”, or the AR-
specific symbols “read(...)”, “write(...)”) that would otherwise be very
difficult to describe, or to reason over, with logic-based automated reasoning
tools —e.g., traditional first-order theorem provers cannot handle arithmeti-
cal reasoning efficiently— or with arithmetical ones —e.g., DLP, ILP, MILP,
LGDP tools [41, 42, 43] or CLP tools [44, 45, 46] do not handle symbolic
theory-reasoning on theories like EUF or AR. Also, the underlying CDCL
SAT solver allows SMT solvers to handle a large amount of Boolean rea-
soning very efficiently, which is typically out of the reach of both first-order
theorem provers and arithmetical tools.

These facts motivate our choice of using SMT/OMT technology, and
hence the tool OptiMathSAT, as workhorse engines for reasoning in hybrid
domains. Hereafter in the paper we consider only plain OMT(LRA).

Another prospective advantage of SMT technology is that modern SMT
solvers (e.g., MathSAT5, Z3, . . . ) have an incremental interface, which al-
lows for solving sequences of “similar” formulae without restarting the search
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from scratch at each new formula, and instead reusing “common” parts of
the search performed for previous formulae (see, e.g., [47]). This drastically
improves overall performance on sequences of similar formulae. An incre-
mental extension of OptiMathSAT, fully exploiting that of MathSAT5,
is currently available.

Note that a current limitation of SMT solvers is that, unlike traditional
theorem provers, they typically handle efficiently only quantifier-free formu-
lae. Attempts at extending SMT to quantified formulae have been made in
the literature [48, 49, 50], and a few SMT solvers (e.g., Z3) do provide some
support for quantified formulae. However, the state of the art of these exten-
sions is still far from being satisfactory. Nonetheless, the method we present
in the paper can be easily adapted to deal with these types of extensions
once they reach the required level of maturity.

4. Learning Modulo Theories using Cutting Planes

4.1. An introductory example

In order to introduce the LMT framework, we start with a toy learning
example. We are given a unit-length bounding box, [0, 1]×[0, 1], that contains
a given, fixed block (rectangle), as in Figure 1 (a). The block is identified
by the four constants (x1, y1, dx1, dy1), where x1, y1 indicate the bottom-left
corner of the rectangle, and dx1, dy1 its width and height, respectively. Now,
suppose that we are assigned the task of fitting another block, identified by
the variables (x2, y2, dx2, dy2), in the same bounding box, so as to minimize
the following cost function:

cost := w1 × dx2 + w2 × dy2 (1)

with the additional requirements that (i) the two blocks “touch” either from
above, below, or sideways, and (ii) the two blocks do not overlap.

It is easy to see that the weights w1 and w2 control the shape and location
of the optimal solution. If both weights are positive, then the cost is mini-
mized by any block of null size located along the perimeter of block 1. If both
weights are negative and w1 � w2, then the optimal block will be placed so
as to occupy as much horizontal space as possible, while if w1 � w2 it will
prefer to occupy as much vertical space as possible, as in Figure 1 (b,c). If w1

and w2 are close, then the optimal solution depends on the relative amount
of available vertical and horizontal space in the bounding box.
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Figure 1: (a) Initial configuration. (b) Optimal configuration for w1 � w2. (c) Optimal
configuration for w1 � w2.

This toy example illustrates two key points. First, the problem involves
a mixture of numerical variables (coordinates, sizes of block 2) and Boolean
variables, along with hard rules that control the feasible space of the opti-
mization procedure (conditions (i) and (ii)), and costs — or soft rules —
which control the shape of the optimization landscape. This is the kind of
problem that can be solved in terms of Optimization Modulo Linear Arith-
metic, OMT(LRA). Second, it is possible to estimate the weights w1, w2

from data in order to learn what kind of blocks are to be considered optimal.
The goal of our learning procedure is precisely to find a good set of weights
from examples. In the following we will describe how such a learning task
can be framed within the structured output SVMs framework.

4.2. Notation

Symbol Meaning
above, right, . . . Boolean variables
x, y, dx, . . . Rational variables
(I, O) Complete object; I is the input, O is the output
ϕ1, . . . , ϕm Constraints
1k(I,O) Indicator for Boolean constraint ϕk over (I,O)
ck(I,O) Cost for arithmetical constraint ϕk over (I,O)
ψ(I,O) Feature representation of the complete object
ψk(I,O) := 1k(I,O) Feature associated to Boolean constraint ϕk

ψk(I,O) := −ck(I,O) Feature associated to arithmetical constraint ϕk

w Weights

Table 1: Explanation of the notation used throughout the text.
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We consider the problem of learning from a training set of n complex
objects {(I i,Oi)}ni=1, where each object (I,O) is represented as a set of
Boolean and rational variables:

(I,O) ∈ ({>,⊥} × . . .× {>,⊥})︸ ︷︷ ︸
Boolean part

× (Q× . . .×Q)︸ ︷︷ ︸
rational part

We indicate Boolean variables using predicates such as touching(i, j), and
write rational variables as lower-case letters, e.g. cost, distance, x, y. Please
note that while we write Boolean variables using a First-Order syntax for
readability, our method does require the grounding of all Boolean predicates
prior to learning and inference. In the present formulation, we assume ob-
jects to be composed of two parts: I is the input (or observed) part, while
O is the output (or query) part.9 The learning problem is defined by a
set of m constraints {ϕk}mk=1. Each constraint ϕk is either a Boolean- or
rational-valued function of the object (I,O). For each Boolean-valued con-
straint ϕk, we denote its indicator function as 1k(I,O), which evaluates to
1 if the constraint is satisfied and to −1 otherwise (the choice of −1 to rep-
resent falsity is customary in the max-margin literature). Similarly, we refer
to the cost of a rational-valued constraint ϕk as ck(I,O) ∈ Q. The fea-
ture space representation of an object (I,O) is given by the feature vector
ψ(I,O), which is a function of the constraints. Each soft constraint ϕk has
an associated finite weight wk ∈ Q (to be learned from the data), while
hard constraints have no associated weight. We denote the vector of learned
weights as w := (w1, w2, . . . , wm), and its Euclidean norm as ‖w‖. Table 1
summarizes the notation used throughout the text.

4.3. A Structural SVM approach to LMT

Structured-output SVMs [23] are a very flexible framework that gen-
eralizes max-margin methods to the prediction of complex outputs such
as strings, trees and graphs. In this setting the association between in-
puts I and outputs O is controlled by a so-called compatibility function
f(I,O) := w>ψ(I,O) defined as a linear combination of the joint feature
space representation ψ(I,O) of the input-output pair. Inference amounts to

9We depart from the conventional x/y notation for indicating input/output pairs to
avoid name clashes with the block coordinate variables.
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finding the most compatible output O∗ for a given input I, which equates
to solving the following optimization problem:

O∗ = argmaxOf(I,O) = argmaxOw
>ψ(I,O) (2)

Performing inference on structured domains is non-trivial, since the maxi-
mization ranges over an exponential (and possibly unbounded) number of
candidate outputs.

Learning is formulated within the regularized empirical risk minimization
framework. In order to learn the weights from a training set of n examples,
one needs to define a non-negative loss function ∆(I,O,O′) that, for any
given observation I, quantifies the penalty incurred when predicting O′ in-
stead of the correct output O. Learning can be expressed as the problem of
finding the weights w that minimize the per-instance error ξi and the model
complexity [23]:

argmin
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (3)

s.t. w>(ψ(I i,Oi)−ψ(I i,O
′)) ≥ ∆(I i,Oi,O

′)− ξi ∀ i = 1, . . . , n; O′ 6= Oi

Here the constraints require that the compatibility between any input I i
and its corresponding correct output Oi is always higher than that with
all wrong outputs O′ by a margin, with ξi playing the role of per-instance
violations. This formulation is called n-slack margin rescaling and it is the
original and most accessible formulation of structured-output SVMs. See [51]
for an extensive exposition of alternative formulations.

Weight learning is a quadratic program, and can be solved very efficiently
with a cutting-plane (CP) algorithm [23]. Since in Eq (3) there is an expo-
nential number of constraints, it is infeasible to naively account for all of
them during learning. Based on the observations that the constraints obey a
subsumption relation, the CP algorithm [51] sidesteps the issue by keeping a
working set of active constraintsW : at each iteration, it augments the work-
ing set with the most violated constraint, and then solves the corresponding
reduced quadratic program using a standard SVM solver. This procedure
is guaranteed to find an ε-approximate solution to the QP in a polynomial
number of iterations, independently of the cardinality of the output space
and of the number of examples n [23]. The n-slack margin rescaling version
of the CP algorithm can be found in Algorithm 1 (adapted from [51]). Please
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Data: Training instances {(I1,O1), . . . , (In,On)}, parameters C, ε
Result: Learned weights w

1 Wi ← ∅, ξi ← 0 for all i = 1, . . . , n ;
2 repeat
3 for i = 1, . . . , n do
4 O′i ← argmaxO′

[
∆(Oi,O

′)−w> (ψ(Ii,Oi)−ψ(Ii,O
′))
]

;

5 if ∆(Oi,O
′
i)−w> (ψ(Ii,Oi)−ψ(Ii,O

′
i)) > ξi + ε then

6

Wi ← Wi ∪ {O′i}

w, ξ ← argmin
w,ξ≥0

1

2
w>w +

C

n

n∑
i=1

ξi

s.t. ∀O′1 ∈ W1 : w>
[
ψ(I1,O1)−ψ(I1,O

′
1)
]
≥

∆(Oi,O
′
1)− ξ1

...

∀O′n ∈ Wn : w>
[
ψ(In,On)−ψ(In,O

′
n)
]
≥

∆(Oi,O
′
n)− ξn

7 end

8 end

9 until no Wi has changed during iteration;

10 return w

Algorithm 1: Cutting-plane algorithm for training structural SVMs,
according to the n-slack formulation presented in [51].

note that in our experiments we make use of the faster, but otherwise equiv-
alent, 1-slack margin rescaling variant [51]. We report the n-slack margin
rescaling version here for ease of exposition.

The CP algorithm is generic, meaning that it can be adapted to any
structured prediction problem as long as it is provided with: (i) a joint
feature space representation ψ of input-output pairs (and consequently a
compatibility function f); (ii) an oracle to perform inference, i.e. to solve
Equation (2); and (iii) an oracle to retrieve the most violated constraint of
the QP, i.e. to solve the separation problem:

argmaxO′wTψ(I i,O
′) + ∆(I i,Oi,O

′) (4)
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The two oracles are used as sub-routines during the optimization procedure.
For a more detailed account, and in particular for the derivation of the sep-
aration oracle formulation, please refer to [23].

One key aspect of the structured output SVMs is that efficient imple-
mentations of the two oracles are fundamental for the learning task to be
tractable in practice. The idea behind Learning Modulo Theories is that,
when a hybrid Boolean-numerical problem can be encoded in SMT, the two
oracles can be implemented using an Optimization Modulo Theory solver.
This is precisely what we propose in the present paper. In the following
sections we show how to define a feature space for hybrid Boolean-numerical
learning problems, and how to use OMT solvers to efficiently perform infer-
ence and separation.

4.4. Learning Modulo Theories with OMT

Let us formalize the previous toy example in the language of LMT. In
the following we give a step-by-step description of all the building blocks of
an LMT problem: the background knowledge, the hard and soft constraints,
the cost function, and the loss function.

Input, Output, and Background Knowledge. Here the input I to the problem
is the observed block (x1, y1, dx1, dy1) while the output O is the generated
block (x2, y2, dx2, dy2). In order to encode the set of constraints {ϕk} that
underlie both the learning and the inference problems, it is convenient to first
introduce a background knowledge of predicates expressing facts about the
relative positioning of blocks. To this end we add a fresh predicate left(i, j),
that encodes the fact that “a generic block of index i touches a second block
j from the left”, defined as follows:

left(i, j) := (xi + dxi = xj) ∧
((yj ≤ yi ≤ yj + dyj) ∨ (yj ≤ yi + dyi ≤ yj + dyj))

Similarly, we add analogous predicates for the other directions: right(i, j),
below(i, j), over(i, j) (see Table 2 for the full definitions).

Hard constraints. The hard constraints represent the fact that the output O
should be a valid block within the bounding box (all the constraints ϕk are
implicitly conjoined):

0 ≤ x2, y2, dx2, dy2 ≤ 1 (x2 + dx2) ≤ 1 ∧ (y2 + dy2) ≤ 1
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Then we require the output block O to “touch” the input block I:

left(1, 2) ∨ right(1, 2) ∨ below(1, 2) ∨ over(1, 2)

Note that whenever this rule is satisfied, both conditions (i) and (ii) of the
toy example hold, i.e. touching blocks never overlap.

Touching blocks

Block i touches block j, left

left(i, j) := xi + dxi = xj∧
((yj ≤ yi ≤ yj + dyj)∨
(yj ≤ yi + dyi ≤ yj + dyj))

Block i touches block j, below

below(i, j) := yi + dyi = yj∧
((xj ≤ xi ≤ xj + dxj)∨
(xj ≤ xi + dxi ≤ xj + dxj))

Block i touches block j, right right(i, j) := Analogous to left(i, j)
Block i touches block j, over over(i, j) := Analogous to below(i, j)

Figure 2: Background knowledge used in the toy block example.

Cost function. Finally, we encode the cost function cost = w1dx2 + w2dy2,
completing the description of the optimization problem. In the following we
will see that the definition of the cost function implicitly defines also the set
of features, or equivalently the set of soft constraints, of the LMT problem.

Soft constraints and Features. Now, suppose we were given a training set of
instances analogous to those pictured in Figure 1 (c), i.e. where the supervi-
sion includes output blocks that preferentially fill as much vertical space as
possible. The learning algorithm should be able to learn this preference by in-
ferring appropriate weights. This kind of learning task can be cast within the
structured SVM framework, by defining an appropriate joint feature space
ψ and oracles for the inference and separation problems.

Let us focus on the feature space first. Our definition is grounded on
the concept of reward assigned to an object (I,O) with respect to the set of
formulae {ϕk}mk=1. We construct the feature vector

ψ(I,O) := (ψ1(I,O), . . . , ψm(I,O))>

by collating m per-formula rewards ψk(I,O), where:

ψk(I,O) :=

{
1k(I,O) if ϕk is Boolean

−ck(I,O) if ϕk is arithmetical
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Here 1k is an indicator for the satisfaction of a Boolean constraint ϕk, while ck
denotes the cost associated to real-valued constraints, please refer to Table 1
for more details. In other words, the feature representation of a complex
object (I,O) is the vector of all indicator/cost functions associated to the
soft constraints. Returning to the toy example, where the cost function is

cost := w1 × dx2 + w2 × dy2 = w>ψ(I,O)

the feature space of an instance (I,O) is simply ψ(I,O) = (−dx2,−dy2)>,
which reflects the size of the output block O. The negative sign here is
due to interpreting the features as rewards (to be maximized), while the
corresponding soft constraints can be seen as costs (to be minimized); see
Eq 5 where this relationship is made explicit.

According to this definition both satisfied and unsatisfied rules contribute
to the total reward, and two objects (I,O), (I ′,O′) that satisfy/violate sim-
ilar sets of constraints will be close in feature space. The compatibility
function f(I,O) := w>ψ(I,O) computes the (weighted) total reward as-
signed to (I,O) with respect to the constraints. Using this definition, the
maximization in the inference (Equation 2) can be seen as attempting to
find the output O that maximizes the total reward with respect to the input
I and the rules, or equivalently the one with minimum cost. Since ψ can
be expressed in terms of Satisfiability Modulo Linear Arithmetic, the latter
minimization problem can be readily cast as an OMT problem. Translating
back to the example, maximizing the compatibility function f boils down to:

argmax w>ψ(I,O) = argmax (−dx2,−dy2)w = argmin (dx2, dy2)w (5)

which is exactly the cost minimization problem in Equation 1.

Loss function. The loss function determines the dissimilarity between out-
put structures, which in our case contain a mixture of Boolean and ratio-
nal variables. We observe that by picking a loss function expressible as an
OMT(LRA) problem, we can readily use the same OMT solver used for in-
ference to also solve the CP separation oracle (Equation (4)). This can be
achieved by selecting a loss function such as the following Hamming loss in
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feature space:

∆(I,O,O′) :=
∑

k : ϕk is Boolean

|1k(I,O)− 1k(I,O′)|+∑
k : ϕk is arithmetical

|ck(I,O)− ck(I,O′)|

= ‖ψ(I,O)−ψ(I,O′)‖1

This loss function is piecewise-linear, and as such satisfies the desideratum.
Since both the inference and separation oracles required by the CP al-

gorithm can be encoded in OMT(LRA), we can apply an OMT solver to
efficiently solve the learning task. In particular, our current implementation
is based on a vanilla copy of SVMstruct 10, which acts as a cutting-plane solver,
whereas inference and separation are implemented with the OptiMathSAT
OMT solver.

To summarize, an LMT problem can be broken down into several com-
ponents: a background knowledge, a set of soft and hard constraints, a cost
function and a loss function. The background knowledge amounts to a set
of SMT formulae and constants useful for encoding the problem constraints,
which in turn determine the relation between inputs and outputs. The hard
constraints define the space of candidate outputs, while the soft constraints
correspond one-to-one to features. The overall cost function is a linear com-
bination of the dissatisfaction/cost (or, equivalently, satisfaction/reward) as-
sociated to the individual soft constraints, and as such is controlled entirely
by the choice of features. Finally, the loss function determines the dissimi-
larity between output structures. While in the present paper we focused on
a Hamming loss in feature space, LMT can work with any loss function that
can be encoded as an SMT formula.

5. Experimental Evaluation

In the following we evaluate LMT on two novel design problems that stress
the ability of LMT to deal with rather complex mixed Boolean-numerical
problems.

10http://www.cs.cornell.edu/people/tj/svm light/svm struct.html.
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5.1. Stairway to Heaven

In this section we are interested in learning how to assemble different
kinds of stairways from examples. For the purpose of this paper, a stairway is
simply a collection of m blocks (rectangles) located within a two-dimensional,
unit-sized bounding box [0, 1]× [0, 1]. Clearly not all possible arrangements
of blocks form a stairway; a stairway must satisfy the following conditions:
(i) the first block touches either the top or the bottom corner of the left edge
of the bounding box; (ii) the last block touches the opposite corner at the
right edge of the bounding box; (iii) there are no gaps between consecutive
blocks; (iv) consecutive blocks must actually form a step and, (v) no two
blocks overlap. Note that the property of “being a stairway” is a collective
property of the m blocks.

More formally, each block i = 1, . . . ,m consists of four rational variables:
the origin (xi, yi), which indicates the bottom-left corner of the block, a width
dxi and a height dyi; the top-right corner of the block is (xi + dxi, yi + dyi).
A stairway is simply an assignment to all 4 ×m variables that satisfies the
above conditions.

Our definition does not impose any constraint on the orientation of stair-
ways: it is perfectly legitimate to have left stairways that start at the top-left
corner of the bounding box and reach the bottom-right corner, and right stair-
ways that connect the bottom-left corner to the top-right one. For instance,
a left 2-stairway can be defined with the following block assignment (see
Figure 3 (a)):

(x1, y1, dx1, dy1) =

(
0,

1

2
,
1

2
,
1

2

)
(x2, y2, dx2, dy2) =

(
1

2
, 0,

1

2
,
1

2

)
Similarly, a right 2-stairway is obtained with the assignment (Figure 3 (b)):

(x1, y1, dx1, dy1) =

(
0, 0,

1

2
,
1

2

)
(x2, y2, dx2, dy2) =

(
1

2
,
1

2
,
1

2
,
1

2

)
We also note that the above conditions do not impose any explicit re-

striction on the width and height of individual blocks (as long as consecutive
ones are in contact and there is no overlap). Consequently we allow for both
ladder stairways, where the total amount of vertical and horizontal surface
of the individual blocks is minimal, as in Figure 3 (a) and (b); and for pillar
stairways, where either the vertical or horizontal block lengths are maxi-
mized, as in Figure 3 (c). There are of course an uncountable number of
intermediate stairways that do not belong to either of the above categories.
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Figure 3: (a) A left ladder 2-stairway. (b) A right ladder 2-stairway. (c) A right pillars
2-stairway. (d) A block assignment that violates conditions (i), (ii) and (iv), and as such
does not form a stairway.

Inference amounts to generating a set of variable assignments to all blocks,
so that none of conditions (i)-(v) is violated, and the cost of the soft rules is
minimized11. This can be easily encoded as an OMT(LRA) problem. As a
first step, we define a background knowledge of useful predicates. We use four
predicates to encode the fact that a block i may touch one of the four corners
of the bounding box, namely bottom left(i), bottom right(i), top left(i),
and top right(i), which can be written as, e.g.:

bottom right(i) := (xi + dxi) = 1 ∧ yi = 0

We also define predicates to describe the relative positions of two blocks i
and j, such as left(i, j):

left(i, j) := (xi + dxi) = xj∧
((yj ≤ yi ≤ yj + dyj)∨
(yj ≤ yi + dyi ≤ yj + dyj))

encodes the fact that block i is touching block j from the left. Similarly,
we also define below(i, j) and over(i, j). Finally, and most importantly, we
combine the above predicates to define the concept of step, i.e. two blocks i
and i+ 1 that are both touching and positioned as to form a stair:

left step(i, j) := (left(i, j) ∧ (yi + dyi) > (yj + dyj)) ∨
(over(i, j) ∧ (xi + dxi) < (xj + dxj))

11 Note that as will be detailed later on, the full set of constraints representing stairs
will not be available during inference. We will rather provide a super-set of candidate soft
constraints, and the training stage will be responsible of learning appropriate weights for
the constraints characterising the type of stairs in the training set.
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We define right step(i,j) in the same manner. For a complete description
of the background knowledge, see Table 2.

Corners
Block i at bottom-left corner bottom left(i) := xi = 0 ∧ yi = 0
Block i at bottom-right corner bottom right(i) := (xi + dxi) = 1 ∧ yi = 0
Block i at top-left corner top left(i) := xi = 0 ∧ (yi + dyi) = 1
Block i at top-right corner top right(i) := (xi + dxi) = 1 ∧ (yi + dyi) = 1

Relative block positions

Block i touches block j, left

left(i, j) := (xi + dxi) = xj∧
((yj ≤ yi ≤ yj + dyj)∨
(yj ≤ yi + dyi ≤ yj + dyj))

Block i touches block j, below

below(i, j) := (yi + dyi) = yj∧
((xj ≤ xi ≤ xj + dxj)∨
(xj ≤ xi + dxi ≤ xj + dxj))

Block i touches block j, over

over(i, j) := (yj + dyj) = yi∧
((xj ≤ xi ≤ xj + dxj)∨
(xj ≤ xi + dxi ≤ xj + dxj))

Steps

Left step

left step(i, j) :=

(left(i, j) ∧ (yi + dyi) > (yj + dyj)) ∨
(over(i, j) ∧ (xi + dxi) < (xj + dxj))

Right step

right step(i, j) :=

(left(i, j) ∧ (yi + dyi) < (yj + dyj)) ∨
(below(i, j) ∧ (xi + dxi) < (xj + dxj))

Table 2: Background knowledge used in the stairways experiment.

The background knowledge allows to encode the property of being a left
stairway as:

top left(1) ∧
∧

i∈[1,m−1]

left step(i, i+ 1) ∧ bottom right(m)

Analogously, any right stairway satisfies the following condition:

bottom left(1) ∧
∧

i∈[1,m−1]

right step(i, i+ 1) ∧ top right(m)
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However, our inference procedure does not have access to this knowledge. We
rather encode an appropriate set of soft rules (costs) which, along with the
associated weights, should bias the optimization towards block assignments
that form a stairway of the correct type.

We include a few hard rules to constrain the space of admissible block
assignments. We require that all blocks fall within the bounding box:

∀i 0 ≤ xi, dxi, yi, dyi ≤ 1

∀i 0 ≤ (xi + dxi) ≤ 1 ∧ 0 ≤ (yi + dyi) ≤ 1

We also require that blocks do not overlap:

∀i 6= j (xi + dxi ≤ xj) ∨ (xj + dxj ≤ xi) ∨
(yi + dyi ≤ yj) ∨ (yj + dyj ≤ yi)

Finally, we require (without loss of generality) blocks to be ordered from left
to right, ∀i xi ≤ xi+1.

Note that only condition (v) is modelled as a hard constraint. The others
are implicitly part of the problem cost. Our cost model is based on the
observation that it is possible to discriminate between the different stairway
types using only four factors: minimum and maximum step size, and amount
of horizontal and vertical material. These four factors are useful features in
discriminating between the different stairway types without having to resort
to quadratic terms, e.g. the areas of the individual blocks. For instance, in
the cost we account for both the maximum step height of all left steps (a
good stairway should not have too high steps):

maxshl = m× max
i∈[1,m−1]

{
(yi + dyi)− (yi+1 + dyi+1) if i, i+ 1 form a left step

1 otherwise

and the minimum step width of all right steps (good stairways should have
sufficiently large steps):

minswr = m× min
i∈[1,m−1]

{
(xi+1 + dxi+1)− (xi + dxi) if i, i+ 1 form a right step

0 otherwise

The value of these costs depends on whether a pair of blocks actually forms
a left step, a right step, or no step at all. Note that these costs are multiplied
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by the number of blocks m. This allows to renormalize costs according to the
number of steps; e.g. the step height of a stairway with m uniform steps is
half that of a stairway with m/2 steps. Finally, we write the average amount
of vertical material as vmat = 1

m

∑
i dyi. All the other costs can be written

similarly; see Table 3 for the complete list. As we will see, the normalization
of individual costs allows to learn weights which generalize to stairways with
a larger number of blocks with respect to those seen during training.

Putting all the pieces together, the complete cost is:

cost := (maxshl,minshl,maxshr,minshr,

maxswl,minswl,maxswr,minswr,

vmat, hmat) w

Minimizing the weighted cost implicitly requires the inference engine to
decide whether it is preferable to generate a left or a right stairway, thanks
to the minshl, . . . ,minswr components, and whether the stairway should be
a ladder or pillar, due to vmat and hmat. The actual weights are learned,
allowing the learnt model to reproduce whichever stairway type is present in
the training data.
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(a) Hard constraints

Bounding box
∀i 0 ≤ xi + dxi ≤ 1 ∧

0 ≤ yi + dyi ≤ 1

No overlap
∀i 6= j (xi + dxi ≤ xj) ∨ (xj + dxj ≤ xi)∨

(yi + dyi ≤ yj) ∨ (yj + dyj ≤ yi)

Blocks left to right ∀i xi ≤ xi+1

(b) Soft constraints (features)
Max step height left maxshl = m×maxi(yi + dyi)− (yi+1 + dyi+1)
Min step height left minshl = m×mini(yi + dyi)− (yi+1 + dyi+1)
Max step height right maxshr = m×maxi(yi+1 + dyi+1)− (yi + dyi)
Min step height right minshr = m×mini(yi+1 + dyi+1)− (yi + dyi)

Max step width left maxswl = m×maxi(xi+1 + dxi+1)− (xi + dxi)
Min step width left minswl = m×mini(xi+1 + dxi+1)− (xi + dxi)
Max step width right maxswr = m×maxi(xi + dxi)− (xi+1 + dxi+1)
Min step width right minswr = m×mini(xi + dxi)− (xi+1 + dxi+1)

Vertical material vmat = 1
m

∑
i dyi

Horizontal material hmat = 1
m

∑
i dxi

(c) Cost
cost := (maxshl,minshl,maxshr,minshr,

maxswl,minswl,maxswr,minswr,

vmat, hmat) w

Table 3: List of all rules used in the stairway problem. Top, hard rules affect both the
inference and separation procedures. Middle, soft rules (costs), whose weight is learned
from data. Bottom, the total cost of a stairway instance is the weighted sum of all
individual soft constraints.

To test the stairway scenario, we focused on learning one model for each
of six kinds of stairway: left ladder, right ladder, left pillar and right pillar
with a preference for horizontal blocks, and left pillar and right pillar with
vertical blocks. In this setting, the input I is empty, and the model should
generate all m blocks as output O during test.

We generated “perfect” stairways of 2 to 6 blocks for each stairway type
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to be used as training instances. We then learned a model using all training
instances up to a fixed number of blocks: a model using examples with up
to 3 blocks, another with examples of up to 4, etc., for a total of 4 models
per stairway type. Then we analyzed the generalization ability of the learnt
models by generating stairways with a larger number of blocks (up to 10)
than those in the training set. The results can be found in Figure 4.

# train. # output blocks
blocks 3 6 7 8 9 10 3 6 7 8 9 10

Results for “ladder” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Results for “vertical pillar” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Results for “horizontal pillar” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Figure 4: Results for the stairway construction problem. From top to bottom: results
for the ladder, horizontal pillar, and vertical pillar cases. Images in row labeled with N
picture the stairways generated by a model learnt on a training set of perfect stairways
made of 2, 3, . . . , N steps, with a varying number of generated blocks.

The experiment shows that LMT is able to solve the stairway construction
problem, and can learn appropriate models for all stairway types, as expected.
As can be seen in Figure 4, the generated stairways can present some imper-
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fections when the training set is too small (e.g., only two training examples;
first row of each table), especially in the 10 output blocks case. However, the
situation quickly improves when the training set increases: models learned
with four training examples are always able to produce perfect 10-block stair-
ways of the same kind. Note again that the learner has no explicit notion of
what a stairway is, but just the values of step width, height and material for
some training examples of stairways.

All in all, albeit simple, this experiment showcases the ability of LMT
to handle learning in hybrid Boolean-numerical domains, whereas other for-
malisms are not particularly suited for the task. As previously mentioned,
the Church [7] language allows to encode arbitrary constraints over both nu-
meric and Boolean variables. The stairway problem can indeed be encoded
in Chuch in a rather straightforward way. However, the sampling strate-
gies used for inference are not conceived for performing optimization with
hard continuous constraints. Even the simple task of generating two blocks,
conditioned on the fact that they form a step, is prohibitively expensive. 12

5.2. Learning to Draw Characters

In this section we are concerned with automatic character drawing, a novel
structured-output learning problem that consists in learning to translate any
input noisy hand-drawn character into its symbolic representation. More
specifically, given an unlabeled black-and-white image of a handwritten letter
or digit, the goal is to construct an equivalent vectorial representation of the
same character.

In this paper, we assume the character to be representable by a polyline
made of a given number m of directed segments, i.e. segments identified by
a starting point (xb, yb) and an ending point (xe, ye). The input image I
is seen as the set P of coordinates of the pixels belonging to the character,
while the output O is a set of m directed segments {(xbi , ybi , xei , yei )}mi=1. Just
like in the previous section, we assume all coordinates to fall within the unit
bounding box.

Intuitively, any good output O should satisfy the following requirements:
(i) it should be as similar as possible to the noisy input character; and (ii)
it should actually “look like” the corresponding vectorial character. Here we
interpret the first condition as implying that the generated segments should

12We interrupted the inference process after 24 hours of computation.
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cover as many pixels of the input image as possible (although alternative
interpretations are possible). Under this interpretation, we can informally
write the inference problem as follows:

argmaxO (coverage(I,O), orientation(O)) w

where the orientation term encodes information on the orientation of the
segments which should be useful for computing the “looking like” condition.
In the following, we will detail how to formulate and compute these two
quantities.

(a) (b) (c)

1

2 3

4

5

0

1

0 1
0

1

0 1
0

1

0 1

3

1

2

4

5

Figure 5: Left, example 8 × 8 bitmap image of an “A”. Middle, a set of 5 segments
satisfying the “looking like an A” rules in the text. Right, 5 segments satisfying both the
rules for character “A” and fitting the underlying image.

Since the output is supposed to be a polyline, we constrain consecutive
segments to be connected, i.e. to share an endpoint:

∀i connected(i, i+ 1)

We also want the segments to be no larger than the image, nor smaller
than a pixel: ∀i min length ≤ length(i) ≤ 1. Additionally, we constrain
(without loss of generality) each segment to be ordered from left to right, i.e.
xbi ≤ xei . Finally, we restrict the segments to be either horizontal, vertical or
45◦ diagonal, that is:

∀i horizontal(i) ∨ vertical(i) ∨ diagonal(i)

This restriction allows us express all numerical constraints in linear terms.
All the predicates used above are defined as in Table 4.
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Under these assumptions, we can encode the coverage reward as:

coverage(I,O) :=
1

|P |
∑
p∈P

1(covered(p))

where covered(p) is true if pixel p is covered by at least one of the m seg-
ments:

covered(p) :=
∨

i∈[1,m]

covered(p, i)

The fact that a segment i = (xbi , y
b
i , x

e
i , y

e
i ) covers pixel p = (x, y) implicitly

depends on the orientation of the segment, and is computed using constructs
like:

If horizontal(i) then covered(p, i) := xbi ≤ x ≤ xei ∧ y = ybi

The coverage formulae for the other segment types can be found in Table 4.
As for the orientation term, it should contain features related to the

vectorial representation of characters. These include both the direction of
the individual segments and the connections between pairs of segments. As
an example, consider this possible description of “looking like an A”:

increasing(1) ∧ h2t(1, 2) ∧
increasing(2) ∧ h2t(2, 3) ∧
decreasing(3) ∧ h2h(3, 4) ∧
horizontal(4) ∧ h2t(4, 5) ∧
decreasing(5)

Here increasing(i) and decreasing(i) indicate the direction of segment i,
and can be written as:

increasing(i) := yei > ybi
decreasing(i) := yei < ybi

Then we have connections between pairs of segments. We encode connection
types following the convention used for Bayesian Networks, where the head
of a directed segment is the edge containing the arrow (represented by the
ending point (xe, ye)) and the tail is the opposite edge (the starting point
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(xb, yb)). For instance, h2t(i, j) indicates that i is head-to-tail with respect
to j, h2h(i, j) that they are head-to-head:

h2t(i, j) := (xei = xbj) ∧ (yei = ybj)

h2h(i, j) := (xei = xej) ∧ (yei = yej )

For a pictorial representation of the “looking like an A” constraint, see Fig-
ure 5 (b). We include a number of other, similar predicates in the background
knowledge; for a full list, see Table 4.

For example, suppose we have a 8× 8 image of an upper-case “A”, as in
Figure 5 (a). A character drawing algorithm should decide how to overlay 5
segments on top of the input image according to the previous two criteria.
A good output would look like the one pictured in Figure 5 (c).

However, the formula for the “looking like an A” constraint is not avail-
able at test time and should be learned from the data. In order to do so,
the orientation term includes possible directions (increasing, decreasing,
right) for all m segments and all possible connection types between all seg-
ments (h2t, h2h, t2t, t2h). Note that we do not include detailed segment
orientation (i.e., horizontal, vertical, diagonal) in the feature space to
accommodate for alternative vectorial representations of the same letter. For
instance, the first segment in an “A”, which due to the left-to-right rule neces-
sarily fits the lower left portion of the character, is bound to be increasing,
but may be equally likely vertical or diagonal (see e.g. Figures 5 (b)
and (c)).

Summing up, the orientation term can be written as:

( increasing(1), decreasing(1), right(1),

· · ·
increasing(m), decreasing(m), right(m),

h2t(1, 2), t2h(1, 2), h2h(1, 2), t2t(1, 2),

· · ·
h2t(1,m), t2h(1,m), h2h(1,m), t2t(1,m),

· · ·
h2t(m− 1,m), t2h(m− 1,m), h2h(m− 1,m), t2t(m− 1,m) )

where each feature is the indicator function of the corresponding Boolean
variable, e.g. increasing(1) := 1(increasing(1)) (see Table 5).
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Segment types
Segment i is horizontal horizontal(i) := (xbi 6= xei ) ∧ (y = ybi )
Segment i is vertical vertical(i) := (xbi = xei ) ∧ (yei 6= ybi )
Segment i is diagonal diagonal(i) := |xei − xbi | = |yei − ybi |
Segment i is increasing increasing(i) := yei > ybi
Segment i is decreasing decreasing(i) := yei < ybi
Segment i is left-to-right right(i) := xei > xbi
Segment i is incr. vert. incr vert(i) := increasing(i) ∧ vertical(i)
Segment i is decr. vert. decr vert(i) := decreasing(i) ∧ vertical(i)
Segment i is incr. diag. incr diag(i) := increasing(i) ∧ diagonal(i)
Segment i is decr. diag. decr diag(i) := decreasing(i) ∧ diagonal(i)

Segment length
Lenght of horiz. segment i horizontal(i)→ length(i) = |xei − xbi |
Length of vert. segment i vertical(i)→ length(i) = |yei − ybi |
Lenght of diag. segment i diagonal(i)→ length(i) =

√
2 |yei − ybi |

Connections between segments
Segments i,j are head-to-tail h2t(i, j) := (xei = xbj) ∧ (yei = ybj)
Segments i,j are head-to-head h2h(i, j) := (xei = xej) ∧ (yei = yej )
Segments i,j are tail-to-tail t2t(i, j) := (xbi = xbj) ∧ (ybi = ybj)
Segments i,j are tail-to-head t2h(i, j) := (xbi = xej) ∧ (ybi = yej )

Segments i,j are connected
connected(i, j) := h2h(i, j) ∨ h2t(i, j)∨

t2h(i, j) ∨ t2t(i, j)

Whether segment i = (xb, yb, xe, ye) covers pixel p = (x, y)
Coverage of pixel p covered(p) :=

∨
i covered(p, i)

Coverage of pixel p by seg. i
incr vert(i) → covered(p, i) := ybi ≤ y ≤ yei ∧ x = xbi
decr vert(i) → covered(p, i) := yei ≤ y ≤ ybi ∧ x = xbi
horizontal(i) → covered(p, i) := xbi ≤ x ≤ xei ∧ y = ybi
incr diag(i) → covered(p, i) := ybi ≤ y ≤ yei ∧ xbi ≤ x ≤ xei ∧ xbi − ybi = x− y
decr diag(i) → covered(p, i) := yei ≤ y ≤ ybi ∧ xbi ≤ x ≤ xei ∧ xbi + ybi = x+ y

Table 4: Background knowledge used in the character writing experiment.
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(a) Hard constraints
Left-to-right ordering xbi ≤ xei
Allowed segment types vertical(i) ∨ horizontal(i) ∨ diagonal(i)
Consecutive segments are connected connected(i, i+ 1)
Minimum segment size min length ≤ length(i) ≤ 1

(b) Soft constraints (features)
Non-zero pixel coverage coverage := 1

|P |
∑

p∈P 1(covered(p))

Indicator of increasing segment i increasing(i) := 1(increasing(i))
Indicator of decreasing segment i decreasing(i) := 1(decreasing(i))
Indicator of right segment i right(i) := 1(right(i))
Indicator of head-to-tail i, j h2t(i, j) := 1(h2t(i, j))
Indicator of tail-to-head i, j t2h(i, j) := 1(t2h(i, j))
Indicator of head-to-head i, j h2h(i, j) := 1(h2h(i, j))
Indicator of tail-to-tail i, j t2t(i, j) := 1(t2t(i, j))

(c) Cost

cost := w>( increasing(i), decreasing(i), right(i)︸ ︷︷ ︸
for all segments i

,

h2t(i, i+ 1), t2h(i, i+ 1), h2h(i, i+ 1), t2t(i, i+ 1)︸ ︷︷ ︸
for all segments i

,

coverage)

Table 5: List of all rules used in the character writing problem. Top, hard rules. Middle,
soft rules (costs). Bottom, total cost of a segment assignment.

We evaluated LMT on the character drawing problem by carrying out an
extensive experiment using a set of noisy B&W 16× 20 character images13.
The dataset includes 39 instances of handwritten images of each alphanu-
merical character. We downscaled the images to 12× 12 for speeding up the
experiments. Learning to draw characters is a very challenging constructive
problem, made even more difficult by the low quality of the noisy images in
the dataset (see, e.g. Figure 7.) In this experiment we learn a model for
each of the first five letters of the alphabet (A to E), and assess the ability
of LMT to generalize over unseen handwritten images of the same character.

We selected for each letter five images at random out of the 39 avail-
able to be employed as training instances. For each of these, we used Op-
tiMathSAT to generate a “perfect” vectorial representation according to
a human-provided letter template (similar to the “looking like an A” rule

13Dataset taken from http://cs.nyu.edu/∼roweis/data.html
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above), obtaining a training set of five fully supervised images. Please note
that the training outputs generated by this process may not be optimal from
a “perceptual” perspective, but only with respect to the “looking like an
A” rule. The resulting supervision obtained with this procedure—which can
be seen in the first rows of Figures 6 to 10—is, in some cases, very noisy,
and depends crucially on the quality of the character image. This is partic-
ularly relevant for the “B”, which is the most geometrically complex of the
characters and thus more difficult to capture with bitmap images.

For each letter, we randomly sampled a test set of 10 instances out of
the 33 non-training images. Then we learned a model for each letter, and
used it to infer the vectorial representation of the test images. In order to
assess the robustness of the learning method with respect to the amount
of available supervision, we repeated this procedure four times, each time
adding a training instance to the training set: the number of instances in
the training set grows from 2 (the first two training images) to 5 (all of the
training images). We indicate the predictions obtained by models learned
with k examples as pred@k. The number of segments m was known during
both training and inference. In particular, we used 4 segments for the “D”,
5 segments for the “C” and “E”, 7 segments for the “A”, and 9 segments for
the “B”. The output for all letters can be found in Figures 6 to 10, from the
second to the fifth rows of each figure.

We sped up the computations in two ways. First, during learning we
imposed a 2 minute timeout on the separation oracle used for training. Con-
sequently most invocations to the separation routine did return an approxi-
mate solution. Analyzing the weights, we found that this change had little
effect on the learned model (data not shown). This can be explained by
observing that the cutting-plane algorithm does not actually require the sep-
aration oracle to be perfect: as long as the approximation is consistent with
the hard rules (which is necessarily the case even in sub-optimal solutions),
the constraint added to the working setW at each iteration still restricts the
quadratic program in a sound manner (see Algorithm 1). As a consequence,
the learning procedure is still guaranteed to find an ε-approximate solution,
but it may take more iterations to converge. This trick allows training to
terminate very quickly (in the order of minutes for a set of five training ex-
amples). Furthermore, it enables the user to fine tune the trade-off between
separation complexity and number of QP sub-problems to be solved.

Second, prior to inference we convert the learned weights associated to
the segment and connection features into hard constraints and add them
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to the learned model. This way we constrain OptiMathSAT to search
for solutions that do respect the learned weights, while still allowing for
some flexibility in the choice of the actual solution. In practice, for each
per-segment feature (i.e. those associated to increasing, decreasing and
right soft constraints) and connection features (i.e. h2t, t2t, etc.) with a
positive weight, we add the corresponding hard rule. If more than one weight
is positive for any given segment/connection, we add the disjuction of the
hard rules to the model.

As a quantitative measure of the quality of the predictions, we also re-
port the distance between the generated vectorial representation O for each
letter and a corresponding human-made gold standard O′. Here the error is
computed by first aligning the segments using an optimal translation, and
then summing the distances between all corresponding segment endpoints.
The human generated images respect the same “looking like an X” rule used
for generating the training set, i.e. they have the same number of segments,
drawn in the same order and within the same set of allowed orientations.
One minor difference is they do not follow the requirement that segment
endpoints match, for simplicity; this has little impact on the resulting val-
ues. The values in Figure 11 are the average over all instances in the test
set, when varying the training set size.
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Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Figure 6: Results for the “A” 12 × 12 character drawing task. The training instances
are lined up in the first row. The second to fifth row are the segmentations generated
by models learned with the first two training instances, the first three instances, etc.,
respectively. The last row are the human-made segmentations used in the comparison.
The generated vectorial representations are shown overlayed over the corresponding bitmap
image. Segments are colored for readability.

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Figure 7: Results for the “B” 12× 12 character drawing task.
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Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Figure 8: Results for the “C” 12× 12 character drawing task.

Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Figure 9: Results for the “D” 12× 12 character drawing task.
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Training

Pred @2

Pred @3

Pred @4

Pred @5

Human

Figure 10: Results for the “E” 12× 12 character drawing task.

Figure 11: Average distance between the predicted vectorial images and the human-
made ones, while increasing the number of training instances. The @k ticks on the x-axis
indicate the size of the training set. The y-axis represents the sum of per-segment distances
averaged over all images in the test set. From left to right, top to bottom: results for “A”,
“B”, “C”, “D”, and “E”.

The results show that LMT is able to address the character drawing
problem and produce reasonable outputs for all the target letters. Please
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note that both the coordinates and the number of character pixels can vary
widely between test instances, and our results highlight the generalization
ability of our method. Furthermore, the predictions tend to get closer to the
human-provided segmentations as the number of training instances increases.

For the simplest cases (i.e. “C”, “D”, and “E”, drawn using four to five
segments), the outcome is unambiguous: there are only a handful of cases
for “E” where two horizontal segments are too close, and this is only due
to the fact that we do not encode (soft) constraints on the segment lengths.
The only real issue is with the “D”, where the fourth (blue) segment is never
predicted as diagonal, despite there being two examples with that property
in the training set. The main reason is that in none of the test images it is
possible to draw a 45◦ diagonal without sacrificing pixel coverage. None of
the predictions looks perceptually “wrong”.

More complex letters like the “A” and “B”, with a higher number of seg-
ments, also show a similar behavior: the generated letters indeed generalize
the given examples. However, there are a handful of predictions that are sub-
optimal with respect to coverage of the bitmap character (e.g. see the first
column in Figure 6) or do not represent a “perceptually” correct character,
a behaviour which is less frequent for the larger training sets (e.g. second-
to-last row of Figure 6). This can be explained by (i) the complexity of the
7- and (especially) the 9-segment inference problems, (ii) the fact that more
segments imply more features, and consequently may require more examples
to be learned correctly, and (iii) the fact that our cost function does not fully
discriminate between perceptually different solutions.

The distance-to-human results in Figure 11 also show how the algorithm
produces more perceptually reasonable predictions as the training set in-
creases: while the values do fluctuate, in all cases the distance at pred@5 is
lower than that at pred@2. Summarizing, excluding cases of pathologically
bad inputs—such as the third “B” training examples leading to the bad per-
formance in the pred@3 and pred@4 experiments—LMT is able to learn an
appropriate model for each letter and generalize the learned template over
unseen inputs.

In this paper we only consider the case where the training data is labeled
with a fully observed vectorial letter. Our method, however, can in principle
be extended to work with partially observed supervision, e.g. with train-
ing instances labeled only with the character type, in order to discover the
vectorial representation. More on this point can be found in the next section.
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6. Conclusions

In this work we presented a novel class of methods for structured learn-
ing problems with mixed Boolean and numerical variables. These methods,
termed Learning Modulo Theories, are based on a combination of structured-
output SVMs and Satisfiability Modulo Theories. In contrast to classical
First-Order Logic, SMT allows to natively describe, and reason over, numer-
ical variables and mixed logical/arithmetical constraints. By leveraging the
existing state-of-the-art OMT solvers, LMT is well-suited for dealing with
hybrid constructive learning problems, avoiding the combinatorial explosion
of the state space that would affect an equivalent FOL formulation.

Experimental results on both artificial and real world datasets show the
potential of this approach. The stairway application is a simple instance of a
layout problem, where the task is to find an optimal layout subject to a set
of constraints. Automated or interactive layout synthesis has a broad range
of potential applications, including urban pattern layout [52], decorative mo-
saics [53] and furniture arrangement [54, 55, 56]. Note that many spatial
constraints can be encoded in terms of relationships between blocks [54].
Existing approaches typically design an energy function to be minimized by
stochastic search. Our approach suggests how to automatically identify the
relevant constraints and their respective weights, and can accomodate hard
constraints and exact search. This is especially relevant for water-tight lay-
outs [57], where the whole space needs to be filled (i.e. no gaps or overlaps)
by deforming basic elements from a predetermined set of templates (as in
residential building layout [58]). The character drawing application shows
how to learn symbolic representations from a handful of very noisy training
instances. Deep generative networks have been previously used for similar
tasks, see for instance the work by Hinton [59] on generating images of dig-
its with Deep Boltzmann Machines. However, these methods do not learn
symbolic representations for characters and generate bitmaps rather than
vectorial representations. Furthermore, they require thousands of training
examples to be learned. Recent extensions have been developed addressing
the problem of learning from few [60] or even single [61] examples, but they
focus on clean images of the target symbols. Generally speaking, the LMT
framework allows to introduce a learning stage in all application domains
where SMT and OMT approaches have shown their potential, ranging, e.g.,
from hardware and software verification [62, 63, 39], to engineering of chem-
ical reactions [64] and synthetic biology [65].
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This work can be extended in a number of directions. First, the current
formulation assumes knowledge of the desired output for training examples.
This requirement can be loosened by introducting latent variables for the
unobserved part of the output, to be maximized over during training [66].
Second, OMT is currently limited to quantifier free formulae and linear al-
gebra for what concerns numeric theories. The former requires to ground
all predicates before performing inference, while the latter prevents the for-
mulation of non-linear constraints, e.g. on areas and Euclidean distances.
Some attempts to extend SMT solvers to quantified formulae [48, 49, 50] and
to non-linear arithmetic [67, 68, 69] have been presented in the literature;
although the state of the art of these extensions is not yet satisfactory in
terms of efficiency, since they can currently handle problems which are much
smaller –in terms of size, number of variables and of arithmetical operations–
than the quantifier-free problems with linear constraints at the reach of cur-
rent SMT solvers, these techniques are evolving rapidly and promise rapid
improvements in terms of performances in the next few years; hence, we
can rather easily extend our framework in these directions as soon as the
underlying SMT technology is mature enough. Finally, LMT is currently fo-
cused on the task of finding the maximal configuration, and cannot compute
marginal probabilities. We are planning to introduce support for probability
computation by leveraging ideas from weighted model counting [70].
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